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Abstract. Bit-precise software verification is an important and difficult
problem. While there has been an amazing progress in SAT solving, Sat-
isfiability Modulo Theory of Bit Vectors, and bit-precise Bounded Model
Checking, proving bit-precise safety, i.e. synthesizing a safe inductive in-
variant, remains a challenge. In this paper, we present FrankenBit
— a tool that combines bit-precise invariant synthesis with BMC coun-
terexample search. As the name suggests, FrankenBit combines a large
variety of existing verification tools and techniques, including LLBMC,
UFO, Z3, Boolector, MiniSAT and STP.

1 Verification Approach

FrankenBit combines two orthogonal techniques: one searches for bit-precise
counterexamples, and the other synthesizes bit-precise inductive invariants. The
counterexample search is done using Bounded Model Checking, and is delegated
completely to LLBMC [11]. Invariant synthesis is implemented by first unsoundly
approximating programs using Linear Arithmetic (LA), then computing induc-
tive invariants for the approximation, and using those to guide the search for
bit-precise invariants. The details of this approach are described in [7].

2 Software Architecture

The architecture of FrankenBit is shown in Fig. 1. First, the input C source
is processed and compiled into LLVM [10] bitcode using the UFO front-end
(UFO-FE) [1]. This involves normalizing with a custom CIL [12] pass, compiling
with llvm-gcc, and simplifying using customized optimizations from LLVM ver-
sion 2.6. The front-end is often sufficient to decide simple verification tasks. Sec-
ond, two threads are started, one used to synthesize an inductive invariant (left
part of Fig. 1), and the other to search for a counterexample (right part of Fig. 1).
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Fig. 1. FrankenBit: Software architecture.

Invariants. Invariants are synthesized using our new algorithm Misper [7]. First,
Z3/PDR engine [8] of UFO (UFO-MUZ) abstracts the input over Linear Arith-
metic (LA) and synthesizes LA invariant. If this fails, synthesis is aborted. Sec-
ond, the LA invariant and abstraction are converted to bit-vectors (LA → BV).
Third, the candidate bit-vector (BV) invariant is checked using Z3 [4]. If the
candidate is not inductive, it is weakened until it becomes inductive using Mis-
per that, in turn, uses Boolector [3] for bit-blasting, aiger for CNF conversion,
and MUSer2 [2] for extraction of Minimal Unsatisfiable Subformulas (MUSes).
Finally, the safety of the weakened invariant is checked again with Z3 (Z3 safety),
and, if necessary, strengthened using the bit-precise version of Z3/PDR.



Counterexamples. The search for counterexamples is delegated to LLBMC [11],
that itself uses STP [6], and MiniSAT [5]. In order to run LLBMC on bitcode
files produced by UFO-FE, they are first dis-assembled using llvm-dis from
LLVM v2.9 and then re-assembled using llmv-as from LLVM v3.2.

FrankenBit is written in Python and borrows code from Spacer [9].

3 Tool Setup and Configuration

FrankenBit is available for download from bitbucket.org/arieg/fbit/wiki/

svcomp14.wiki. The options for running the tool are:

./bin/fbit.py [-m64] --cex=TRACE --spec=SPEC input

where -m64 turns on 64-bit model, --cex and --spec are the locations of the
counter-example and the specification files, respectively, and input is a C file.
The result is printed on the output terminal: TRUE, FALSE, UNKNOWN, if the prop-
erty evaluates, respectively, to true, false, or unknown on the input.

FrankenBit is participating in the following categories: Simple, Control
Flow and Integer Variables, and Device Drivers Linux 64-bit.
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