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Automated
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Correct

Incorrect

Alan M. Turing. ”Checking  a large routine” 1949

Alan M.  Turing. 1936:  “Undecidable” 

Automated (Software) Verification
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[Clarke and Emerson, 1981]                      [Queille and Sifakis, 1982]

Model Checking

Abstract Interpretation

[Cousot and Cousot, 1977 ]

Symbolic Execution

[King, 1976 ]

Automated Software Analysis
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http://seahorn.github.io
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Automated Verification

Deductive Verification
• A user provides a program and a verification certificate
– e.g., inductive invariant, pre- and post-conditions, function summaries, etc.

• A tool automatically checks validity of the certificate
– this is not easy! (might even be undecidable)

• Verification is manual but machine certified

Algorithmic Verification
• A user provides a program and a desired specification
– e.g., program never writes outside of allocated memory

• A tool automatically checks validity of the specification
– and generates a verification certificate if the program is correct
– and generates a counterexample if the program is not correct

• Verification is completely automatic – “push-button”
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Algorithmic Logic-Based Verification

Program + Spec

Verification 
Condition (in Logic)

Decision Procedure

Yes No

Safety 
Properties

Constrained 
Horn Clauses

Spacer
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Example: in test.c, check that x is always greater than or equal to y
test.c

SeaHorn command: SeaHorn result:

SeaHorn Usage
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SeaHorn Workflow
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Certificate (Cert)
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SeaHorn workflow components

Code Under Analysis (CUA)
• code being analyzed. Device driver, component, library, etc.

Verification Environment
• stubs for the environment with which CUA interacts
• e.g., libc, memcpy, malloc, OS system calls, user input, socket, file, …

Property Checker
• static instrumentation of a program with a monitor that indicates when an error 

has happened
• similar to dynamic sanitizers, but can use verifier-specific API to perform symbolic 

actions
• property spec is specific to a property checker

Verification Problem
• a prepared instance of program with embedded assertions, potentially simplified 

by abstracting away irrelevant parts of execution
Test Gen
• generates a test harness that includes all stubs and stimuli to guide CUA to a 

property failure discovered by the verifier
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Developing a Static Property Checker

A static property checker is similar to a dynamic checker
• e.g., clang sanitizer (address, thread, memory, etc.)

A significant development effort for each new property
• new specialized static analyses to rule out trivial cases
• different instrumentations have affect on performance

Developed by a domain expert
• understanding of verification techniques is useful (but not required)
• 3-6 month effort for a new property
– but many things can be reused between similar properties 
– e.g., memory safety, null-dereference, taint checking, use-after-free, etc.

SeaHorn property checkers:
• memory safety (out of bound uses, null pointer)
– ongoing work to improve scalability and usability

• taint analysis (being developed by Princeton)
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DEMO
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Architecture of Seahorn

Heap Abstraction

VC Generation

Precision:
- Integers
- Floating point
- Pointers
- Memory contents

   LLVM  Opt:
- SSA
- DCE
- Peephole 
- CFG Simplification

    Devirtualization
             and 
  Exception Lowering

Property Instr:
-Buffer overflow
-Null dereferences

 Slicing Assertions

   Front-end    Middle-end    Back-end

  C/C++   LLVM bitcode             Horn Clauses

PDR/IC3-based
Model checking

 Clang

Array Abstraction

Abstract Interp.
- Intervals
- DBMs
- LDDs

         BMC       
     bitvectors

Template-based  
     (Houdini)
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Crab Abstract Interpretation Library

Crab – Cornucopia of Abstract Domains
• Numerical domains (intervals, zones, boxes)
• 3rd party domains (apron, elina)
• arrays, uninterpreted functions, null, pointer

Language independent core with plugins for LLVM bitcode
• fixedpoint engine
• widening / narrowing strategies
• crab-llvm : integrates LLVM optimizations and analysis of LLVM bitcode

Support for inter-procedural analysis
• pre-, post-conditions, function summaries

Extensible, publicly available on GitHub, open C++ API
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Crab Abstract Domains

Numerical Domains
• interval with congruence: 0 <= x <= 10 && x mod 2 == 0
• zone: x – y <= k
• non-convex
– DisIntervals: x <= -1 || x >= 1
– Boxes: Boolean combinations of intervals

Symbolic Domains
• numeric domains extended with uninterpreted functions
• 0 <= x <= 10 && y == f(…) && z == f(…) è 0 <= x <= 10 && y = z

Array Domains
• array smashing: common properties of all array cells
• array graph domain: 

Domains from Apron and Elina 3rd party libraries
• octagons, polyhedra, etc.
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Architecture of Crab and Crab-Llvm

 Fixpoint Engines

 

 

 

 

Heap Abstraction

CFG/Callgraph Builder

LLVM Optimizations

 

  

 Arrays     UF

 Numerical

 Null  Pointer

 Abstract Domains
Checkers

 ABC

 Null

 DBZ

 Assert
Crab

Crab-Llvm

 

Interprocedural Analyses

LLVM Bitcode
C++ API

SeaHorn

Forward/Backward Analyses

https://github.com/seahorn/crab-llvm
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SeaHorn Memory Model

Block-based memory model
• each allocation (malloc/alloca/etc) creates a new object
• a pointer is a pair (id,off), called cell, where id is an object identifier and off is 

a positive numeric offset
• similar to the C memory model

Abstract Memory Model
• the number of allocation regions is finite
• allocation site is used as an object identifier
• custom pointer-analysis is used to approximate abstract points to graph

Pointer Analysis: Sea-DSA
• unification-based (like LLVM-DSA)
• context-, field-, and array-sensitive



18 18

SeaHorn Philosophy

Build a state-of-the-art Software Model Checker 
• useful to “average” users
– user-friendly, efficient, trusted, certificate-producing, …

• useful to researchers in verification
– modular design, clean separation between syntax, semantics, and logic, …

Stand on the shoulders of giants
• reuse techniques from compiler community to reduce verification effort
– SSA, loop restructuring, induction variables, alias analysis, …
– static analysis and abstract interpretation

• reduce verification to logic
– verification condition generation
– Constrained Horn Clauses

Build reusable logic-based verification technology
• “SMT-LIB” for program verification
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Logic-based Program Verification

Low-Level Bounded Model Checking (BMC)
• decide whether a low level program/circuit has an execution of a given length 

that violates a safety property
• effective decision procedure via encoding to propositional SAT

High-Level (Word-Level) Bounded Model Checking 
• decide whether a program has an execution of a given length that violates a 

safety property
• efficient decision procedure via encoding to SMT

What is an SMT-like equivalent for Safety Verification?
• Logic: SMT-Constrained Horn Clauses
• Decision Procedure: Spacer / GPDR
– extend IC3/PDR algorithms from Hardware Model Checking
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Inductive Invariants

System State Space

Bad Inv

System	S	is	safe	iff there	exists	an	inductive	invariant	Inv:
• Initiation:												Initial	⊆ Inv
• Safety:										Inv ∩ Bad	=	∅
• Consecution:			TR(Inv) ⊆ Inv

Initial

i.e.,	if	s	∈ Inv and	s↝t	
then	t ∈ Inv
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Inductive Invariants

System State Space

Bad Inv

System	S	is	safe	iff there	exists	an	inductive	invariant	Inv:
• Initiation:												Initial	⊆ Inv
• Safety:										Inv ∩ Bad	=	∅
• Consecution:			TR(Inv) ⊆ Inv

Initial

System	S	is	safe	if	Reach	∩ Bad	=	∅

Reach

i.e.,	if	s	∈ Inv and	s↝t	
then	t ∈ Inv
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Symbolic Reachability Problem

P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^
 

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN ) 6) ?

Init ) Inv

Inv(X) ^ Tr(X,X 0) ) Inv(X 0)

Inv ) ¬Bad
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Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL 
formula of the form

8 V . (Á∧ p1[X1] ∧…∧ pn[Xn] → h[X]),

where
• A is a background theory (e.g., Linear Arithmetic, Arrays, 

Bit-Vectors, or combinations of the above)
• Á is a constrained in the background theory A
• p1, …, pn, h are n-ary predicates
• pi[X] is an application of a predicate to first-order terms
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Horn Clauses for Program Verification

Bjørner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

De Angelis et al. Verifying Array 
Programs by Transforming 

Verification Conditions. VMCAI'14
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Hojjat et al. Horn Clauses for Communicating Timed 
Systems. HCVS'14

Horn Clauses for Concurrent / Distributed / 
Parameterized Systems

Rybalchenko et al. Synthesizing Software 
Verifiers from Proof Rules. PLDI'12

Hoenicke et al. Thread Modularity at Many 
Levels. POPL'17

Gurfinkel et al.  SMT-Based Verification of 
Parameterized Systems. FSE 2016
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From Programs to Logic

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y) 

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0) 
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4  (x � y), p3(x, y).
h7i perr  (x < y), p3(x, y).
h8i p4  p4.
h9i ?  perr.

Program CFG CHC
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Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
• now part of Z3 
– https://github.com/Z3Prover/z3 since commit 72c4780
– use option fixedpoint.engine=spacer

• development version at http://bitbucket.org/spacer/code
Supported SMT-Theories
• Best-effort support for many SMT-theories
– data-structures, bit-vectors, non-linear arithmetic

• Linear Real and Integer Arithmetic
• Quantifier-free theory of arrays
• Universally quantified theory of arrays + arithmetic (work in progress)

Support for Non-Linear CHC
• for procedure summaries in inter-procedural verification conditions
• for compositional reasoning: abstraction, assume-guarantee, thread modular, 

etc.
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IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property 

directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to 
SMT)
• A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit 

Predicate Abstraction. TACAS 2014
• J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014
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IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate 

summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive 

Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 

2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification 

of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 
2015
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Generalizing from Bounded Proofs

A counterexample 
of length N 

exists?
SMT

Generalize proof

SMT

No + bounded proof

candidate
Inv

Is a safe inductive 
invariant?

SMT

No, N:=N+1Yes

YES

T, N=0
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Algorithm Overview

Input: Safety problem hInit(X),Tr(X,X 0
),Bad(X)i

F0  Init ;N  0 repeat
G PdrMkSafe([F0, . . . , FN ],Bad)
if G = [ ] then return Reachable;
80  i  N · Fi  G[i]

F0, . . . , FN  PdrPush([F0, . . . , FN ])

if 90  i < N · Fi = Fi+1 then return Unreachable;

N  N + 1 ; FN  ;
until 1;

bounded 
safety

strengthen 
result
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Spacer/IC3/PDR In Pictures: MkSafe MkSafe

𝑥 = 1, 𝑦 = 0𝑥 = 3, 𝑦 = 0

𝑥 ≠ 3 ∨ 𝑦 ≠ 0𝑥 < 𝑦

F0
F1

F3F2
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Inductive

Spacer/IC3/PDR in Pictures: Push Push

Algorithm Invariants
Fi → ¬ Bad Init → Fi

Fi → Fi+1 Fi∧ Tr → F’i+1



34 34

Logic-based Algorithmic Verification

Spacer

CPR

Simulink

Lustre

Java

C/C++ concurrent 
/distributed 

systems

T2Termination 
for C

SeaHorn
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SV-COMP 2015

4th Competition on Software Verification held at TACAS 2015
Goals
• Provide a snapshot of the state-of-the-art in software verification to the 

community. 
• Increase the visibility and credits that tool developers receive. 
• Establish a set of benchmarks for software verification in the community. 

Participants:
• Over 22 participants, including most popular Software Model Checkers and 

Bounded Model Checkers
Benchmarks:
• C programs with error location (programs include pointers, structures, etc.)
• Over 6,000 files, each 2K – 100K LOC
• Linux Device Drivers, Product Lines, Regressions/Tricky examples
• http://sv-comp.sosy-lab.org/2015/benchmarks.php

http://sv-comp.sosy-lab.org/2015/
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Results for DeviceDriver category
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Applications of SeaHorn at NASA

Absence of Buffer Overflows
• Open source auto-pilots
– paparazzi and mnav autopilots

• Automatically instrument buffer accesses with runtime checks
• Use SeaHorn to validate that run-time checks never fail
– slower than pure abstract interpretation
– BUT, much more precise!

Verify Level 5 requirements of the LADEE software stack
• Manually encode requirements in Simulink model
• Verify that the requirements hold in auto-generated C

Memory safety of C++ controller code
• ongoing…
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SeaHorn at a glance

Publicly Available (http://seahorn.github.io)
state-of-the-art Software Model Checker

Industrial-strength front-end based on Clang and LLVM

Advanced Abstract Interpretation engine: Crab

SMT-based verification engine: Spacer

Bit-precise Bounded Model Checker and Symbolic Execution

Executable Counter-Examples

A framework for research and application of logic-based verification
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Current and Future Work

Precise Memory Analysis
• pointer / alias analysis for LLVM
• bug discovery using symbolic execution
• verification of buffer overflows, null-deref, memory safety
• specialized checkers / proof rules / verification conditions

Verification of Concurrent / Distributed  / Parametrized Systems
• modular verification (per thread, per task, per node)
• scale to systems with large / unbounded interacting components

Scalability and Precision
• develop and implement new algorithms to increase scalability and/or 

precision
• effective modular reasoning / slicing / lemma learning
• bit-precise verification
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