
A Context Sensitive Memory Model for
Software Model Checking

Arie Gurfinkel

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada

http://ece.uwaterloo.ca/~agurfink

joint work with Jorge A. Navas (SRI)

2 2

Program and/or model

Automated

Reasoning

Correct

Incorrect

Alan M. Turing. ”Checking a large routine” 1949

Alan M. Turing. 1936: “Undecidable”

Automated (Software) Verification

3 3

[Clarke and Emerson, 1981] [Queille and Sifakis, 1982]

Model Checking

Abstract Interpretation

[Cousot and Cousot, 1977]

Symbolic Execution

[King, 1976]

Automated Software Analysis

4 4

http://seahorn.github.io

5 5
http://seahorn.github.io

Temesghen
Kahsai

(Amazon)

Jorge Navas
(SRI)

6 6

Algorithmic Logic-based Program Verification

Low-Level Bounded Model Checking (BMC)
• decide whether a low level program/circuit has an execution of a given length

that violates a safety property
• effective decision procedure via encoding to propositional SAT

High-Level (Word-Level) Bounded Model Checking
• decide whether a program has an execution of a given length that violates a

safety property
• efficient decision procedure via encoding to SMT

What is an SMT-like equivalent for Safety Verification?
• Logic: SMT-Constrained Horn Clauses
• Decision Procedure: Spacer / GPDR
– extend IC3/PDR algorithms from Hardware Model Checking

7 7

Algorithmic Logic-Based Verification

Program + Spec

Verification
Condition (in Logic)

Decision Procedure

Yes No

Safety
Properties

Constrained
Horn Clauses

Spacer

8 8

Horn Clauses for Program Verification

Bjørner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

De Angelis et al. Verifying Array
Programs by Transforming

Verification Conditions. VMCAI'14

9 9

Hojjat et al. Horn Clauses for Communicating Timed
Systems. HCVS'14

Horn Clauses for Concurrent / Distributed /
Parameterized Systems

Rybalchenko et al. Synthesizing Software
Verifiers from Proof Rules. PLDI'12

Hoenicke et al. Thread Modularity at Many
Levels. POPL'17

Gurfinkel et al. SMT-Based Verification of
Parameterized Systems. FSE 2016

10 10

Logic-based Algorithmic Verification

Spacer

CPR

Simulink

Lustre

Java

C/C++ concurrent
/distributed

systems

T2Termination
for C

SeaHorn

11 11

Architecture of Seahorn

Heap Abstraction

VC Generation

Precision:
- Integers
- Floating point
- Pointers
- Memory contents

 LLVM Opt:
- SSA
- DCE
- Peephole
- CFG Simplification

 Devirtualization
 and
 Exception Lowering

Property Instr:
-Buffer overflow
-Null dereferences

 Slicing Assertions

 Front-end Middle-end Back-end

 C/C++ LLVM bitcode Horn Clauses

PDR/IC3-based
Model checking

 Clang

Array Abstraction

Abstract Interp.
- Intervals
- DBMs
- LDDs

 BMC
 bitvectors

Template-based
 (Houdini)

12 12

SeaHorn Workflow

Property
Checker

SeaHorn

TestGen

Code Under
Analysis
(CUA)

Verification
Problem (VP)

Bad +
Counterexample

(CEX)

Good +
Verification

Certificate (Cert)

Test harness
(Test)

Property
Spec

Verification
Environment

13 13

SeaHorn workflow components

Code Under Analysis (CUA)
• code being analyzed. Device driver, component, library, etc.

Verification environment
• stubs for the environment with which CUA interacts
• e.g., libc, memcpy, malloc, OS system calls, user input, socket, file, …

Property Checker
• static instrumentation of a program with a monitor that indicates when an error

has happened
• similar to dynamic sanitizers, but can use verifier-specific API to perform symbolic

actions
• property spec is specific to a property checker

Verification Problem
• a prepared instance of program with embedded assertions, potentially simplified

by abstracting away irrelevant parts of execution
Test Gen
• generates a test harness that includes all stubs and stimuli to guide CUA to a

property failure discovered by the verifier

14 14

Developing a Static Property Checker

A static property checker is similar to a dynamic checker
• e.g., clang sanitizer (address, thread, memory, etc.)

A significant development effort for each new property
• new specialized static analyses to rule out trivial cases
• different instrumentations have affect on performance

Developed by a domain expert
• understanding of verification techniques is useful (but not required)
• 3-6 month effort for a new property
– but many things can be reused between similar properties
– e.g., memory safety, null-dereference, taint checking, use-after-free, etc.

SeaHorn property checkers:
• memory safety (out of bound uses, null pointer)
– ongoing work to improve scalability and usability

• taint analysis (being developed by Princeton)

81 81

