
Synthesizing Safe Bit-Precise Invariants?

Arie Gurfinkel, Anton Belov and Joao Marques-Silva

Abstract. Bit-precise software verification is an important and difficult
problem. While there has been an amazing progress in SAT solving, Sat-
isfiability Modulo Theory of Bit Vectors, and bit-precise Bounded Model
Checking, proving bit-precise safety, i.e. synthesizing a safe inductive in-
variant, remains a challenge. Although the problem is decidable and is
reducible to propositional safety by bit-blasting, the approach does not
scale in practice. The alternative approach of lifting propositional algo-
rithms to bit-vectors is difficult. In this paper, we propose a novel tech-
nique that uses unsound approximations (i.e., neither over- nor under-)
for synthesizing sound bit-precise invariants. We prototyped the tech-
nique using Z3/PDR engine and applied it to bit-precise verification of
benchmarks from SVCOMP’13. Even with our preliminary implemen-
tation we were able to demonstrate significant (orders of magnitude)
performance improvements with respect to bit-precise verificaton using
Z3/PDR directy.

1 Introduction

The problem of program safety (or reachability) verification is to decide whether
a given program can violate an assertion (i.e., can reach a bad state). The prob-
lem is reducible to finding either a finite counter-example, or a safe inductive
invariant that certifies unreachability of a bad state. The problem of bit-precise
program safety, Safety(BV), further requires that the program operations are
represented soundly relative to low-level bit representation of data. Arguably,
verification techniques that are not bit-precise are unsound, and do not reflect
the actual behavior of a program. Unlike many other problems in software veri-
fication, bit-precise verification (without memory allocation and concurrency) is
decidable. However, in practice it appears to be more challenging that verifica-
tion of programs relative to integers or rationals (both undecidable).

The recent decade has seen an amazing progress in SAT solvers, in Satisfiabil-
ity Modulo Theory of Bit-Vectors, SMT(BV), and in Bounded Model Checkers
(BMC) based on these techniques. A SAT solver decides whether a given propo-
sitional formula is satisfiable. Current solvers can handle very large problems
and are routinely used in many industrial applications (including Hardware and
Software verification). SMT(BV) extends SAT-solver techniques to the theory of

? This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release and unlimited
distribution. DM-0000869

bit-vectors – that is propositional formulas whose atoms are predicates about bit-
vectors. Most successful SMT(BV) solvers (e.g., Boolector [6], STP [17], Z3 [12],
MathSAT [9]) are based on reducing the problem to SAT via pre-processing
and bit-blasting. The bit-blasting step takes a BV formula ϕ and constructs
an equivalent propositional formula ψ, where each propositional variable of ψ
corresponds to a bit of some bit-vector variable of ϕ. The, more important,
pre-processing step typically consists of equisatisfiable reductions that reduce
the size of the input formula. While the pre-processor is not as powerful as the
SAT-solver (typically pre-processor is required to run in polynomial time), it
does not maintain equivalence. The pre-processing phase of SMT(BV) solvers is
crucial for their performance. For example, in our experiments with Boolector,
the different between straight forward bit-blasting and pre-processing is several
order of magnitude.

There has also been a tremendous progress in applying those techniques to
program verification. In particular, there are several mature Bounded Model
Checkers, including CBMC [10], LLBMC [31], and ESBMC [11], that decide
existence of a bounded bit-precise counterexamples of C programs. These tools
are based on ultimate reduction of BMC to SAT, either via their own custom
bit-blasting and pre-processing steps (e.g., CBMC) or by leveraging SMT(BV)
solvers described above (e.g., LLBMC). While BMC tools are great at finding
counterexamples (even in industrial applications), proving bit-precise safety, i.e.,
synthesizing a bit-precise invariant, remains a challenge. For example, none of the
tools submitted to the Software Verification Competition in 2013 (SVCOMP’13)
are both bit-precise and effective at invariant synthesis.

As we described above, Safety(BV) is decidable. In fact, it is reducible to
safety problem over propositional logic, Safety(Prop), via the simple bit-blasting
mentioned above. Thus, the naive solution is to reduce Safety(BV) to Safety(Prop)
and decide it using tools for propositional verification. This, however, does not
scale. Our experiments with Z3/PDR (the Model Checker of Z3), show that the
approach is ineffective for almost all benchmarks in SVCOMP’13. The main is-
sue is that the reduction of Safety(BV) to Safety(Prop) is incompatible with the
pre-processing techniques that make bit-blasting for SMT(BV) so effective.

An alternative approach of lifting effective Model Checking technique from
propositional level to BV appears to be difficult, with only a few somewhat suc-
cessful attempts (e.g., [25, 19]). For example, techniques based on interpolation
(e.g., [30, 26, 1]) require world-level interpolation for BV [24, 19] that satisfies
additional properties (e.g., sequence and tree properties) [20]. While, techniques
based on PDR [21], require novel world-level inductive generalization strategies.
Both are difficult problems in themselves.

Thus, instead of lifting existing techniques, we are interested in finding a way
to use existing verification engines to improve scalability of the naive bit-blasting-
based solution. Our key insight is based on the observation that most program
verifiers abstract program arithmetic by integer (or rational) arithmetic. This is
unsound in the presence of overflows (see [19] for an example), but the results

2

are often “almost” correct. More importantly, they are useful to the users. Thus,
we are interested in how to reuse such unsound invariants in a sound way.

Our procedure is based on an iterative guess-and-check loop. Given a Safety(BV)
problem P , we begin by trying to solve P using a Safety(BV) solver. If this takes
too long, we abort it, and construct an approximation (neither over- nor under-)
PT of P in another theory T (e.g., Linear Rational Arithmetic), decide the safety
of PT using a solver for Safety(T), and obtain an inductive safe invariant InvT .
We then port InvT in a sound way to P , strengthen P with it, and repeat bit-
blasting-based verification. In the best case, the ported version of InvT is a safe
and inductive invariant for P and the process terminates immediately. In the
worst case, InvT contributes facts that might help the next verification effort.

We make the following contributions. First, we formally define a framework
that allows to use unsound invariants soundly in a verification loop. Second,
we instantiate the framework for the theories of Bit Vectors and Linear Arith-
metic. In particular, we describe an algorithm for computing Maximal Inductive
Subformula for SMT(BV) and show how it interacts with the pre-processing
step. Third, we have implemented the proposed framework using Z3/PDR for
Safety(Prop) and Boolector for SMT(BV) and have evaluated it on the bench-
marks from SVCOMP’13. Even with our preliminary implementation, we are
able to synthesize safe invariants for most programs.

Related work. The use of over- and under-approximation and relaxation of a
problem from one theory into another is common in both SMT-solving and Model
Checking. For example, Bryant et al. [7], use over- and under-approximation to
decide formulas in SMT(BV). Komuravelli et al. [23] similarly use over- and
under-approximations for Software Model Checking. While we do not require
our approximations to be sound, we employ similar techniques to lift proof cer-
tificates (inductive invariants in our case) are in principle similar.

Computing Maximal Inductive Subformula (MIS) is similar to mining an
inductive invariant from a set of possible annotations, as for example in [16,
22]. The key novelty in our approach is in the reduction from MIS problem to a
Minimal Unsatisfiable Subformula (MUS) problem that allows the use of efficient
MUS extractors for SAT.

The works conceptually closest to ours are in the area of Upgrade Check-
ing [15], Multi-Property Verification [8], and Regression Verification [18, 27, 4].
A common theme in the above approaches is that they attempt to lift a safety
invariant from one given program P1 to another, related but not equivalent,
program P2. The key difference is that we do not assume existence of a proven
program P1, but, instead, synthesize P1 and its safety proof automatically.

2 Preliminaries

We assume some familiarity with program verification, logic, SMT and SAT.

Safety verification. A transition system P is a tuple (V, Init ,Tr ,Bad), where
V is a set of variables, Init , Bad , and Tr are formulas (with free variables in V)
denoting the initial and the bad states, and the transition relation, respectively.

3

A transition system P is UNSAFE iff there exists a natural number N such
that the following formula is satisfiable:

Init(v0) ∧

(
N−1∧
i=0

Tr(vi, vi+1)

)
∧ Bad(vN) (1)

When P is UNSAFE and s ∈ Bad is the reachable state, the path from s0 ∈ Init
to s ∈ Bad is called a counterexample (CEX).

A transition system P is SAFE if and only if there exists a formula Inv ,
called a safe invariant, that satisfies the following conditions:

Init(v)→ Inv(v) Inv(v) ∧ Tr(v, u)→ Inv(u) Inv(v)→ ¬Bad(v) (2)

A formula Inv that satisfies the first two conditions is called an invariant of
P , while a formula Inv that satisfies the third condition is called safe. A safety
verification problem is to decide whether a transition system P is SAFE or
UNSAFE. Thus, a safety verification problem is equivalent to the problem of
establishing an existence of a safe invariant. In SAT-based Model Checking, the
verification problem is decided by iteratively synthesizing an invariant Inv or
finding a CEX.

Minimal Unsatisfiability. A CNF formula F , viewed as a set of clauses,
is minimal unsatisfiable (MU) if (i) F is unsatisfiable, and (ii) for any clause
C ∈ F , F \ {C} is satisfiable. A CNF formula F ′ is a minimal unsatisfiable
subformula (MUS) of a formula F if F ′ ⊆ F and F ′ is MU. Motivated by several
applications, minimal unsatisfiability and related concepts have been extended
to CNF formulas where clauses are partitioned into disjoint sets called groups.

Definition 1. [32] Given an explicitly partitioned unsatisfiable CNF formula
G = G0∪G1∪· · ·∪Gk (a group-MUS instance or a group-CNF formula), where
Gi’s are pair-wise disjoint sets of clauses called groups, a group-MUS of G is
a subset G of {G1, . . . , Gk} such that (i) G0 ∪

⋃
G is unsatisfiable, and (ii) for

any group G ∈ G, G0 ∪
⋃(
G \ {G}

)
is satisfiable.

Notice that group-0, G0, plays the special role of a “background” subformula,
with respect to which the set of groups {G1, . . . , Gk} is minimized. In particular,
if G0 is unsatisfiable, the group-MUS of G is ∅.

3 Synthesizing Safe Bit-Precise Invariants

3.1 High-level description of the approach

Given a transition system P = (V, Init ,Tr ,Bad), let the target theory TT be
the theory1, or a combination of theories, that define the formulas in P . Let
TW be another theory, referred to as a working theory, with the intention that

1 The term “theory” is used as in the context of Satisfiability Modulo Theories.

4

reasoning in TW is easier in practice than reasoning in TT . Our approach relies
on a mapping MT→W that translates formulas over TT to formulas over TW .
Although the correctness of the approach is not affected by the choice of MT→W ,
its effectiveness is. We would like to map between formulas that are somewhat
close to each other semantically. Thus, we assume that MT→W maps the terms
and the atomic formulas of TT to those of TW and is an identity mapping for
the symbols shared between the two theories. The mapping is extended to all
formulas of TT by structural induction, i.e., given a formula F (v) over TT , the
corresponding formula FW (v) over TW is constructed by inductively applying
MT→W on the structure of F (v). Similarly, to translate formulas from TW to
TT , we work with a mapping MW→T from the terms and the atomic formulas of
the working theory TW to those of TT , extended to all formulas of TW .

Example 1. Let TT = BV∗(32) — a sub-theory of the quantifier-free fragment of
the first-order theory of 32 bit bit-vector arithmetic (cf., [7]) obtained by remov-
ing all the non-arithmetic functions and predicates, as well as the multiplication
and the division on bit-vectors. Let TW = LA — the quantifier-free fragment of
the first order-theory of linear arithmetic, together with the propositional logic.
The mapping MT→W is defined as follows: (i) the propositional fragment of TT
maps to the propositional fragment of TW as is; (ii) bit-vector variables map
to LA variables; (iii) the arithmetic functions and predicates of BV(32) map to
their natural counterparts in LA, e.g., +[32] to +, <[32] to <, etc. Then, if

Init(x[32], y[32], z) = (x[32] +[32] y[32] >[32] 0[32]) ∧ z,

where x[32] and y[32] are bit-vector and z propositional variables, the correspond-
ing LA formula InitW (x, y, z) is

Init(x, y, z) = (x+ y > 0) ∧ z.

The inverse mapping MW→T from LA to BV(32) is constructed in a similar
manner, with the slight complication related to LA constants, which might be
non-integer, too large to fit into the required bit-width, or negative. One possibil-
ity to deal with non-integer constants is to truncate the fractional digits, i.e., map
0.5 to 0[32]. Other options include rounding up the constants when possible, e.g.,
by translating (x > 0.5) to (x[32] ≥[32] 1[32]), but (x < 0.5) to (x[32] ≤[32] 0[32]).
For this paper, we adopt the former, simpler, approach, and leave the investiga-
tion of more sophisticated translations to future work. To convert an integer LA
constant to BV(32) we take the lower 32 bit of its 2s-complement representation.

Remark 1. Clearly, our sub-theory BV∗(32) of the full theory BV(32) was chosen
to simplify the construction of the mapping to and from LA. Generally, such
restriction of the original target theory might not be necessary if the working
theory TW supports uninterpreted functions.

The pseudocode in Algorithm 1 provides the high-level description of our ver-
ification framework (MISper). Given a transition system P = (V, Init ,Tr ,Bad)

5

Algorithm 1: MISper — safety verification framework

Input : P = (V, Init ,Tr ,Bad) — a transition system over theory TT
Output: st ∈ {SAFE,UNSAFE,UNKNOWN}

1 forever do
2 under resource limits do
3 (st, Inv ,Cex)← Safety(TT)(P) // solve in the target theory

4 if st 6= UNKNOWN then return st

5 (TW ,MT→W ,MW→T)← pick a working theory and mappings
6 PW ←MT→W (P) // translate P to the working theory

7 (st, InvW ,CexW)← Safety(TW)(PW)
8 if st 6= SAFE then
9 return UNKNOWN // options: deal with CEX; try another TW

10 Cand ←MW→T (InvW) // get the candidate invariant for P
11 if Cand is safe invariant for P then
12 return SAFE

13 CandI ← ComputeMIS(Cand)
14 Tr(u, v)← CandI(u) ∧ Tr(u, v) ∧ CandI(v) // strengthen tr. rel.

over the target theory TT (e.g., BV∗(32) from Example 1), we first attempt to
solve P with a solver for Safety(TT) under heuristically chosen resource limits2.
If the solver fails to prove or disprove the safety of P , we pick a working theory
TW , and a pair of corresponding mappings MT→W and MW→T (e.g., TW = LA
and the mappings are as in Example 1). Then, we attempt to verify the safety of
PW = MT→W (P) = (U ,MT→W (Init),MT→W (Tr),MT→W (Bad)), where U are
the fresh variables introduced by MT→W , using a solver for Safety(TW). Since
PW is in general neither under- nor over- approximation of P , the (un)safety of
the former does not imply the (un)safety of the latter. Since the focus of this
paper is on synthesis of invariants for verification, we omit the detailed discus-
sion of how to handle the UNSAFE status of PW . One option is to simply return
UNKNOWN, as in Algorithm 1. Alternatively, the CEX for PW can be mapped
to TT via MW→T and checked on P — if the mapped CEX is also a CEX for
P , return UNSAFE. Otherwise, the mapping can be refined to eliminate the
CEX, and the safety verification of PW under the new mapping repeated. If,
on the other hand, PW is safe, we take the safe invariant InvW of PW , and
translate it back to the target theory TT to obtain a candidate-invariant for-
mula Cand = MW→T (InvW). If Cand is a safe invariant of P , then the safety
of P is established, and the algorithm returns SAFE. Otherwise, we attempt
to compute a subformula CandI of Cand that is an invariant of P — this is
done in the function ComputeMIS on line 13 of Algorithm 1, which we describe
in detail in Section 3.2. Once an invariant of P is obtained, we restrict the tran-
sition relation of P by replacing the formula Tr(u, v) in P with the formula
CandI(u) ∧ Tr(u, v) ∧ CandI(v), and attempt to verify the safety of the new

2 This step is optional on the first iteration of the main loop of Algorithm 1.

6

transition system (the next iteration of the main loop). Since CandI is the ac-
tual invariant of P , the (un)safety of strengthened transition system implies the
(un)safety of the input system P .

This verification framework can be instantiated in numerous ways and leaves
a number of open heuristic choices. We postpone the description of an instanti-
ation of the framework used in our experiments to Section 4.

3.2 Computing invariants

Given a candidate invariant Cand for a transition system P = (V, Init ,Tr ,Bad),
obtained as described in Section 3.1, we are interested in computing a subformula
CandI of Cand that is an invariant with respect to P , that is, CandI(u) ∧
Tr(u, v) |= CandI(v). Similarly to the previous work on invariant extraction
(e.g., [8, 23]), we proceed under the assumption that the candidate invariant
Cand(u) is given as a conjunction of formulas Cand(u) = L1(u) ∧ · · · ∧ Ln(u).
We refer to the conjuncts Li of Cand as lemmas. Then, the invariant CandI

can be always be constructed as a (possibly empty) conjunction of some of the
lemmas in Cand . In our setting, this assumption is justified by the fact that many
verification tools, particularly those based on PDR [5, 13] and its extensions
(e.g., Z3/PDR [21]) do indeed produce invariants in this form. In the worst
case, Cand itself can be treated as the (only) conjunct, which, while affecting
the effectiveness of our approach, does not affect its correctness. We note that
the ideas discussed in this section can be extended to candidate invariants of
arbitrary structure, though such extension is outside of the scope of this paper.

For notational convenience we treat Cand as a set of lemmas {L1, . . . , Ln},
and formalize the invariant computation problem as follows:

Definition 2. Given a set of lemmas L = {L1, . . . , Ln} and a transition relation
Tr(u, v), a subset L′ ⊆ L is inductive if (

∧
L∈L′ L(u))∧Tr(u, v) |=

∧
L∈L′ L(v).

An inductive subset L′ ⊆ L is maximal if no strict superset of L′ is inductive.
Finally, an inductive subset L′ ⊆ L is maximum if the cardinality of L′ is
maximum among all inductive subsets of L.

It is not difficult to see that a union of two inductive subsets is inductive, and so
any set of lemmas L has a unique maximal, and hence a unique maximum, induc-
tive subset L′. We refer to L′ as the MIS (maximal/maximum inductive subset)
of L. Thus, in our framework, given a candidate invariant Cand of transition
system P , the actual invariant CandI of P is obtained by computing the MIS of
Cand — this is motivated by the fact that we aim to strengthen the transition
relation as much as possible prior to the next iteration of the algorithm.

Approaches to MIS computation. The existing approaches to computa-
tion of MISes can be categorized into eager and lazy. Given a set of lemmas
L = {L1, . . . , Ln} and the transition relation Tr , the eager approach (taken, for
example, in [8]) starts by checking whether L(u)∧Tr(u, v) |= L(v). This is typ-
ically done by testing the unsatisfiability of the formula L(u)∧Tr(u, v)∧¬L(v)
with an SMT (or a SAT) solver. If the formula satisfiable, i.e., L is not inductive,

7

the model returned by the solver must falsify one or more lemmas in L(v). These
lemmas are then removed both from L(u) and from L(v), and the test is repeated.
The process continues until for some subset L′ ⊆ L, L′(u) ∧ Tr(u, v) |= L′(v).
The final subset L′ is obviously inductive. Furthermore, for any set of lemmas
L′′ ⊆ L \ L′ there must have been a point in the execution of the algorithm
where it obtained a model for a formula L′(u) ∧ L′′(u) ∧ Tr(u, v) that falsifies
at least one lemma in L′′(v), as otherwise this lemma would be included in L′.
Hence, L′ is maximal, and therefore is a MIS of L.

In the lazy approach to MIS computation (e.g., [16, 23]), when the set L is
not inductive, the lemmas in the consequent L(v) that are falsified by the model
of L(u) ∧ Tr(u, v) are initially removed only from L(v). The process continues
until for some L′ ⊆ L, L(u) ∧ Tr(u, v) |= L′(v) — notice that the premise still
contains all of the lemmas of L. We refer to such sets L′ as semi-inductive with
respect to L and Tr . Observe that the semi-inductive subset L′ obtained in
this manner is maximal and also maximum, by the argument analogous to that
used to establish the uniqueness of MISes. Once the maximum semi-inductive
subset L′ of L is computed, the lemmas excluded from L′ are removed from
L(u), and the algorithm checks whether L′(u) ∧ Tr(u, v) |= L′(v), i.e., whether
L′ is inductive. If not, the algorithm repeats the process, by first computing a
maximum semi-inductive subset of L′, then checking its inductiveness, and so
on. The, eventually obtained, inductive subset of L is the MIS of L — this can
be justified in essentially the same way as for the eager approach.

One potential advantage of the lazy approach is that, since, compared to the
eager approach, there are often more lemmas in the premises, the SMT/SAT
solver is likely to work with stronger formulas. Furthermore, if a solver retains
information between invocations — for example, derived facts and history-based
heuristic parameters, as in incremental SAT solvers — more information can be
reused between iterations, thus speeding-up the MIS computation.

One additional feature of the lazy approach, pointed out and used in [23], is
that the computation of semi-inductive subsets can be reduced to the computa-
tion of Minimal Unsatisfiable Subformulas (MUSes), or, more precisely, to the
computation of group-MUSes (recall Definition 1). This observation is particu-
larly useful in cases when satisfiability problem in the theory that defines the
invariants can be soundly reduced to propositional satisfiability, as it allows to
leverage the large body of recent work and tools for the computation of MUSes
(e.g., [2, 29, 33]). We take advantage of this observation in the implementation of
our framework since, in our case, the invariants are quantifier-free formula over
(a sub-theory of) the theory of bit-vectors, and the satisfiability of such formulas
can be soundly reduced to SAT via bit-blasting. The reduction to group-MUS
computation and the overall MIS extraction flow are presented below.

Computing MISes with group-MUSes. For a set of lemmas L = {L1, . . . , Ln}
and a transition relation formula Tr , we first rewrite the formula L(u)∧Tr(u, v)∧
¬L(v), used to check the inductiveness of L, as a formula AL,Tr defined in the

8

following way:

AL,Tr =

(∧
Li∈L

(prei → Li(u))

)
∧ Tr(u, v) ∧

(∨
Li∈L

(posti ∧ ¬Li(v))

)
, (3)

where prei and posti for i ∈ [1, n] are fresh propositional variables, one for each
lemma Li ∈ L. One of the purposes of these variables is similar to that of the
indicator variables used in assumption-based incremental SAT solving (cf. [14])
— the variables can be used to emulate the removal of lemmas from formulas
L(u) and L(v). Setting prei to true (resp. false) causes the lemma Li to be
included (resp. excluded) from L(u), while setting posti to true (resp. false) has
the same effect on the lemma Li in L(v). The names of the variables reflect the
fact that they control either the “precondition” or the “postcondition” lemmas.
With this in mind, a computation of the MIS of L with respect to Tr can
be implemented on top of an incremental SMT solver by loading the formula
AL,Tr into the solver, and checking the satisfiability of the formula under a set
of assumptions. For example, the set L is inductive if and only if the formula
is unsatisfiable under assumptions

⋃
i∈[1,n]{prei, posti}. When a lemma Li ∈ L

needs to be removed from L(u) and/or L(v), we simply assert the formula (¬prei)
and/or (¬posti) to the solver.

However, as explained above, our intention is to take advantage of proposi-
tional MUS extractors, using the fact that quantifier-free bit-vector formulas can
be soundly converted to propositional logic. The pre and post variables serve a
purpose in this context as well. Assume that we have a polytime computable
function B2P , which given a quantifier-free formula FBV over the theory BV,
and a set of propositional variables X = {x1, . . . , xk} that occur in FBV returns a
propositional formula FProp = B2P(FBV , X), in CNF, with the following prop-
erty: for any assignment τ to the variables in X, the formula FBV [τ] is satisfiable
if and only if so is the formula FProp[τ]. Following [28], we say that the formulas
FBV and FProp are var-equivalent on X in this case. Note that var-equivalence
of FBV and FProp on X does not imply FProp contains all variables of X — for
example, FProp = > is var-equivalent to FBV if FBV [τ] is satisfiable for every
assignment τ for X.

Now, for a set of lemmas L = {L1, . . . , Ln} and a transition relation Tr
over BV, let AL,Tr be the formula defined in (3), let Pre = {prei | i ∈ [1, n]},
Post = {posti | i ∈ [1, n]}. Consider the group-CNF formula GL,Tr constructed
in the following way:

GL,Tr = G0 ∪G1 ∪ · · · ∪Gn, where:

G0 = CL,Tr ∪ {(prei) | i ∈ [1, n]}, with CL,Tr = B2P(AL,Tr ,Pre ∪ Post)

Gi = {(¬posti)} for i ∈ [1, n]

That is, the group G0 of GL,Tr is the formula CL,Tr — a CNF formula var-
equivalent to AL,Tr on the set Pre ∪ Post — together with the positive unit
clauses for pre variables. Each group Gi in GL,Tr consists of a single negative
unit clause for the variable posti.

9

Proposition 1. Let G be a group-MUS of the group-CNF formula GL,Tr . Then,
the set of lemmas L′ = {Lk | k ∈ [1, n] and Gk /∈ G} is the maximum semi-
inductive subset of L with respect to Tr. Furthermore, G = ∅ iff L is inductive.

Intuitively, Proposition 1 follows from the fact that the function B2P preserves
var-equivalence. The formulas AL,Tr and CL,Tr are var-equivalent on the vari-
ables Pre ∪ Post . Thus, any group-MUS G of the group-CNF formula GL,Tr

is exactly a group-MUS of the “group-BV” formula obtained by taking AL,Tr

together with the appropriate unit clauses as group-0 and the rest of groups as
in GL,Tr . Furthermore, whenever a group Gi is included in G, the correspond-
ing variable posti is forced to 0, and so the lemma Li(v) is disabled in AL,Tr .
Since G0 ∪

⋃
G is unsatisfiable, so is the formula AL,Tr with the rest of the

post-lemmas (i.e., the set L′) enabled, thus implying the semi-inductiveness of
L′. The maximality of the latter is implied by the minimality of G.

Proof. First, observe that the formula GL,Tr is unsatisfiable. This is because
GL,Tr ≡ CL,Tr [τ], where τ = {prei → 1, posti → 0 | i ∈ [1, n]} is the assignment
entailed by the unit clauses in GL,Tr . Since B2P preserves var-equivalence on
Pre ∪ Post , the formula CL,Tr [τ] is equisatisfiable with the formula AL,Tr [τ]
(cf. (3)), which, in turn, is unsatisfiable since τ sets all post variables to 0.

Let now G be a group-MUS of GL,Tr . Since G0 ∪
⋃
G is unsatisfiable (recall

Definition 1), so is the formula CL,Tr [τG], where τG = {prei → 1 | i ∈ [1, n]} ∪
{postj → 1 | Gj /∈ G} ∪ {postk → 0 | Gk ∈ G}, and, therefore, the formula
AL,Tr [τG]. Note, however, that the latter is equivalent to L(u)∧Tr(u, v)∧¬L′(v),
where L′ is as defined in the statement of the proposition. Hence, L′ is semi-
inductive.

Finally, w.l.o.g. take any G′ ⊂ G. Since G is a group-MUS of GL,Tr , the
formula G0 ∪

⋃
G′ is satisfiable. Following the previous argument with the as-

signment τG′ we have that the formula AL,Tr [τG′] is satisfiable, and so is the
formula L(u) ∧ Tr(u, v) ∧ ¬L′′(v), where L′′ = L ∪ {Lk | Gk ∈ G \ G′}. We
conclude that any L′′ ⊃ L′ is not semi-inductive, and so L′ is maximal.

The “only-if” part of the second claim of the proposition follows immediately
from the first claim. For the “if” part, assume that L is inductive, and let τ
be the assignment that enables all lemmas of L, i.e., τ = {prei → 1, posti →
1 | i ∈ [1, n]}. Then, the formula AL,Tr [τ] is unsatisfiable. Since the post variables
appear in AL,Tr only in positive polarity, changing the value of any of the post
variables to 0 cannot make the formula satisfiable. Thus, for τ ′ = {prei → 1 | i ∈
[1, n]} the formula AL,Tr [τ ′] is also unsatisfiable, and since B2P preserves var-
equivalence, so is the CNF formula CL,Tr [τ ′]. But, CL,Tr [τ ′] ≡ G0, and so the
group-MUS of GL,Tr is ∅. ut

The MIS computation algorithm. Based on Proposition 1, we can compute
the maximum semi-inductive subset of the set of lemmas L by invoking any
off-the-shelf group-MUS extractor (e.g., MUSer2 [3]). The post variables are
essential for this reduction, as the translation function B2P can, and in practice
does, significantly modify the structure of the input BV formula through the
application of various BV-specific preprocessing techniques. The purpose of pre

10

Algorithm 2: ComputeMIS for invariants in BV

Input : (L,Tr) — a set of lemmas and a transition relation, in BV
Output: L′ ⊆ L — the MIS of L with respect to Tr

1 construct AL,Tr // the BV formula defined in eq. (3)

2 CL,Tr ← B2P(AL,Tr ,Pre ∪ Post) // compute a var-equivalent CNF

3 L′ ← L
4 forever do
5 construct GL,L′,Tr // the group-CNF defined in eq. (4)

6 G ← ComputeGMUS(GL,L′,Tr) // compute a group-MUS

7 if G = ∅ then // L′ is inductive, cf. Prop. 1

8 return L′

9 L′ = {Lk | k ∈ [1, n] and Gk /∈ G} // remove lemmas included in G

variables is slightly more technical. Assume that in the first iteration of the lazy
MIS computation algorithm a maximal semi-inductive set L′ of L is computed,
and that L′ ⊂ L. At this point, some of the lemmas L(u) (i.e., the precondition
lemmas) have to be removed from L. One possibility is to build a new formula
AL′,Tr analogously to that in equation (3), apply the function B2P to it, and
proceed with the computation of the maximum semi-inductive subset of L′. An
alternative is to re-use the CNF formula CL,Tr , obtained by translating the
original formula AL,Tr via B2P , and simply add negative unit clauses (¬prei)
and (¬posti) for each of the lemmas removed from L. This way we avoid re-
invoking B2P , and open up the possibility of reusing more information between
the invocations of the group-MUS extractor3. As the group-CNF formula GL,Tr

does need to be modified between iterations by taking into account removal
of some of the lemmas, for a set L′ ⊆ L of remaining lemmas we define the
group-CNF formula GL,L′,Tr as follows:

GL,L′,Tr = G0 ∪ {Gi | Li ∈ L′}, where:

G0 = CL,Tr ∪ {(prei) | Li ∈ L′} ∪ {(¬prej), (¬postj) | Lj ∈ L \ L′}
Gi = {(¬posti)} for Li ∈ L′.

(4)

The pseudocode of the MIS computation algorithm based on the ideas pre-
sented above is presented in Algorithm 2. Given a set of BV lemmas L and a
transition relation formula Tr , the algorithm constructs the formula AL,Tr , de-
fined in (3), and converts the formula to CNF using a var-equivalence preserving
function B2P . The set L′ that will eventually represent the resulting MIS is ini-
tialized to L. The main loop of the algorithm reflects the outer loop of the lazy
MIS computation approach. On every iteration, the maximum semi-inductive
subset of L′ is computed via the reduction to group-MUS computation, as jus-
tified by Proposition 1. If the group-MUS is empty, then, according to Proposi-
tion 1, the set L′ itself is inductive, and, therefore, based on the correctness of

3 This assumes an incremental group-MUS extractor.

11

Fig. 1. Performance of Z3/PDR and MISper for the target theories BV∗(32) (left) and
BV∗(16) (right) in terms of CPU runtime. Timeout of 1800 seconds is represented by
the dashed (green) lines; orders of magnitude are represented by diagonals.

the lazy MIS computation algorithm, is the MIS of L. Otherwise, L′ is updated
to the computed maximum semi-inductive subset represented by the extracted
group-MUS (line 9). Note that the removal of the lemmas from the premise for-
mula L(u) performed at this stage during the lazy MIS computation is implicit
in the construction of the group-CNF formula GL,L′,Tr in the next iteration of
the main loop (cf. (4)). The termination of the algorithm is guaranteed by the
fact that on every iteration at least one lemma is removed from L′, and so, in
the worst case, there will be an iteration of the main loop with L′ = ∅. Since, in
this case, L′ is inductive, by Proposition 1 the computed group-MUS will be ∅,
and the algorithm terminates.

4 Implementation and Empirical Evaluation

Our prototype implementation of MISper framework was instantiated with the
restriction BV∗ of the theory of bit-vectors, described in Example 1, as the target
theory TT , and the theory of linear arithmetic LA as working theory TW . The
mappings MT→W and MW→T between the theories are as described in Exam-
ple 1. We used Z3/PDR engine for the implementation of the Safety(BV) and
Safety(LA) procedures. The Horn SMT systems used as an input to Z3/PDR
were obtained from the UFO framework. To check the safety and the inductive-
ness of the candidate invariants Cand in BV we used the bit-vector engine of
Z3. To perform var-equivalent translation of BV formulas to CNF during in-
variant extraction (function B2P in Algorithm 2) we used the front-end of the
SMT(BV) solver Boolector [6]. Though we were unable to formally establish
the var-equivalence of the translation, we validated the inductiveness of com-
puted invariants independently. Finally, we used the MUS extractor MUSer2 to
compute group-MUSes in Algorithm 2.

12

Experimental setup and results. To evaluate the performance of the pro-
posed framework empirically we selected 214 bit-precise verification benchmarks
from the set of SAFE benchmarks used in 2013 Competition on Software Verifica-
tion, SVCOMP’134. We translated the benchmarks to Horn SMT formulas over
the theories BV∗(32) and BV∗(16) (recall Example 1), after replacing the unsup-
ported bit-vector operations by fresh variables — hence, the resulting systems
are an over-approximation of the original programs5. We compared the perfor-
mance of Z3/PDR engine with that of MISper, instantiated with the theory of
linear arithmetic (LA) as a working theory TW . All experiments were performed
on Intel Xeon X3470, 32 GB, running Linux 2.6. For each experiment, we set a
CPU time limit of 1800 seconds, and a memory limit of 4 GB.

The scatter plots in Figure 1, complemented by Table 1, summarize the re-
sults of our experiments. In 32-bit experiments, MISper solved all 116 instances
solved by Z3/PDR, and additional 58 on which Z3/PDR exceeded the allot-
ted resources (174 in total). Furthermore, judging from the scatter plot (left),
on the vast majority of instances MISper was at least one order of magnitude
faster than Z3/PDR, and, in some cases, the performance improvement exceeded
three orders of magnitude. The 16-bit benchmarks were, not surprisingly, easier
for Z3/PDR than 32-bit, and so it succeeded to solve quite significantly more
problems (165). Nevertheless, MISper significantly outperforms Z3/PDR in this
setting as well, solving 17 more benchmarks, and still demonstrating multiple
orders of magnitude performance improvements. We found only one instance
solved by Z3/PDR, but unsolved by MISper (exceeded time limit). To summa-
rize, the results clearly demonstrate the effectiveness of the proposed framework.

A number of interesting additional observations can be made by analyzing
the data in Table 1. Consider the 58 instances unsolved by Z3/PDR and solved
by MISper in the 32-bit experiments (second row of Table 1). In 52 of these the
safe invariants obtained in LA were transferred to directly to BV. Thus, in many
practical cases, while the safety of the program can be easily established without
taking into account its bit-precise semantics, the BV-based engine seems to get
bogged down by discovering information that, in the end, is mostly irrelevant.
In these situations, our approach allows to “find needles in the haystack”, and
quickly. In the remaining 6 cases, the bit-precise semantics do come into play.
However, the MIS-based invariant synthesis allows to transfer information that
is useful for bit-precise reasoning — this is evidenced by at least 3x average
speed-up of bit-precise reasoning on the strengthened system, with close to 6x
speed-up on 3 instances out of 6. The 16-bit experiments confirm the usefulness
of the partially transferred invariants further: out of 18 instances unsolved by
Z3/PDR, only on 6 the LA invariant could be transferred directly to BV, while
on remaining 12 the partial information allowed to speed-up the verification by
at least 2x on average.

4 http://sv-comp.sosy-lab.org/2013.
5 The benchmarks are available at http://bitbucket.org/arieg/misp.

13

Table 1. Performance of Z3/PDR and MISper for the target theories BV∗(32) and
BV∗(16). Within each horizontal section, the first row (all) presents the data for all
214 instances, while the second row (unsol.) presents the data for those instances that
were not solved by Z3/PDR. ’‘Solved” means that the tool returned SAFE within the
timeout/memout of 1800 sec/4 GB. Column Z3/PDR shows the data for Z3/PDR —
each cell contains the number of solved instances (#sol), followed by the average and the
median of the CPU times on the solved instances (avg/med). Column MISper displays
the same data for MISper. Column MISper:Cand displays the data for instances solved
by MISper by proving the safety of the candidate invariant Cand (Alg. 1, line 12).
Column MISper:MIS displays the data for instances solved by MISper by computing
MIS of Cand , and invoking Z3/PDR on strengthened system (Alg. 1, lines 13-14). For
example, the first row in the table shows that out of 214 instances, Z3/PDR solved 116,
while MISper solved 174, out of which 165 were solved immediately after the conversion
of LA invariant to BV∗(32), and 9 were solved after extracting invariants.

bit inst. count Z3/PDR MISper MISper:Cand MISper:MIS
width #sol(avg/med) #sol(avg/med) #sol(avg/med) #sol(avg/med)

32
all 214 116(127.54/8.27) 174(28.34/0.43) 165(8.50/0.42) 9(391.95/133.94)

unsol. 98 — 58(75.90/1.03) 52(21.89/0.70) 6(544.05/366.18)

16
all 214 165(176.69/8.20) 182(69.32/0.38) 165(8.37/0.36) 17(660.91/399.32)

unsol. 49 — 18(624.79/376.24) 6(50.80/21.45) 12(911.78/1094.58)

5 Conclusion

In this paper, we introduced a bit-precise program verification framework MISper.
The key idea behind the framework is to transfer, at least partially, information
obtained during the verification of an unsound approximation of the original
program in the form of bit-precise invariants. We describe a novel approach to
computing such invariants that allows to take advantage of the state-of-the-art
propositional MUS extractors. The results of the experiments with our proto-
type implementation of the framework suggest that the proposed approach is
promising.

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. From Under-Approximations to
Over-Approximations and Back. In TACAS, 2012.

2. A. Belov, I. Lynce, and J. Marques-Silva. Towards efficient MUS extraction. AI
Commun., 25(2), 2012.

3. A. Belov and J. Marques-Silva. MUSer2: An Efficient MUS Extractor. JSAT,
8(1/2), 2012.

4. D. Beyer, S. Löwe, E. Novikov, A. Stahlbauer, and P. Wendler. Precision reuse for
efficient regression verification. In ESEC/SIGSOFT FSE, 2013.

5. A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI, 2011.
6. R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors

and Arrays. In TACAS, 2009.
7. R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and B. A.

Brady. Deciding Bit-Vector Arithmetic with Abstraction. In TACAS, 2007.

14

8. H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo. Incremental formal
verification of hardware. In FMCAD, 2011.

9. A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT5 SMT
Solver. In TACAS, 2013.

10. E. M. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs.
In TACAS, 2004.

11. L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-Based Bounded Model Check-
ing for Embedded ANSI-C Software. IEEE Trans. Software Eng., 38(4), 2012.

12. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, 2008.
13. N. Eén, A. Mishchenko, and R. K. Brayton. Efficient implementation of property

directed reachability. In FMCAD, 2011.
14. N. Eén and N. Sörensson. Temporal induction by incremental SAT solving. Electr.

Notes Theor. Comput. Sci., 89(4), 2003.
15. G. Fedyukovich, O. Sery, and N. Sharygina. Function Summaries in Software

Upgrade Checking. In Haifa Verification Conference, 2011.
16. C. Flanagan and K. R. M. Leino. Houdini, an Annotation Assistant for ESC/Java.

In FME, 2001.
17. V. Ganesh and D. L. Dill. A Decision Procedure for Bit-Vectors and Arrays. In

CAV, 2007.
18. B. Godlin and O. Strichman. Regression verification. In DAC, 2009.
19. A. Griggio. Effective word-level interpolation for software verification. In FMCAD,

2011.
20. A. Gurfinkel, S. F. Rollini, and N. Sharygina. Interpolation properties and sat-

based model checking. In ATVA, 2013.
21. K. Hoder and N. Bjørner. Generalized Property Directed Reachability. In SAT,

2012.
22. T. Kahsai, Y. Ge, and C. Tinelli. Instantiation-Based Invariant Discovery. In

NASA Formal Methods, 2011.
23. A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke. Automatic Abstraction

in SMT-Based Unbounded Software Model Checking. In CAV, 2013.
24. D. Kroening and G. Weissenbacher. Lifting Propositional Interpolants to the Word-

Level. In FMCAD, 2007.
25. D. Kroening and G. Weissenbacher. Interpolation-Based Software Verification with

Wolverine. In CAV, 2011.
26. V. Kuncak and A. Rybalchenko, editors. VMCAI 2012, Philadelphia, PA, USA,

January 22-24, 2012. Proceedings, volume 7148 of LNCS. Springer, 2012.
27. S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo. SYMDIFF: A Language-

Agnostic Semantic Diff Tool for Imperative Programs. In CAV, 2012.
28. J. Lang, P. Liberatore, and P. Marquis. Propositional Independence: Formula-

Variable Independence and Forgetting. J. Artif. Intell. Res. (JAIR), 18, 2003.
29. J. Marques-Silva, M. Janota, and A. Belov. Minimal Sets over Monotone Predicates

in Boolean Formulae. In CAV, 2013.
30. K. L. McMillan. Lazy Abstraction with Interpolants. In CAV, 2006.
31. F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded Model Checking of C and C++

Programs Using a Compiler IR. In VSTTE, 2012.
32. A. Nadel. Boosting minimal unsatisfiable core extraction. In FMCAD, 2010.
33. A. Nadel, V. Ryvchin, and O. Strichman. Efficient MUS Extraction with Resolu-

tion. In FMCAD, 2013.

15

