SeaHorn: Software Model Checking
with SMT and Al

Arie Gurfinkel
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada

http://ece.uwaterloo.ca/~agurfink

based on work with Teme Kahsai, Jorge Navas, Anvesh
Komuravelli, Jeffrey Gennari, Ed Schwartz, and many others

2 WATERLOO

Automated (Software) Verification

Program and/or model

/V Correct
Reasoning \ X

Automated

Incorrect

Alan M. Turing. "Checking a large routine” 1949

How can one check a routine in the sense of making sure that it is right?

prograsaer should make a number of doefinite assortions which can be checked
individually, and from which the correctness of the whole programme easily

WATERL Follows.

Automated Software Analysis

Model Checking

[Clarke and Emerson, 1981] [Queille and Sifakis, 1982]

Abstract Interpretation Symbolic Execution

[Cousot and Cousot, 1977] [King, 1976]

&

&«

i Apps

SeaHorn | A Verification Fr- %
A L. =

C fn seahorn.github.io

U Getting Started Google Bookmark Note in Reader Add to Wish List + Pocket Google Bookmark » || Other Bookmarks
s
.%o,

SeaHorn e AR
Home About Download Publications People ™ O0,™
o OQ‘-
%,
)

A fully automated verification framework for LLVM-based
languages.

http://seahorn.github.io

Temesghen
Kahsai

Jorge Navas

(Amazon) (SRI)

- http://seahorn.gifﬁub.id

Automated Verification

Deductive Verification
e A user provides a program and a verification certificate
— e.g., inductive invariant, pre- and post-conditions, function summaries, etc.
» A tool automatically checks validity of the certificate
— this is not easy! (might even be undecidable)
 Verification is manual but machine certified

mgorithmic Verification \
e A user provides a program and a desired specification

— e.g., program never writes outside of allocated memory
e A tool automatically checks validity of the specification

— and generates a verification certificate if the program is correct

— and generates a counterexample if the program is not correct
K-Verification is completely automatic — “push-button” /

UNIVERSITY OF

WATERLOO 6

Algorithmic Logic-Based Verification
Safety }

Properties

Program + Spec

Constrained
Horn Clauses

Verification
Condition (in Logic) Spacer J

2
J I5\

Decision Procedure

Yes No

IIIIIIIIIIII

SeaHorn Usage

Example: in test.c, check that x is always greater than or equal to y
test.c

extern int nd();
extern void _ VERIFIER error() __ attribute_ ((noreturn));
void assert (int cond) { if (!cond) __ VERIFIER error (); }
int main(){
int x,y;
x=1; y=0;
while (nd ())
{
X=X+Y ;
y++;
}

return 0;

}

_ SeaHorn result:
SeaHorn command: SEAHORN

sea pf test.c PROPERTY (line 12) | TRUE

%) WATERLOO

SeaHorn Workflow

Property Verification
Spec Environment

Property
| |:> Checker

| iy Verification
Code Un.der Problem (VP)
Analysis

(CUA) SeaHorn |:: > Good +

Verification
Certificate (Cert)

Bad +
Counterexample
(CEX) TestGen :> Test harness

(Test)

IIIIIIIIIIII

SeaHorn workflow components

Code Under Analysis (CUA)

e code being analyzed. Device driver, component, library, etc.
Verification Environment

 stubs for the environment with which CUA interacts

e e.g., libc, memcpy, malloc, OS system calls, user input, socket, file, ...
Property Checker

o static instrumentation of a program with a monitor that indicates when an error
has happened

 similar to dynamic sanitizers, but can use verifier-specific API to perform symbolic
actions

 property spec is specific to a property checker
Verification Problem

e a prepared instance of program with embedded assertions, potentially simplified
by abstracting away irrelevant parts of execution

Test Gen

e generates a test harness that includes all stubs and stimuli to guide CUA to a
property failure discovered by the verifier

UNIVERSITY OF

WATERLOO

Developing a Static Property Checker

A static property checker is similar to a dynamic checker
e €.9., clang sanitizer (address, thread, memory, etc.)
A significant development effort for each new property
e new specialized static analyses to rule out trivial cases
o different instrumentations have affect on performance
Developed by a domain expert
e understanding of verification techniques is useful (but not required)

e 3-6 month effort for a new property
— but many things can be reused between similar properties

— e.g., memory safety, null-dereference, taint checking, use-after-free, etc.

SeaHorn property checkers:
e memory safety (out of bound uses, null pointer)
— ongoing work to improve scalability and usability
e taint analysis (being developed by Princeton)

UNIVERSITY OF

WATERLOO

11

DEMO

%) WATERLOO

Architecture of Seahorn

C/C++ LLVM bitcode

[f LLVM Opt: \\
- SSA
- DCE
- Peephole
(CFG Simplificationj

~

4 Devirtualization
and
Exception Lowering

Property Instr:
-Buffer overflow
-Null dereferences
N J
()
Slicing Assertions

\= /X >

Front-end Middle-end Back-end

UNIVERSITY OF

WATERLOO

13

Crab Abstract Interpretation Library

Crab — Cornucopia of Abstract Domains
 Numerical domains (intervals, zones, boxes)
e 3rd party domains (apron, elina)

e arrays, uninterpreted functions, null, pointer

Language independent core with plugins for LLVM bitcode
e fixedpoint engine
e widening / narrowing strategies
e crab-llvm : integrates LLVM optimizations and analysis of LLVM bitcode

Support for inter-procedural analysis
e pre-, post-conditions, function summaries

Extensible, publicly available on GitHub, open C++ API

UNIVERSITY OF

WATERLOO 14

Crab Abstract Domains

Numerical Domains
e interval with congruence: @ <= x <= 10 & x mod 2 ==
ezZone: x - y <=k
* NoON-convex
— DisIntervals: x <= -1 || x >= 1
— Boxes: Boolean combinations of intervals
Symbolic Domains
e numeric domains extended with uninterpreted functions
°*0 <= X <=10 && y == f(..) && z == f(..) P20 <= x <= 10 && y = z
Array Domains
e array smashing: common properties of all array cells
e array graph domain:
Domains from Apron and Elina 3" party libraries
e octagons, polyhedra, etc.

%) WATERLOO

Architecture of Crab and Crab-Llvm

Checkers
Abstract Domains
Assert

Arrays UF ABC | x

Null Pointer Null

Crab

Numerical DBZ

-

LLVM Bitcode

1

Fixpoint Engines

Forward/Backward Analyses

Interprocedural Analyses
CFG/Callgraph Builder

Heap Abstraction
LLVM Optimizations

!
!
]
N

% WATERLGO https://github.com/seahorn/crab-llvm

SeaHorn Memory Model

Block-based memory model
e each allocation (malloc/alloca/etc) creates a new object

 a pointer is a pair (id,off), called cell, where id is an object identifier and off is
a positive numeric offset

 similar to the C memory model

Abstract Memory Model
e the number of allocation regions is finite
e allocation site is used as an object identifier
e custom pointer-analysis is used to approximate abstract points to graph

Pointer Analysis: Sea-DSA
e unification-based (like LLVM-DSA)
e context-, field-, and array-sensitive

UNIVERSITY OF

WATERLOO

17

SeaHorn Philosophy

Build a state-of-the-art Software Model Checker
 useful to “average” users
— user-friendly, efficient, trusted, certificate-producing, ...
 useful to researchers in verification

— modular design, clean separation between syntax, semantics, and logic, ...

Stand on the shoulders of giants
e reuse techniques from compiler community to reduce verification effort
— SSA, loop restructuring, induction variables, alias analysis, ...
— static analysis and abstract interpretation
 reduce verification to logic
— verification condition generation
— Constrained Horn Clauses
Build reusable logic-based verification technology
o “SMT-LIB” for program verification

UNIVERSITY OF

WATERLOO

18

Logic-based Program Verification

Low-Level Bounded Model Checking (BMC)

» decide whether a low level program/circuit has an execution of a given length
that violates a safety property

o effective decision procedure via encoding to propositional SAT

High-Level (Word-Level) Bounded Model Checking

e decide whether a program has an execution of a given length that violates a
safety property

« efficient decision procedure via encoding to SMT

~

What is an SMT-like equivalent for Safety Verification?
* Logic: SMT-Constrained Horn Clauses
e Decision Procedure: Spacer / GPDR
— extend IC3/PDR algorithms from Hardware Model Checking

N /

UNIVERSITY OF

WATERLOO 19

Inductive Invariants

System State Space

| Bad

Initial

System S is safe iff there exists an inductive invariant Inv:

* |nitiation: Initial € Inv
» Safety: InvNn Bad =0
* Consecution: TR(Inv) S Inv je, ifs e Invand st

thent € Inv

20

Inductive Invariants

System State Space

| Bad

Initial

System S is safe iff there exists an inductive invariant Inv:

* |nitiation: Initial € Inv
» Safety: InvNn Bad =0
* Consecution: TR(Inv) S Inv je, ifs e Invand st

thent € Inv
System S is safe if Reach N Bad = @

IIIIIIIIIIII

21

Symbolic Reachability Problem
P = (V, Init, 77, Bad)

P is UNSAFE if and only if there exists a number N s.t.
N—-1

Init(Xg) A (/\ Tr(Xz,Xz+1)> A Bad(Xy) #& L

1=0
P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init = Inv
Inductive
Inv(X)A Tr(X, X" = Inv(X')
Inv = —Bad Safe

IIIIIIIIIIII

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

VV . (¢ A X4 A A palXql = hIX]),

where

e A is a background theory (e.g., Linear Arithmetic, Arrays,
Bit-Vectors, or combinations of the above)

e ¢ Iis a constrained in the background theory A
* P4, ..., P, N @re n-ary predicates
* p[X] is an application of a predicate to first-order terms

23

Horn Clauses for Program Verification

Lout\L, W, CO}’ WLLIULL ID &l CLLLY PULLIL LULU DULLEDduUL vupes.

with the edges are formulated as follows:

Pinit(To,w, L) =g where r occurs in w
Pezit(To, ret, T) « €(zp,w, T) for each label £, and re
p(z,ret, L, 1) ¢ p.it(z, ret, L)
plz,ret, L, T) ¢ pezit(z,ret, T)
brns(zo.w'.e.) ¢ bLinlza.w.e:) A —e: A ~win(S. (e =

5. incorrect :- Z=W+1, W>0, W+1<
read(A,W,U), read(A,?z
6. p(I1,N,B)
read(A,D,U), write(A

7.p(I.N.A) :-I=1. N>1.

De Angelis et al. Verifying Array
Programs by Transforming
Verification Conditions. VMCAI'14

return(w, w', w

Weakest Preconditions If we apply Boogie directly we obtain a translation
from programs to Horn logic using a weakest liberal pre-condition calculus [26):

ToHorn(program) := wip(Main(), T) A /\

decl€ program

ToHorn(decl)

ToHorn(def p(z) {S}) :

1 havoc z; assume zy = ;
assume p,,.(z); S,

p(zo, mt))

wlp(z :=E,Q):=letz=FE in Q
wip((if E then S, else S),Q) := wip(((assume E: S;)(assume —E:; S>)),Q)

wip((5,0S2), Q) := wip(S:, Q) A wip(S;,Q)
wip(S1; S2, Q) := wip(S,, wip(S2,Q))

wip(havoc z,Q) :=Vz . Q

wip(assert ¢,Q) == AQ

wlp(assume ¢, Q) = = Q
wip((while E do S),Q) := inv(w) A

((inv(» wip(S, inv(w)))
w (/\.((inv(w)/\—E) ' Q))

- 1<I, I<N, D=I—1, IT1=I+1. V=U+1.

To translate a procedure call £ : y := ¢(FE); £ within a procedure p, create
he clauses:

plwo, wy) + p(wy, w,), call(w;, wy), g(ws, ws), return(w;, ws, wy)
p(wo, w,), call(w;, w;)
=6z =Ex" =4§,_.

7' =4,

call{w,w’)

)

g(wz, wy) ¢
) 4

I/)

Lw' =wlret' [y, £ [x)

%) WATERLOO

Bjarner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

24

Horn Clauses for Concurrent / Distributed /

Parameterized Systems

For assertions Ry,..., Ry over Vand E1,...,Exyover V, V',
CMl1 : init(V) — Ri(V)
CM2: R;(V) A pi(V, V') - Ri(Vl)

CM3 : (Viel..N\{j} Ri(V)Aps(V, V') — E;(V,V')
CM4: Ri(V)AE(V,V)ApE(V, V) — Ri(V)
CM5: Ri(V)A---ARn(V) A error(V) — false

multi-threaded program P is safe

Rybalchenko et al. Synthesizing Software
Verifiers from Proof Rules. PLDI'12

{R(& Po(1)slo(1)s- -+ s Po) lok)) < dist(P1,---,Pi) AR(8;P1, 11, -5 Pis i) }o‘esk Q)
R(g,p1,l1;---,Pks k) < dist(p1,...,px) ANnit(g, 1) A --- Alnit(g, Ix) @)
R(g' P11, Pis k) <= dist(pr,-,pe) A ((8,11) 2 (€511) AR(8,PL 1,5 Pes) (B)
R(g,p1,l1,- P k) < dist(po,p1,---,pi) A ((g,10) 23 (&/,15)) ARConj(0, ..., k) ©
false dist(p1,...,p,)/\(A (ji=piA(e))) eE,-))ARConj(l,...,r) (10)

j=1,...m

Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-
ant. Sy is the symmetric group on {1,...,k}, i.e., the group of all permutations of k numbers; as an
optimisation, any generating subset of Sy, for instance transpositions, can be used instead of Sy. In (10),
we define r = max{m,k}.

Hojjat et al. Horn Clauses for Communicating Timed
Systems. HCVS'14

Init(i, ,©) A Init(j,i,) A
Init(i,4,v) A Init(j, j, v) = I2(i, §,v)
I(3,5,9) A Tr(3,9,7) = I2(3,5,0) (3

(initial) init(g, z1) A -+ - Ainit(g,) = Inv(g, linits T1, - - - 5 linit, Tk) Iz(’i _7 5) A Tr(j o ﬁ/) N 12(7:] 5’) (4)
1J))) 1J)
(induCtiVe) In’[)(g7£1,x1,,,,,Zi,mi,...,Zk,wk)/\S(g,xi,g/,w;)_)]nv(g’,ll,xl,--.,E;,z;,-.-,ek,i 12(7:"7', 6) /\ I2(’[:’ k, E) /\ IQ(j, k, 5) /\ (5)
(non-interference) Inv(g, 41,21, .-,k Tk) A — =0 e e 2 Q =
Ino(g.£1 a1 Loz e 2) A Tr(k,v,v) Nk #iNk #j = I2(i,5,V)
] I>(i, j,v) = —Bad(i, j,v)
Inv(g, 1,21, .., lu—1,z5-1,€0,27) A s(g,21,9,-) = Inv(g, b1, 1, . .., Lk, k)
(safe) Inv(g, b1, 21, .., Lk, zk) Aerr(g, €1, 21, . . ., bm, Tm) — false Figure 3: VC(T) for two-quantifier invariants.
Figure 6. Horn clause encoding for thread modularity at level k (where (£;, s, £;) and (£, s, -) refer to statement s on a1 Gurfinkel et al. SMT-Based Verification of
from £; to £; and, respectively, from £ to some other location in the control flow graph) Parameterilzed Systems ESE 2016
S5 MveRsiTY or Hoenicke et al. Thread Modularity at Many
@ WATERLOO | | evels. POPL'17 25

From Programs to Logic

Program CFG CHC

o (1) po-

r=1 <2> pl(xay)%

y =0 po,z =1,y =0.
it y = 0; l1 : by = nondet() F <4> p3($7 y) N pl(xa y) :
while (x) { (5) p(e’,y)

T
T =14y l T 1 p2(z,y),
y=y+1; |h: 5 : T =z 4y,
} rT=r+Y by =2 >y y =y+ 1

Perr < (ZE < y)a p3($>y)'

assert(z > y); y=yrl % }\ (6) pa < (z > y),p3(z,y).
(7)
(8)
(9)

IIIIIIIIIIII

%) WATERLOO 26

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses

e now part of Z3
— https://qgithub.com/Z3Prover/z3 since commit 72c4780
— use option fixedpoint.engine=spacer

e development version at http://bitbucket.org/spacer/code
Supported SMT-Theories

o Best-effort support for many SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
e Linear Real and Integer Arithmetic
e Quantifier-free theory of arrays
o Universally quantified theory of arrays + arithmetic (work in progress)
Support for Non-Linear CHC
e for procedure summaries in inter-procedural verification conditions

 for compositional reasoning: abstraction, assume-guarantee, thread modular,
etc.

UNIVERSITY OF

WATERLOO o7

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
e Incremental Construction of Inductive Clauses for Indubitable Correctness
* A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

* Property Directed Reachability

 N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property
directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to
SMT)

e A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit
Predicate Abstraction. TACAS 2014

« J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). CAV 2014

UNIVERSITY OF

WATERLOO 8

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints

» Generalized Property Directed Reachability
o K. Hoder and N. Bjgrner: Generalized Property Directed Reachability. SAT 2012

@ACER: Non-Linear CHC with Arithmetic \

» fixes an incompleteness issue in GPDR and extends it with under-approximate
summaries

* A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive
Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
e simulating Numeric Abstract Interpretation with PDR
. glo%'(arner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI
ArrayPDR: CHC with constraints over Airthmetic + Arrays

e Required to model heap manipulating programs
e A. Komuravelli, N. Bjgrner, A. Gurfinkel, K. L. McMillan:Compositional Verification
ggli’gocedural Programs using Horn Clauses over Integers and Arrays. FMCAD

%) WATERLOO 29

Generalizing from Bounded Proofs

l T, N=0

Yes

/A counterexampl

of length N

| e exists?
SMT

X

IIIIIIIIIIII

%) WATERLOO

\

e

/

No, N:=N+1

No + bounded proof

/

Generalize proof

SMT

\

/

candid
Invy

4)

Is a safe inductive YES
invariant? —

SMT
/

1

ate

v

30

Algorithm Overview bounded

safety
Input: Safety problem (Init(X), Tr(X, X'), Bad

Fo < Init ; N < O repeat
| G <+ PDRMKSAFE([Fy, . .., F], Bad) “ }
if G = || then return Reachable;

| F,...,EFy < PDRPUSH([Fp, ..., Fy]) }
if 30 <1 < N - F; = F; 11 then return Unreg hable;
N N+1:Fy 10 strengthen
until oo: —

IIIIIIIIIIII

%) WATERLOO 31

Spacer/IC3/PDR In Pictures: MkSafe

<€ €

x=3,y=0

<€

MkSafe

x=1y=0

|

]

x <y

IIIIIIIIIIII

32

Spacer/IC3/PDR in Pictures: Push

Push

<€ (€ Q\@(
< O€ O
g
Algorithm Invariants
g F.>-Bad Init> F,
g Fi > Finq Fi A Tr > F'iuq
g
B B I NS
T

IIIIIIIIIIII

Inductiv

33

Logic-based Algorithmic Verification

Simulink

""‘; concurrent
cose® /distributed
Qi systems
[Lustre g CPR

Termination
for C v
(4
Spacer
m

IIIIIIIIIIII

%) WATERLOO 34

SV-COMP 2015 http://sv-comp.sosy-lab.org/2015/

4th Competition on Software Verification held at TACAS 2015
Goals

e Provide a snapshot of the state-of-the-art in software verification to the
community.

 Increase the visibility and credits that tool developers receive.
e Establish a set of benchmarks for software verification in the community.
Participants:

e Over 22 participants, including most popular Software Model Checkers and
Bounded Model Checkers

Benchmarks:

e C programs with error location (programs include pointers, structures, etc.)
e Over 6,000 files, each 2K — 100K LOC

 Linux Device Drivers, Product Lines, Regressions/Tricky examples

e http://sv-comp.sosy-lab.org/2015/benchmarks.php

UNIVERSITY OF

WATERLOO 35

Results for DeviceDriver category

1000

100

Timeins

-
o

BLAST
CBMC

| CPAchecker

ESBMC
SeaHorn

"SMACKCorral

UAutomizer
UKojak

/

UNIVERSITY OF

%) WATERLOO

1000

1500

Accumulated score

2000

2500

Applications of SeaHorn at NASA

Absence of Buffer Overflows
e Open source auto-pilots
— paparazzi and mnav autopilots
o Automatically instrument buffer accesses with runtime checks
e Use SeaHorn to validate that run-time checks never fail
— slower than pure abstract interpretation
— BUT, much more precise!

Verify Level 5 requirements of the LADEE software stack
* Manually encode requirements in Simulink model
 Verify that the requirements hold in auto-generated C

Memory safety of C++ controller code
e ongoing...

UNIVERSITY OF

WATERLOO

37

>

SeaHorn at a glance

Publicly Available (http://seahorn.github.io)
state-of-the-art Software Model Checker

Industrial-strength front-end based on Clang and LLVM
Advanced Abstract Interpretation engine: Crab
SMT-based verification engine: Spacer

Bit-precise Bounded Model Checker and Symbolic Execution
Executable Counter-Examples

A framework for research and application of logic-based verification

IIIIIIIIIIII

WATERLOO

38

Current and Future Work

Precise Memory Analysis
 pointer / alias analysis for LLVM
e bug discovery using symbolic execution
o verification of buffer overflows, null-deref, memory safety
 specialized checkers / proof rules / verification conditions

Verification of Concurrent / Distributed / Parametrized Systems

e modular verification (per thread, per task, per node)
 scale to systems with large / unbounded interacting components

Scalability and Precision

e develop and implement new algorithms to increase scalability and/or
precision

o effective modular reasoning / slicing / lemma learning
e bit-precise verification

UNIVERSITY OF

WATERLOO 39

References

Tools:

o SeaHorn: http://seahorn.github.io/
Papers:

 Blog: http://seahorn.github.io/blog/

o A. Gurfinkel, T. Kahsai, J.A. Navas: Algorithmic logic-based verification.
SIGLOG News 2(2): 29-38 (2015)

e A. Gurfinkel, T. Kahsai, A. Komuravelli, J.A. Navas: The SeaHorn
Verification Framework. CAV (1) 2015: 343-361

e A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-based model checking for
recursive programs. Formal Methods in System Design 48(3): 175-205
(2016)

e A. Gurfinkel, J.A. Navas: A Context-Sensitive Memory Model for
Verification of C/C++ Programs. SAS 2017: 148-168

e C. Urban, A. Gurfinkel, T. Kahsai: Synthesizing Ranking Functions from
Bits and Pieces. TACAS 2016: 54-70A.

e Gurfinkel, S. Chaki: Boxes: A Symbolic Abstract Domain of Boxes. SAS
2010: 287-303

UNIVERSITY OF

WATERLOO

40

&

41

h 4

2000

2006

2010

2012

2015

UNIVERSITY OF

%) WATERLOO

started PhD in MC at UofT g

5MM BLAST | VMCAI

b ¥ multi-valued model checking

Conerete , Abstrat. VMCAI'06
Interpre Lu—>’D(LuaB(\D){‘
SMC Yasm: safety, liveness, L P——

multi-valued abstraction for MC

Boxes abstract domain (SAS’10)

‘ gma,a

. MC + Al: SAS’12

SV-COMP

42

