
FrankenBit: Bit-Precise Verification with Many
Bits (Competition Contribution)?

Arie Gurfinkel1 and Anton Belov2

1 Carnegie Mellon Software Engineering Institute
2 University College Dublin

Abstract. Bit-precise software verification is an important and difficult
problem. While there has been an amazing progress in SAT solving, Sat-
isfiability Modulo Theory of Bit Vectors, and bit-precise Bounded Model
Checking, proving bit-precise safety, i.e. synthesizing a safe inductive in-
variant, remains a challenge. In this paper, we present FrankenBit
— a tool that combines bit-precise invariant synthesis with BMC coun-
terexample search. As the name suggests, FrankenBit combines a large
variety of existing verification tools and techniques, including LLBMC,
UFO, Z3, Boolector, MiniSAT and STP.

1 Verification Approach

FrankenBit combines two orthogonal techniques: one searches for bit-precise
counterexamples, and the other synthesizes bit-precise inductive invariants. The
counterexample search is done using Bounded Model Checking, and is delegated
completely to LLBMC [11]. Invariant synthesis is implemented by first unsoundly
approximating programs using Linear Arithmetic (LA), then computing induc-
tive invariants for the approximation, and using those to guide the search for
bit-precise invariants. The details of this approach are described in [7].

2 Software Architecture

The architecture of FrankenBit is shown in Fig. 1. First, the input C source
is processed and compiled into LLVM [10] bitcode using the UFO front-end
(UFO-FE) [1]. This involves normalizing with a custom CIL [12] pass, compiling
with llvm-gcc, and simplifying using customized optimizations from LLVM ver-
sion 2.6. The front-end is often sufficient to decide simple verification tasks. Sec-
ond, two threads are started, one used to synthesize an inductive invariant (left
part of Fig. 1), and the other to search for a counterexample (right part of Fig. 1).

? This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for
the operation of the Software Engineering Institute, a federally funded research and
development center. This material has been approved for public release and unlim-
ited distribution. DM-0000870. The second author is financially supported by SFI
PI grant BEACON (09/IN.1/I2618).



C source

UFO-FE

LLVM bitcode

LLBMC

Return: FALSE

If both threads
are here

Return: UNKNOWNReturn: TRUE

UNSAFE

UNKNOWN
UFO-MUZ

UNSAFE/UNKNOWN

safe LA invariantLA system

SAFE

LA → BV candidate BV invariant

Z3

UNSAT

MISPER

Boolector

AIGER

MUSer2

SAT

BV invariant

Z3 (safety)
UNSAT

LA → BV

BV system

Z3/PDR

SAT

UNSAT

SAT/UNKNOWN

Fig. 1. FrankenBit: Software architecture.

Invariants. Invariants are synthesized using our new algorithm Misper [7]. First,
Z3/PDR engine [8] of UFO (UFO-MUZ) abstracts the input over Linear Arith-
metic (LA) and synthesizes LA invariant. If this fails, synthesis is aborted. Sec-
ond, the LA invariant and abstraction are converted to bit-vectors (LA → BV).
Third, the candidate bit-vector (BV) invariant is checked using Z3 [4]. If the
candidate is not inductive, it is weakened until it becomes inductive using Mis-
per that, in turn, uses Boolector [3] for bit-blasting, aiger for CNF conversion,
and MUSer2 [2] for extraction of Minimal Unsatisfiable Subformulas (MUSes).
Finally, the safety of the weakened invariant is checked again with Z3 (Z3 safety),
and, if necessary, strengthened using the bit-precise version of Z3/PDR.



Counterexamples. The search for counterexamples is delegated to LLBMC [11],
that itself uses STP [6], and MiniSAT [5]. In order to run LLBMC on bitcode
files produced by UFO-FE, they are first dis-assembled using llvm-dis from
LLVM v2.9 and then re-assembled using llmv-as from LLVM v3.2.

FrankenBit is written in Python and borrows code from Spacer [9].

3 Tool Setup and Configuration

FrankenBit is available for download from bitbucket.org/arieg/fbit/wiki/

svcomp14.wiki. The options for running the tool are:

./bin/fbit.py [-m64] --cex=TRACE --spec=SPEC input

where -m64 turns on 64-bit model, --cex and --spec are the locations of the
counter-example and the specification files, respectively, and input is a C file.
The result is printed on the output terminal: TRUE, FALSE, UNKNOWN, if the prop-
erty evaluates, respectively, to true, false, or unknown on the input.

FrankenBit is participating in the following categories: Simple, Control
Flow and Integer Variables, and Device Drivers Linux 64-bit.

References

1. A. Albarghouthi, A. Gurfinkel, Y. Li, S. Chaki, and M. Chechik. UFO: Verification
with Interpolants and Abstract Interpretation - (Competition Contribution). In
N. Piterman and S. A. Smolka, editors, TACAS, volume 7795 of Lecture Notes in
Computer Science, pages 637–640. Springer, 2013.

2. A. Belov and J. Marques-Silva. MUSer2: An Efficient MUS Extractor. JSAT,
8(1/2), 2012.

3. R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors
and Arrays. In TACAS, 2009.

4. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, 2008.
5. N. Eén and N. Sörensson. An Extensible SAT-solver. In E. Giunchiglia and A. Tac-

chella, editors, SAT, volume 2919 of Lecture Notes in Computer Science, pages
502–518. Springer, 2003.

6. V. Ganesh and D. L. Dill. A Decision Procedure for Bit-Vectors and Arrays. In
CAV, 2007.

7. A. Gurfinkel, A. Belov, and J. Marques-Silva. Synthesizing Safe Bit-Precise Invari-
ants. In TACAS, 2014.

8. K. Hoder and N. Bjørner. Generalized Property Directed Reachability. In SAT,
2012.

9. A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke. Automatic Abstraction
in SMT-Based Unbounded Software Model Checking. In CAV, 2013.

10. C. Lattner and V. S. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In CGO, pages 75–88. IEEE Computer Society, 2004.

11. F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded Model Checking of C and C++
Programs Using a Compiler IR. In VSTTE, 2012.

12. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In R. N. Horspool,
editor, CC, volume 2304 of Lecture Notes in Computer Science, pages 213–228.
Springer, 2002.


