
SeaHorn: Software Model Checking
with SMT and AI

Arie Gurfinkel

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada

http://ece.uwaterloo.ca/~agurfink

based on work with Teme Kahsai, Jorge Navas, Anvesh
Komuravelli, Jeffrey Gennari, Ed Schwartz, and many others

…

2 2

Program and/or model

Automated

Reasoning

Correct

Incorrect

Alan M. Turing. ”Checking a large routine” 1949

Alan M. Turing. 1936: “Undecidable”

Automated (Software) Verification

3 3

[Clarke and Emerson, 1981] [Queille and Sifakis, 1982]

Model Checking

Abstract Interpretation

[Cousot and Cousot, 1977]

Symbolic Execution

[King, 1976]

Automated Software Analysis

4 4

http://seahorn.github.io

5 5
http://seahorn.github.io

Temesghen
Kahsai

(Amazon)

Jorge Navas
(SRI)

6 6

Automated Verification

Deductive Verification
• A user provides a program and a verification certificate
– e.g., inductive invariant, pre- and post-conditions, function summaries, etc.

• A tool automatically checks validity of the certificate
– this is not easy! (might even be undecidable)

• Verification is manual but machine certified

Algorithmic Verification
• A user provides a program and a desired specification
– e.g., program never writes outside of allocated memory

• A tool automatically checks validity of the specification
– and generates a verification certificate if the program is correct
– and generates a counterexample if the program is not correct

• Verification is completely automatic – “push-button”

7 7

Algorithmic Logic-Based Verification

Program + Spec

Verification
Condition (in Logic)

Decision Procedure

Yes No

Safety
Properties

Constrained
Horn Clauses

Spacer

8 8

Example: in test.c, check that x is always greater than or equal to y
test.c

SeaHorn command: SeaHorn result:

SeaHorn Usage

9 9

SeaHorn Workflow

Property
Checker

SeaHorn

TestGen

Code Under
Analysis
(CUA)

Verification
Problem (VP)

Bad +
Counterexample

(CEX)

Good +
Verification

Certificate (Cert)

Test harness
(Test)

Property
Spec

Verification
Environment

10 10

SeaHorn workflow components

Code Under Analysis (CUA)
• code being analyzed. Device driver, component, library, etc.

Verification Environment
• stubs for the environment with which CUA interacts
• e.g., libc, memcpy, malloc, OS system calls, user input, socket, file, …

Property Checker
• static instrumentation of a program with a monitor that indicates when an error

has happened
• similar to dynamic sanitizers, but can use verifier-specific API to perform symbolic

actions
• property spec is specific to a property checker

Verification Problem
• a prepared instance of program with embedded assertions, potentially simplified

by abstracting away irrelevant parts of execution
Test Gen
• generates a test harness that includes all stubs and stimuli to guide CUA to a

property failure discovered by the verifier

11 11

Developing a Static Property Checker

A static property checker is similar to a dynamic checker
• e.g., clang sanitizer (address, thread, memory, etc.)

A significant development effort for each new property
• new specialized static analyses to rule out trivial cases
• different instrumentations have affect on performance

Developed by a domain expert
• understanding of verification techniques is useful (but not required)
• 3-6 month effort for a new property
– but many things can be reused between similar properties
– e.g., memory safety, null-dereference, taint checking, use-after-free, etc.

SeaHorn property checkers:
• memory safety (out of bound uses, null pointer)
– ongoing work to improve scalability and usability

• taint analysis (being developed by Princeton)

12 12

DEMO

13 13

Architecture of Seahorn

Heap Abstraction

VC Generation

Precision:
- Integers
- Floating point
- Pointers
- Memory contents

 LLVM Opt:
- SSA
- DCE
- Peephole
- CFG Simplification

 Devirtualization
 and
 Exception Lowering

Property Instr:
-Buffer overflow
-Null dereferences

 Slicing Assertions

 Front-end Middle-end Back-end

 C/C++ LLVM bitcode Horn Clauses

PDR/IC3-based
Model checking

 Clang

Array Abstraction

Abstract Interp.
- Intervals
- DBMs
- LDDs

 BMC
 bitvectors

Template-based
 (Houdini)

14 14

Crab Abstract Interpretation Library

Crab – Cornucopia of Abstract Domains
• Numerical domains (intervals, zones, boxes)
• 3rd party domains (apron, elina)
• arrays, uninterpreted functions, null, pointer

Language independent core with plugins for LLVM bitcode
• fixedpoint engine
• widening / narrowing strategies
• crab-llvm : integrates LLVM optimizations and analysis of LLVM bitcode

Support for inter-procedural analysis
• pre-, post-conditions, function summaries

Extensible, publicly available on GitHub, open C++ API

15 15

Crab Abstract Domains

Numerical Domains
• interval with congruence: 0 <= x <= 10 && x mod 2 == 0
• zone: x – y <= k
• non-convex
– DisIntervals: x <= -1 || x >= 1
– Boxes: Boolean combinations of intervals

Symbolic Domains
• numeric domains extended with uninterpreted functions
• 0 <= x <= 10 && y == f(…) && z == f(…) è 0 <= x <= 10 && y = z

Array Domains
• array smashing: common properties of all array cells
• array graph domain:

Domains from Apron and Elina 3rd party libraries
• octagons, polyhedra, etc.

16 16

Architecture of Crab and Crab-Llvm

 Fixpoint Engines

Heap Abstraction

CFG/Callgraph Builder

LLVM Optimizations

 Arrays UF

 Numerical

 Null Pointer

 Abstract Domains
Checkers

 ABC

 Null

 DBZ

 Assert
Crab

Crab-Llvm

Interprocedural Analyses

LLVM Bitcode
C++ API

SeaHorn

Forward/Backward Analyses

https://github.com/seahorn/crab-llvm

17 17

SeaHorn Memory Model

Block-based memory model
• each allocation (malloc/alloca/etc) creates a new object
• a pointer is a pair (id,off), called cell, where id is an object identifier and off is

a positive numeric offset
• similar to the C memory model

Abstract Memory Model
• the number of allocation regions is finite
• allocation site is used as an object identifier
• custom pointer-analysis is used to approximate abstract points to graph

Pointer Analysis: Sea-DSA
• unification-based (like LLVM-DSA)
• context-, field-, and array-sensitive

18 18

SeaHorn Philosophy

Build a state-of-the-art Software Model Checker
• useful to “average” users
– user-friendly, efficient, trusted, certificate-producing, …

• useful to researchers in verification
– modular design, clean separation between syntax, semantics, and logic, …

Stand on the shoulders of giants
• reuse techniques from compiler community to reduce verification effort
– SSA, loop restructuring, induction variables, alias analysis, …
– static analysis and abstract interpretation

• reduce verification to logic
– verification condition generation
– Constrained Horn Clauses

Build reusable logic-based verification technology
• “SMT-LIB” for program verification

19 19

Logic-based Program Verification

Low-Level Bounded Model Checking (BMC)
• decide whether a low level program/circuit has an execution of a given length

that violates a safety property
• effective decision procedure via encoding to propositional SAT

High-Level (Word-Level) Bounded Model Checking
• decide whether a program has an execution of a given length that violates a

safety property
• efficient decision procedure via encoding to SMT

What is an SMT-like equivalent for Safety Verification?
• Logic: SMT-Constrained Horn Clauses
• Decision Procedure: Spacer / GPDR
– extend IC3/PDR algorithms from Hardware Model Checking

20 20

Inductive Invariants

System State Space

Bad Inv

System	S	is	safe	iff there	exists	an	inductive	invariant	Inv:
• Initiation:												Initial	⊆ Inv
• Safety:										Inv ∩ Bad	=	∅
• Consecution:			TR(Inv) ⊆ Inv

Initial

i.e.,	if	s	∈ Inv and	s↝t	
then	t ∈ Inv

21 21

Inductive Invariants

System State Space

Bad Inv

System	S	is	safe	iff there	exists	an	inductive	invariant	Inv:
• Initiation:												Initial	⊆ Inv
• Safety:										Inv ∩ Bad	=	∅
• Consecution:			TR(Inv) ⊆ Inv

Initial

System	S	is	safe	if	Reach	∩ Bad	=	∅

Reach

i.e.,	if	s	∈ Inv and	s↝t	
then	t ∈ Inv

22 22

Symbolic Reachability Problem

P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN) 6) ?

Init) Inv

Inv(X) ^ Tr(X,X 0)) Inv(X 0)

Inv) ¬Bad

23 23

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

8 V . (Á∧ p1[X1] ∧…∧ pn[Xn] → h[X]),

where
• A is a background theory (e.g., Linear Arithmetic, Arrays,

Bit-Vectors, or combinations of the above)
• Á is a constrained in the background theory A
• p1, …, pn, h are n-ary predicates
• pi[X] is an application of a predicate to first-order terms

24 24

Horn Clauses for Program Verification

Bjørner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

De Angelis et al. Verifying Array
Programs by Transforming

Verification Conditions. VMCAI'14

25 25

Hojjat et al. Horn Clauses for Communicating Timed
Systems. HCVS'14

Horn Clauses for Concurrent / Distributed /
Parameterized Systems

Rybalchenko et al. Synthesizing Software
Verifiers from Proof Rules. PLDI'12

Hoenicke et al. Thread Modularity at Many
Levels. POPL'17

Gurfinkel et al. SMT-Based Verification of
Parameterized Systems. FSE 2016

26 26

From Programs to Logic

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y)

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0)
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4 (x � y), p3(x, y).
h7i perr (x < y), p3(x, y).
h8i p4 p4.
h9i ? perr.

Program CFG CHC

27 27

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
• now part of Z3
– https://github.com/Z3Prover/z3 since commit 72c4780
– use option fixedpoint.engine=spacer

• development version at http://bitbucket.org/spacer/code
Supported SMT-Theories
• Best-effort support for many SMT-theories
– data-structures, bit-vectors, non-linear arithmetic

• Linear Real and Integer Arithmetic
• Quantifier-free theory of arrays
• Universally quantified theory of arrays + arithmetic (work in progress)

Support for Non-Linear CHC
• for procedure summaries in inter-procedural verification conditions
• for compositional reasoning: abstraction, assume-guarantee, thread modular,

etc.

28 28

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property

directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to
SMT)
• A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit

Predicate Abstraction. TACAS 2014
• J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014

29 29

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate

summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive

Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI

2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification

of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD
2015

30 30

Generalizing from Bounded Proofs

A counterexample
of length N

exists?
SMT

Generalize proof

SMT

No + bounded proof

candidate
Inv

Is a safe inductive
invariant?

SMT

No, N:=N+1Yes

YES

T, N=0

31 31

Algorithm Overview

Input: Safety problem hInit(X),Tr(X,X 0
),Bad(X)i

F0 Init ;N 0 repeat
G PdrMkSafe([F0, . . . , FN],Bad)
if G = [] then return Reachable;
80 i N · Fi G[i]

F0, . . . , FN PdrPush([F0, . . . , FN])

if 90 i < N · Fi = Fi+1 then return Unreachable;

N N + 1 ; FN ;
until 1;

bounded
safety

strengthen
result

32 32

Spacer/IC3/PDR In Pictures: MkSafe MkSafe

𝑥 = 1, 𝑦 = 0𝑥 = 3, 𝑦 = 0

𝑥 ≠ 3 ∨ 𝑦 ≠ 0𝑥 < 𝑦

F0
F1

F3F2

33 33

Inductive

Spacer/IC3/PDR in Pictures: Push Push

Algorithm Invariants
Fi → ¬ Bad Init → Fi

Fi → Fi+1 Fi∧ Tr → F’i+1

34 34

Logic-based Algorithmic Verification

Spacer

CPR

Simulink

Lustre

Java

C/C++ concurrent
/distributed

systems

T2Termination
for C

SeaHorn

35 35

SV-COMP 2015

4th Competition on Software Verification held at TACAS 2015
Goals
• Provide a snapshot of the state-of-the-art in software verification to the

community.
• Increase the visibility and credits that tool developers receive.
• Establish a set of benchmarks for software verification in the community.

Participants:
• Over 22 participants, including most popular Software Model Checkers and

Bounded Model Checkers
Benchmarks:
• C programs with error location (programs include pointers, structures, etc.)
• Over 6,000 files, each 2K – 100K LOC
• Linux Device Drivers, Product Lines, Regressions/Tricky examples
• http://sv-comp.sosy-lab.org/2015/benchmarks.php

http://sv-comp.sosy-lab.org/2015/

36 36

Results for DeviceDriver category

�

��

���

����

��
�
��
��
��

�����
����

����������
�����
�������

�����������
����������

������

� ��� ���� ���� ���� ����

�����������������

37 37

Applications of SeaHorn at NASA

Absence of Buffer Overflows
• Open source auto-pilots
– paparazzi and mnav autopilots

• Automatically instrument buffer accesses with runtime checks
• Use SeaHorn to validate that run-time checks never fail
– slower than pure abstract interpretation
– BUT, much more precise!

Verify Level 5 requirements of the LADEE software stack
• Manually encode requirements in Simulink model
• Verify that the requirements hold in auto-generated C

Memory safety of C++ controller code
• ongoing…

38 38

SeaHorn at a glance

Publicly Available (http://seahorn.github.io)
state-of-the-art Software Model Checker

Industrial-strength front-end based on Clang and LLVM

Advanced Abstract Interpretation engine: Crab

SMT-based verification engine: Spacer

Bit-precise Bounded Model Checker and Symbolic Execution

Executable Counter-Examples

A framework for research and application of logic-based verification

39 39

Current and Future Work

Precise Memory Analysis
• pointer / alias analysis for LLVM
• bug discovery using symbolic execution
• verification of buffer overflows, null-deref, memory safety
• specialized checkers / proof rules / verification conditions

Verification of Concurrent / Distributed / Parametrized Systems
• modular verification (per thread, per task, per node)
• scale to systems with large / unbounded interacting components

Scalability and Precision
• develop and implement new algorithms to increase scalability and/or

precision
• effective modular reasoning / slicing / lemma learning
• bit-precise verification

40 40

References

Tools:
• SeaHorn: http://seahorn.github.io/

Papers:
• Blog: http://seahorn.github.io/blog/
• A. Gurfinkel, T. Kahsai, J.A. Navas: Algorithmic logic-based verification.

SIGLOG News 2(2): 29-38 (2015)
• A. Gurfinkel, T. Kahsai, A. Komuravelli, J.A. Navas: The SeaHorn

Verification Framework. CAV (1) 2015: 343-361
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-based model checking for

recursive programs. Formal Methods in System Design 48(3): 175-205
(2016)

• A. Gurfinkel, J.A. Navas: A Context-Sensitive Memory Model for
Verification of C/C++ Programs. SAS 2017: 148-168

• C. Urban, A. Gurfinkel, T. Kahsai: Synthesizing Ranking Functions from
Bits and Pieces. TACAS 2016: 54-70A.

• Gurfinkel, S. Chaki: Boxes: A Symbolic Abstract Domain of Boxes. SAS
2010: 287-303

41 41

42 42

started PhD in MC at UofT

multi-valued model checking

2000

2006 SMC Yasm: safety, liveness,
multi-valued abstraction for MC

2010 Boxes abstract domain (SAS’10)

2012 UFO: MC + AI: SAS’12

2015 SeaHorn: MC (Spacer) and AI (Crab)

SV-COMP

BLAST

VMCAI’06

x + 2y < 10

z < 10

10

decision
node

true
terminal

false
edge

false
terminal

true
edge

VMCAI

