
© 2013 Carnegie Mellon University 

Static Analysis of 

Real-Time 

Embedded Systems 

with REK 
 
Arie Gurfinkel1  

 

joint work with Sagar Chaki1, 
Ofer Strichman2, and Soonho Kong1 
 
 
1Software Engineering Institute, CMU 
2Technion, Israel Institute of Technology 



2 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

NO WARRANTY  

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE 
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY 
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO 
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR 
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM 
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY 
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, 
TRADEMARK, OR COPYRIGHT INFRINGEMENT. 

Use of any trademarks in this presentation is not intended in any way to infringe on the 
rights of the trademark holder. 

This Presentation may be reproduced in its entirety, without modification, and freely 
distributed in written or electronic form without requesting formal permission.  Permission 
is required for any other use.  Requests for permission should be directed to the Software 
Engineering Institute at permission@sei.cmu.edu.  

This work was created in the performance of Federal Government Contract Number 
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software 
Engineering Institute, a federally funded research and development center. The 
Government of the United States has a royalty-free government-purpose license to use, 
duplicate, or disclose the work, in whole or in part and in any manner, and to have or 
permit others to do so, for government purposes pursuant to the copyright license under 
the clause at 252.227-7013. 

 

mailto:permission@sei.cmu.edu


3 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Automated 

Analysis 

Software Model Checking with 

Predicate Abstraction 

e.g., Microsoft’s SDV 

Automated Software Analysis 

Correct + Proof 

Incorrect + Counterexample 

Abstract Interpretation with 

Numeric Abstraction 

e.g., ASTREE, Polyspace 

Program 

Property 



4 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 



5 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Motivation: Real-Time Embedded Systems 

Avionics Mission System*  

Rate Monotonic Scheduling (RMS) 

*Locke, Vogel, Lucas, and Goodenough. “Generic Avionics Software Specification”. SEI/CMU 

Technical Report CMU/SEI-90-TR-8-ESD-TR-90-209, December, 1990 

Task Period 

weapon release 10ms 

radar tracking 40ms 

target tracking 40ms 

aircraft flight data 50ms 

display 50ms 

steering 80ms 



6 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Periodic Program 

An N-task periodic program PP is a set of tasks {1, …, N} 

A task  is a tuple I, T, P, C, A, where 

• I is a task identifier 

• T is a task body (i.e., code) 

• P is a period 

• C is the worst-case execution time 

• A is the release time: the time at which task becomes first enabled 

Semantics of PP is given by an asynchronous concurrent program: 

 
ki = 0; 
while (Wait(i, ki)) 
  Ti (); 
  ki = ki + 1; 

parallel  

execution  

w/ priorities 

blocks task i 

until next arrival 

 time 



7 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Task 

High Priority Task 

Low Priority Task 

Priority 

Periodic Programs 

Time 



8 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Task 

Task body 

Loop-free code (C) 

Periodic Programs 

High Priority Task 

Low Priority Task 
Time 



9 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Task 

Period 

Periodic Programs 

High Priority Task 

Low Priority Task 
Time 



10 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Task 

WCET 

Periodic Programs 

High Priority Task 

Low Priority Task 
Time 



11 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Task 

Arrival 

Time 

Periodic Programs 

High Priority Task 

Low Priority Task 
Time 



12 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Preemptive Fixed Priority Scheduling 

High Priority Task 

Low Priority Task 
Time 



13 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Preemptive Fixed Priority Scheduling 

High Priority Task 

Low Priority Task 
Time 



14 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

High & low priority 

jobs arrived together 

High & low priority 

jobs arrived together 

Preemptive Fixed Priority Scheduling 

High Priority Task 

Low Priority Task 
Time 



15 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

High priority job is 

executed first 

Preemptive Fixed Priority Scheduling 

High Priority Task 

Low Priority Task 
Time 



16 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Low priority job is 

executed later 

Preemptive Fixed Priority Scheduling 

High Priority Task 

Low Priority Task 
Time 



17 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

High priority job 

arrived 

Preemptive Fixed Priority Scheduling 

High Priority Task 

Low Priority Task 
Time 



18 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Preempts low priority 

job 

Preemptive Fixed Priority Scheduling 

High Priority Task 

Low Priority Task 
Time 



19 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Lower priority job 

resumes later 

Preemptive Fixed Priority Scheduling 

High Priority Task 

Low Priority Task 
Time 



20 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Preemptive Fixed Priority Scheduling 

High Priority Task 

Low Priority Task 
Time 



21 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Preemptive Fixed Priority Scheduling 

High Priority Task 

Low Priority Task 
Time 



22 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

1 Hyper-Period 

Preemptive Fixed Priority Scheduling 

High Priority Task 

Low Priority Task 
Time 



23 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Case Study: A Metal Stamping Robot 

a.k.a. LEGO Turing Machine 
Image courtesy of Taras Kowaliw 



24 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

LEGO Turing Machine 

by Soonho Kong. See http://www.cs.cmu.edu/~soonhok for building instructions. 

BEGIN: 
       READ 
       CJUMP0 CASE_0 
CASE_1: 
       WRITE 0 
       MOVE R 
       JUMP BEGIN 
CASE_0: 
       WRITE 1 
       MOVE R 
       JUMP BEGIN 

http://www.cs.cmu.edu/~soonhok


25 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

OSEK/VDX RTOS 

Offene Systeme und deren Schnittstellen für die Elektronik in Kraftfahrzeugen;  

 ("Open Systems and their Interfaces for the Electronics in Motor Vehicles“) 

 

standard software architecture for the  electronic control units (ECUs) in a car 



26 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Turing Machine: Task Structure 



27 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Turing Machine (Video) 

http://www.youtube.com/watch?v=teDyd0d5M4o 

http://www.youtube.com/watch?v=teDyd0d5M4o


28 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Turing Machine: Properties 

Tape does not move when a bit is read or written 

 

Read sensor and Write arm can move concurrently but must not 
interfere with one another 

 

Read sensor’s light is off when not in use 

 

Read task WCET is less than 25ms 

• reduced to checking API usage rules 

 

No log messages are lost during USB communication 

• each message is delivered to the server before a new one is produced  

 

 



29 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

When writer flips a bit, the tape motor and read motor should stop. 

Controller 

Task 

Writer Task 

An Example Property 



30 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Time-Bounded Verification of Periodic Programs 

Time-Bounded Verification 

• Is an assertion A violated within X milliseconds of a system’s execution from 
initial state I 

• A, X , I are user specified 

Periodic Program 

• Collection of periodic tasks 

• Execute concurrently with fixed-priority scheduling 

• Priorities respect RMS  

• Communicate through shared memory 

• Synchronize through preemption and priority ceiling locks 

Assumptions 

• System is schedulable 

• WCET of each task is given 

Time-Bounded Analysis of Real-Time Systems, Proc. of FMCAD 2011 



31 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Overall Approach 

Supports C programs w/ tasks, priorities, priority ceiling protocol, shared 
variables 

Works in two stages: 

1. Sequentialization – reduction to sequential program w/ prophecy variables 

2. Bounded program analysis: bounded C model checker (CBMC, HAVOC, …) 

Sequentialization Analysis 

Periodic Program in C 

Sequential Program OK 

BUG + CEX 

Periods, WCETs, Initial 

Condition, Time bound 



32 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

START Family 

REK (2011) 

• OSEK-based programs with Priority Ceiling locks 

• small robotics case study 

 

REK-H (2012) 

• compositional sequentialization for harmonic tasks 

• Turing Machine case study 

 

REK-PIP (2013) 

• Working on this now 

• Support for Priority-Inheritance-Locks (difficult ) 

 

REK-INF (Future) 

• Extend to complete verification by finding inductive invariants 

http://www.andrew.cmu.edu/~arieg/Rek 

http://www.andrew.cmu.edu/~arieg/Rek


33 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Intellectually Defensible Base for Qualification 

How should automatic verifiers be qualified for certification? 

 

What is the base for automatic program analysis (or other automatic 
formal methods) to replace testing?  

 

Verify the verifier 

• (too) expensive 

• verifiers are often very complex tools 

• difficult to continuously adapt tools to project-specific needs 

 

Proof-producing (or certifying) verifier 

• Only the proof is important – not the tool that produced it 

• Only the proof-checker needs to be verified/qualified 

• Single proof-checker can be re-used in many projects 



34 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Proof-Producing Verifier 

Program 

+ 

Property 
Verifier No + Counterexample 

Yes + Proof 

Proof Checker 

no need to  

qualify 

“easy” to 

qualify / verify 

Good 

Bad 

But things are not that simple in practice !!! 



35 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Proof Producing Verifier 

Low level property 

Program = (Text, Semantics) 
Verifier 

Proof Checker 

Front-End 

Environment model 

VC 

No + Counterexample 

Yes + Proof 

Good Bad 

Compiler 

Executable 

Real Env Hardware 
Good 

Bad 

?=? 

Hard to 

verify 

Hard to 

get right 

Diff sem 

used by 

diff tools 

Hard to 

get right 



36 

START-REK 

Gurfinkel 
© 2013 Carnegie Mellon University 

Contact Information 

Presenter 

Arie Gurfinkel 

RTSS 

Telephone:  +1 412-268-5800 

Email:  arie@cmu.edu 

U.S. mail: 

Software Engineering Institute 

Customer Relations 

4500 Fifth Avenue 

Pittsburgh, PA 15213-2612 

USA 

 
Web: 

www.sei.cmu.edu 

http://www.sei.cmu.edu/contact.cfm 

 

 

Customer Relations 

Email: info@sei.cmu.edu 

Telephone:  +1 412-268-5800 

SEI Phone:  +1 412-268-5800 

SEI Fax:    +1 412-268-6257 


