
© 2012 Carnegie Mellon University

Time-Bounded

Analysis of Real-

Time Systems

Sagar Chaki1, Arie Gurfinkel1,
Ofer Strichman2, Soonho Kong1

1Software Engineering Institute, CMU
2Technion, Israel Institute of Technology

2

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

3

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Software Engineering Institute (SEI)

Department of Defense R&D Laboratory (FFRDC)

Created in 1984

Under contract to Carnegie Mellon University

Offices in Pittsburgh, PA; Washington, DC; and Frankfurt, Germany

SEI Mission: advance software engineering and related disciplines to
ensure the development and operation of systems with predictable and
improved cost, schedule, and quality.

4

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Motivation: Real-Time Embedded Systems

Avionics Mission System*

Rate Monotonic Scheduling (RMS)

*Locke, Vogel, Lucas, and Goodenough. “Generic Avionics Software Specification”. SEI/CMU

Technical Report CMU/SEI-90-TR-8-ESD-TR-90-209, December, 1990

Task Period

weapon release 10ms

radar tracking 40ms

target tracking 40ms

aircraft flight data 50ms

display 50ms

steering 80ms

5

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Case Study: A Metal Stamping Robot

a.k.a. LEGO Turing Machine
Image courtesy of Taras Kowaliw

6

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

LEGO Turing Machine

by Soonho Kong. See http://www.cs.cmu.edu/~soonhok for building instructions.

BEGIN:
 READ
 CJUMP0 CASE_0
CASE_1:
 WRITE 0
 MOVE R
 JUMP BEGIN
CASE_0:
 WRITE 1
 MOVE R
 JUMP BEGIN

http://www.cs.cmu.edu/~soonhok

7

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Turing Machine (Video)

http://www.youtube.com/watch?v=teDyd0d5M4o

http://www.youtube.com/watch?v=teDyd0d5M4o

8

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Turing Machine: Task Structure

9

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Turing Machine: Properties

Tape does not move when a bit is read or written

Read sensor and Write arm can move concurrently but must not
interfere with one another

Read sensor’s light is off when not in use

Read task WCET is less than 25ms

• reduced to checking API usage rules

No log messages are lost during USB communication

• each message is delivered to the server before a new one is produced

10

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Time-Bounded Verification of Periodic Programs

Time-Bounded Verification

• Is an assertion A violated within X milliseconds of a system’s execution from
initial state I

• A, X , I are user specified

Periodic Program

• Collection of periodic tasks

• Execute concurrently with fixed-priority scheduling

• Priorities respect RMS

• Communicate through shared memory

• Synchronize through preemption and priority ceiling locks

Assumptions

• System is schedulable

• WCET of each task is given

Time-Bounded Analysis of Real-Time Systems, Proc. of FMCAD 2011

11

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Overall Approach

Supports C programs w/ tasks, priorities, priority ceiling protocol, shared
variables

Works in two stages:

1. Sequentialization – reduction to sequential program w/ prophecy variables

2. Bounded program analysis: bounded C model checker (CBMC, HAVOC, …)

Sequentialization Analysis

Periodic Program in C

Sequential Program OK

BUG + CEX

Periods, WCETs, Initial

Condition, Time bound

12

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Periodic Program

An N-task periodic program PP is a set of tasks {1, …, N}

A task is a tuple I, T, P, C, A, where

• I is a task identifier

• T is a task body (i.e., code)

• P is a period

• C is the worst-case execution time

• A is the release time: the time at which task becomes first enabled

Semantics of PP is given by an asynchronous concurrent program:

ki = 0;
while (Wait(i, ki))
 Ti ();
 ki = ki + 1;

parallel

execution

w/ priorities

blocks task i

until next arrival

 time

13

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Task

High Priority Task

Low Priority Task

Priority

Periodic Programs

Time

14

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Task

Task body

Loop-free code (C)

Periodic Programs

High Priority Task

Low Priority Task
Time

15

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Task

Period

Periodic Programs

High Priority Task

Low Priority Task
Time

16

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Task

WCET

Periodic Programs

High Priority Task

Low Priority Task
Time

17

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Task

Arrival

Time

Periodic Programs

High Priority Task

Low Priority Task
Time

18

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Preemptive Fixed Priority Scheduling

High Priority Task

Low Priority Task
Time

19

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Preemptive Fixed Priority Scheduling

High Priority Task

Low Priority Task
Time

20

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

High & low priority

jobs arrived together

High & low priority

jobs arrived together

Preemptive Fixed Priority Scheduling

High Priority Task

Low Priority Task
Time

21

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

High priority job is

executed first

Preemptive Fixed Priority Scheduling

High Priority Task

Low Priority Task
Time

22

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Low priority job is

executed later

Preemptive Fixed Priority Scheduling

High Priority Task

Low Priority Task
Time

23

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

High priority job

arrived

Preemptive Fixed Priority Scheduling

High Priority Task

Low Priority Task
Time

24

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Preempts low priority

job

Preemptive Fixed Priority Scheduling

High Priority Task

Low Priority Task
Time

25

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Lower priority job

resumes later

Preemptive Fixed Priority Scheduling

High Priority Task

Low Priority Task
Time

26

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Preemptive Fixed Priority Scheduling

High Priority Task

Low Priority Task
Time

27

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Preemptive Fixed Priority Scheduling

High Priority Task

Low Priority Task
Time

28

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

1 Hyper-Period

Preemptive Fixed Priority Scheduling

High Priority Task

Low Priority Task
Time

29

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Example: Task Schedule

4 8 12 16

D E F G

B C

A A A A

2

Task WCET

(Ci)

Period

(Pi)

Arrival

Time (Ai)

Response

Time (RTi)

2 1 4 0 1

1 2 8 0 3

0 8 16 0 16

0

1

Maximum difference

between arrival time and

completion time of a job

Computed via Rate

Monotonic Analysis

30

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Time Bounded Semantics of Periodic Program

Assumptions

• Time window W is divisible by the period of each task (i.e., W | Pi)

• Each task arrives in time to complete in 1st period (i.e., Ai + RTi Pi)

The time bound imposes a natural bound on # of jobs: Ji = W / Pi

Time-Bounded Semantics of PP is

Job-Bounded Abstraction

• Abstracts away time

• Approximates Wait() by a non-deterministic delay

• Preserves logical (time-independent) properties!

ki = 0;
while (ki < Ji && Wait(i, ki))
 Ti ();
 ki = ki + 1;

© 2012 Carnegie Mellon University

DEMO

32

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

C as a Modeling Language

Extend C programming language with 3 modeling features

Assertions

• assert(e) – aborts an execution when e is false, no-op otherwise

Non-determinism

• nondet_int() – returns a non-deterministic integer value

Assumptions

• assume(e) – “ignores” execution when e is false, no-op otherwise

void assert (_Bool b) { if (!b) exit(); }

int nondet_int () { int x; return x; }

void assume (_Bool e) { while (!e) ; }

33

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Example of Using Assume/Nondet/Assert

int x, y;

void main (void)
{
 x = nondet_int ();

 assume (x > 10);
 y = x + 1;

 assert (y > x);

}

34

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Example: Modeling with Prophecy Variables

int x, y, v;

void main (void)
{
 v = nondet_int ();
 x = v;

 x = x + 1;
 y = nondet_int ();
 assume (v == y);

}

v is a prophecy variable

it guesses the future value of y

assume blocks executions with a

wrong guess

syntactically: x is changed before y

semantically: x depends on y

35

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Partition Execution into Rounds

Execution starts in round 0

A round ends, and a new one begins, each time a job finishes

• # rounds == # of jobs

D E F G

B C

A A A A

2

0

1

0 Rounds 1 2 3 4 5 6

4 8 12 16

36

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization: Visually

Guess initial value of each global in each round (g[0] … g[6])

Remember initial values in prophecy variables

Execute task bodies

• 0

• 1

• 2

Check that final value of round i is the initial value of round i +1
(using the remembered prophecy values)

g[0] g[1] g[2] g[3] g[4] g[5] g[6]

0
0 0 0 1 1 2

2 2 2

37

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization: Visually

g[0] g[1] g[2] g[3] g[4] g[5] g[6]

0 0 0 01 12

2 2 2

D E F G

B C

A A AA

2

0

1

0Rounds 1 2 3 4 5 6

4 8 12 16

38

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization: Overview

Sequential Program for execution of R rounds:

1. for each global variable g

– let i_g[i] be the prophesied initial value of g in round i

• Initialize i_g[i] with a non-deterministic value

– let g[i] be the value of g in round i

• Initialize g[i] to be equal to i_g[i]

2. non-deterministically choose for each task t and job j

– start round: start[t][j]

– end round: end[t][j]

3. execute task bodies sequentially

– in ascending order of priorities

– for global variables, use g[i] instead of g when running in round i

– non-deterministically decide where to context switch

– at a context switch jump to a new round (cannot preempt a higher task)

4. check that initial value of round i+1 is the final value of round i

5. check user assertions

must be well-nested

39

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization

var
 int round; // current round
 int job; // current job
 int endRound; // end round of the current job
 int g[R], i_g[R]; // global and initial global
 int start[N][J], end[N][J]; // start/end round of every job
 Bool localAssert[N][J] = {1..1}; // local assertions

void main ()
 initShared();

initShared ()
 for each global g: g[0] = init_value (g);

User-supplied initial value of g

40

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization

var
 int round; // current round
 int job; // current job
 int endRound; // end round of the current job
 int g[R], i_g[R]; // global and initial global
 int start[N][J], end[N][J]; // start/end round of every job
 Bool localAssert[N][J] = {1..1}; // local assertions

void main ()
 initShared();
 initGlobals();

initGlobals ()
 for r in [1,R): //for each round
 for each global g: g[r] = i_g[r] = nondet();

Prophecied initial

value of g at round r

Current Value of g

at round r

Returns a non-deterministic value

41

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization

var
 int round; // current round
 int job; // current job
 int endRound; // end round of the current job
 int g[R], i_g[R]; // global and initial global
 int start[N][J], end[N][J]; // start/end round of every job
 Bool localAssert[N][J] = {1..1}; // local assertions

void main ()
 initShared();
 initGlobals();
 scheduleJobs();

Will look at this in more details

later, but it will essentially assign

appropriate values to start[x][y]

and end[x][y]

42

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization

var
 int round; // current round
 int job; // current job
 int endRound; // end round of the current job
 int g[R], i_g[R]; // global and initial global
 int start[N][J], end[N][J]; // start/end round of every job
 Bool localAssert[N][J] = {1..1}; // local assertions

void main ()
 initShared();
 initGlobals();
 scheduleJobs();

 for t in [0,N) : // for each task
 for j in [0,Jt) : // for each job
 job = j;
 round = start[t][job];
 endRound = end[t][job];
 T’t();
 assume (round == endRound);

Let’s look at this is more detail

43

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization

void T’t ()
 Same as Tt, but each statement ‘st’ is replaced with:
 contextSwitch (t); st[g g[round]];
 and each ‘assert(e)’ is replaced with:
 localAssert[t][job] = e;

void contextSwitch (task t)
 int oldRound;

 if (nondet ()) return; // non-det do not context switch

 oldRound = round;
 round = nondet_int ();
 assume (oldRound < round <= endRound);

 // for each higher priority job, ensure that t does not preempt it
 for t1 in [t+1, N) :
 for j1 in [0,Jt1) :
 assume(round <= start[t1][j1] || round > end[t1][j1]);

44

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization

void main ()
 scheduleJobs();
 initShared();
 initGlobals();

 for t in [0,N) : // for each thread
 for j in [0,Jt) : // for each job
 job = j;
 round = start[t][job];
 endRound = end[t][job];
 T’t();
 assume (round == endRound);

 checkAssumptions ();

checkAssumtpions ()
 for r in [0,R-1):
 for each global g:
 assume (g[r] == i_g[r+1]);

var
 int round; // current round
 int job; // current job
 int endRound; // end round of the current job
 int g[R], i_g[R]; // global and initial global
 int start[N][J], end[N][J]; // start/end round of every job
 Bool localAssert[N][J] = {1..1}; // local assertions

45

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization

void main ()
 scheduleJobs();
 initShared();
 initGlobals();

 for t in [0,N) : // for each thread
 for j in [0,Jt) : // for each job
 job = j;
 round = start[t][job];
 endRound = end[t][job];
 T’t();
 assume (round == endRound);

 checkAssumptions ();
 checkAssertions ();

var
 int round; // current round
 int job; // current job
 int endRound; // end round of the current job
 int g[R], i_g[R]; // global and initial global
 int start[N][J], end[N][J]; // start/end round of every job
 Bool localAssert[N][J] = {1..1}; // local assertions

checkAssertions ()
 for t in [0,N-1):
 for j in [0,Jt):
 assert (localAssert[t][j]);

checkAssumtpions ()
 for r in [0,R-1):
 for each global g:
 assume (g[r] == i_g[r+1]);

46

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization

void main ()
 scheduleJobs();
 initShared();
 initGlobals();

 for t in [0,N) : // for each task
 for j in [0,Jt) : // for each job
 job = j;
 round = start[t][job];
 endRound = end[t][job];
 T’t();
 assume (round == endRound);

 checkAssumptions ();
 checkAssertions ();

var
 int round; // current round
 int job; // current job
 int endRound; // end round of the current job
 int g[R], i_g[R]; // global and initial global
 int start[N][J], end[N][J]; // start/end round of every job
 Bool localAssert[N][J] = {1…1}; // local assertions

Full Sequentialization

47

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Sequentialization: Job Scheduling

void scheduleJobs ()
 for t in [0,N) : // for each task
 for j in [0, Jt): // for each job
 start[t][j] = nondet_int ();
 end[t][j] = nondet_int ();
 assume (0 <= start[t][j]); // start in a legal round
 assume (end[t][j] <= R); // end in a legal round
 assume (start[t][j] <= end[t][j]); // start before end
 assume (end[t][j] < start[t][j+1]); // jobs are run in order

 // jobs are well-nested (low priority job does not preempt a high priority job)
 for t1 in [0,N-1): // for each task
 for t2 in [t1 + 1,N): // for each task
 for j1 in [0, Jt1): //for each job of t1
 for j2 in [0, Jt2): //for each job of t2
 if (start[t1][j1] <= end[t2][j2] && start[t2][j2] <= end[t1][j1])
 assume (start[t1][j1] <= start[t2][j2] <= end[t2][j2] <= end[t1][j1])

start[t1][j1] end[t1][j1]

start[t2][j2] end[t2][j2]

48

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Additional Parts

Partial Order Reduction

• allow for context switches ONLY at statements that access shared variables

• ensure that read statements are preempted by write statements…

Preemption bounds

• we use RMA to compute an upper bound on the number of times one task
can preempt another

• scheduleJobs() enforces this bound with additional constraints

Locks

• preemption locks

– do not allow context switch when a task holds a lock

• priority ceiling locks

– extend the model with dynamic priorities (see details in the paper)

Assertions

• jump to the end of the execution as soon as a local assertion is violated

49

Time Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Implementation: REK

Sequentialization

(CIL)
Analysis (CBMC)

Periodic Program in C

Sequential Program OK

BUG + CEX

Periods, WCETs, Initial

Condition, Time bound

http://www.andrew.cmu.edu/~arieg/Rek

http://www.andrew.cmu.edu/~arieg/Rek

50

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

NXTway-GS: a 2 wheeled self-balancing robot

Original: nxt (2 tasks)

• balancer (4ms)

– Keeps the robot upright and responds to BT
commands

• obstacle (50ms)

– monitors sonar sensor for obstacle and
communicates with balancer to back up the robot

Ours: aso (3 tasks)

• balancer as above but no BT

• obstacle as above

• bluetooth (100ms)

– responds to BT commands and communicates with
the balancer

Verified consistency of communication between
tasks

51

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Experimental Results

Name
Program Size SAT Size

Safe Time(s)

OL SL GL Var Clause

nxt.ok1 377 2,265 6,541 136,944 426,686 Y 22.16

nxt.bug1 378 2,265 6,541 136,944 426,686 N 9.95

nxt.ok2 368 2,322 6,646 141,305 439,548 Y 13.92

nxt.bug2 385 2,497 7,398 144,800 451,517 N 17.48

nxt.ok3 385 2,497 7,386 144,234 449,585 Y 18.32

aso.bug1 401 2,680 7,835 178,579 572,153 N 16.32

aso.bug2 400 2,682 7,785 176,925 566,693 N 15.01

aso.ok1 398 2,684 7,771 175,221 560,992 Y 66.43

aso.bug3 426 3,263 10,387 373,426 1,187,155 N 59.66

aso.bug4 424 3,250 9,918 347,628 1,099,644 N 31.51

aso.ok2 421 3,251 9,932 348,252 1,101,784 Y 328.32

Time bound: 100ms

No partial order reduction

OL = #of original LOC Var = #of SAT vars

SL = #of seq LOC Clause = #of SAT clauses

GL = #of goto LOC Safe = whether assert valid

52

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Experimental Results: Partial Order Reduction

Name
Program Size SAT Size

Safe Time(s)

OL SL GL Var Clause

RW1 190 3,428 5,860 42,441 125,150 Y 20.74

RW1-PO 190 5,021 7,626 45,493 134,818 Y 14.71

RW2 239 4,814 8,121 52,171 152,512 Y 165.89

RW2-PO 239 7,356 10,388 56,039 164,332 Y 162.2

RW3 285 7,338 21,163 139,542 419,737 Y 436.86

RW3-PO 285 12,002 26,283 153,826 467,105 Y 199.13

RW4 244 7,255 19,745 117,406 350,610 Y 321.25

RW4-PO 244 12,272 24,261 130,229 392,289 Y 59.66

RW5 188 3,198 5,208 41,371 119,037 Y 47.83

RW5-PO 188 4,791 7,138 45,321 131,701 Y 20.35

RW6 257 5,231 7,634 54,829 157,764 Y 165.33

RW6-PO 257 8,235 10,119 59,744 173,061 Y 157.43

Lock-Free Reader-Writer protocols

OL = #of original LOC Var = #of SAT vars

SL = #of seq LOC Clause = #of SAT clauses

GL = #of goto LOC Safe = whether assert valid

53

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Related Work

Sequentialization of Concurrent Programs (Lal & Reps ‘08, and others)

• Context Bounded Analysis of concurrent programs via sequentialization

• Arbitrary concurrent software

• Non-deterministic round robin scheduler

• Preserve executions with bounded number of thread preemptions

• Allow for arbitrary number of preemptions between tasks

Sequentialization of Periodic Programs (Kidd, Jagannathan, Vitek ’10)

• Same setting as this work

• Alternative sol’n: replace preemptions by non-deterministic function calls

• Additionally, supports recursion and inheritance locks

• No publicly available implementation – would be interesting to compare

Verification of Time Properties of (Models of) Real Time Embedded
Systems

54

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Conclusion

Past
• Time Bounded Verification of Periodic C Programs

• Small (but hard) toy programs

• Reader/Writer protocols (with locks and lock-free versions)

• A robot controller for LEGO MINDSTORM from nxtOSEK examples

Present
• Taking into account additional timing constraints for improved scheduling

– arrival times, harmonicity, etc.

• A Lego Metal Stamping Robot (a.k.a. Turing Machine)

• http://www.andrew.cmu.edu/~arieg/Rek (look for Turing Machine demo)

Future
• Verification without the time bound

• Abstraction / Refinement

• Additional communication and synchronization

– Priority-inheritance locks, message passing

• Modeling physical aspects (i.e., environment) more faithfully

• More Case studies and model problems

http://www.andrew.cmu.edu/~arieg/Rek

© 2012 Carnegie Mellon University

QUESTIONS?

56

Time-Bounded Analysis of Real-Time Sys.

Chaki, Gurfinkel, Strichman

© 2012 Carnegie Mellon University

Contact Information

Presenter

Arie Gurfinkel

RTSS

Telephone: +1 412-268-5800

Email: arie@cmu.edu

U.S. mail:

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Web:

www.sei.cmu.edu

http://www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

