
Pushing to the Top with K-induction

Arie Gurfinkel
Electrical and Computer Engineering

University of Waterloo

joint work with Alexander Ivrii (IBM)

2 2

Agenda

IC3 is one of the most powerful algorithms for model checking safety properties

Very active area of research:

• A. Bradley: SAT-Based Model Checking Without Unrolling. VMCAI 2011
(IC3 stands for “Incremental Construction of Inductive Clauses for Indubitable
Correctness”)

• N. Eén, A. Mishchenko, R. Brayton: Efficient implementation of property directed
reachability. FMCAD 2011
(PDR stands for “Property Directed Reachability”)

…

• In this talk, I present a new IC3-based algorithm, called QUIP
(QUIP stands for “a QUest for an Inductive Proof”)

• and show how QUIP can be extended with k-induction

3 3

A brief preview of Quip

Quip extends IC3 by allowing for

• A wider range of conjectures (proof obligations)
• Designed to push already existing lemmas more aggressively
• Allows to push a given lemma by learning additional supporting

lemmas
(and hopefully to compute an inductive invariant faster)

• Forward reachable states
• Explain why a lemma cannot be pushed
• Allows to keep the number of proof obligations under control

These are integrated into a single algorithmic procedure

The experimental results look good

4 4

Problem: Symbolic Safety and Reachability

A transition system P = (V, Init, Tr, Bad)
P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN) 6) ?

Init) Inv

Inv(X) ^ Tr(X,X 0)) Inv(X 0)

Inv) ¬Bad

5 5

Inductive Invariants

System State Space

Bad Inv

System	S	is	safe	iff there	exists	an	inductive	invariant	Inv:
• Initiation:												Initial	⊆ Inv
• Safety:										Inv ∩ Bad	=	∅
• Consecution:			TR(Inv) ⊆ Inv

Initial

i.e.,	if	s	∈ Inv and	s↝t	
then	t ∈ Inv

6 6

Inductive Invariants

System State Space

Bad Inv

System	S	is	safe	iff there	exists	an	inductive	invariant	Inv:
• Initiation:												Initial	⊆ Inv
• Safety:										Inv ∩ Bad	=	∅
• Consecution:			TR(Inv) ⊆ Inv

Initial

System	S	is	safe if	Reach	∩ Bad	=	∅

Reach

i.e.,	if	s	∈ Inv and	s↝t	
then	t ∈ Inv

7 7

Generalizing from Bounded Proofs

A counterexample
of length N

exists?
SAT

Generalize proof

SAT

No + bounded proof

candidate
Inv

Is a safe inductive
invariant?

SAT

No, N:=N+1Yes

YES

T, N=0

8 8

IC3/PDR
F = [Init]

MkSafe

Push

∃ i, Fi = Fi+1

G = [G0, …, GN]

F = [F0, …, FN]
F = [F0, …, FN]

PDR trace

CEX

SAFEYesNo

9 9

IC3/PDR In Pictures: MkSafe MkSafe

𝑝	&	𝑞𝑝	&	𝑞	&	𝑧

! 𝑝	 	! 𝑞	 	! 𝑧! 𝑝

F0

F1

F3F2

10 10

Inductive

IC3/PDR in Pictures: Push Push

Algorithm Invariants
Fi → ¬ Bad Init → Fi

Fi → Fi+1 Fi∧ Tr → F’i+1

11 11

A quick review of IC3/PDR

Input:
• A safety verification problem (Init, Tr, Bad)

Output:
• A counterexample (if the problem is UNSAFE),
• A safe inductive invariant (if the problem is SAFE)
• Resource Limit

Main Data-structures:
• A current working level N
• An inductive trace
• A set of proof obligations

12 12

Inductive Trace

Let F0, F1, F2, …, F¥ be conjunctions of lemmas (in practice, clauses).
We say that F0, F1, F2, …, F¥ is an inductive trace if:

(1) F0 = INIT
(2) F0 Þ F1 Þ F2 Þ … Þ F¥ (monotone)
(3) F1 Ê F2 Ê … Ê F¥ as sets of lemmas (s. monotone)
(4) Fi Ù TR Þ Fi+1’ for i ³ 0 (including F¥ Ù Tr Þ F¥’). (inductive)

Remarks:
This definition is slightly different from the original definition:

• the sequence F0, F1, F2, … is conceptually infinite (with Fi = T for all
sufficiently large i)

• we add F¥ as the last element of the trace (as suggested in PDR)

Each Fi over-approximates states that are reachable in i steps or less
(in particular, F¥ contains all reachable states)

13 13

P

Fj-1

Fj

Init

F₁ ……

Safe Monotone Inductive Trace

Bad =¬p

• Fi	over-approximates	the	states	that	are	reachable	in	at	most	i steps
• If	Fj+1	⇒ Fj then	Fj is	an	inductive	invariant

R1
R2

F2 Rj-1

Rj

14 14

Proof Obligations in IC3

A proof obligation in IC3 is a pair (s, i), where
• s is a (generalized) cube over state variables
• i is a natural number (called level)

We say that (s, i) is blocked (or that s is blocked at level i) if Fi Þ ¬s.
Given a proof obligation (s, i), IC3 attempts to strengthen the inductive
trace in order to block it.

Remarks:
In IC3, s is identified with a counterexample-to-induction (CTI)

If (s, i) is a proof obligation and i³1, then (s, i-1) is already blocked

All proof obligations are managed via a priority queue:
• Proof obligations with smallest level are considered first
• (additional criteria for tie-breaking)

15 15

Recursive Blocking Stage in IC3

// Find a counterexample, or strengthen the inductive trace
// s.t. FN Þ ¬s holds
IC3_recBlockCube(s, N)

Add(Q, (s, N))
while ¬Empty(Q) do

(s, k) ¬ Pop(Q)
if (k = 0) return “Counterexample”
if (Fk Þ ¬s) continue
if (Fk-1 Ù Tr Ù s’) is SAT

t ¬ generalized predecessor of s
Add(Q, (t, k-1))
Add(Q, (s, k))

else
¬t ¬ generalize ¬s by inductive generalization (to

level m³k)
add ¬t to Fm
if (m<N) Add(Q, (s, m+1))

16 16

Pushing stage in IC3

// Push each clause to the highest possible frame up to N
IC3_Push()

for k = 1 .. N-1 do
for c Î Fk \ Fk+1 do

if (Fk Ù Tr Þ c’)
add c to Fk+1

if (Fk = Fk+1)
return “Proof” // Fk is a safe inductive invariant

17 17

Towards improving IC3 (1)

IC3 is an excellent algorithm! So, what do we want?

We want more control on which lemmas to learn:
• Each lemma in the inductive trace is neither an over-approximation nor

an under-approximations of reachable states (a lemma in Fk only over-
approximates states reachable within k steps):

• IC3 may learn lemmas that are too weak (ex. C1) – prune less
states

• IC3 may learn lemmas that are too strong (ex. C2) – cannot be in the
inductive invariant

Init Reach

C1

C2

Bad

18 18

Towards improving IC3 (2)

We want to know if an already existing lemma is good (in F¥) or
bad (e.g., C2 from before):
• Avoid periodically pushing bad lemmas
• Ideally, we also want to prune less useful lemmas

We want to prioritize reusing already discovered lemmas over
learning of new ones:
• When the same cube s is blocked at different levels, usually

different lemmas are discovered
• Although, IC3 partially addresses this using pushing (and

other optimizations)
• Use the same lemma to block s (at the expense of deriving

additional supporting lemmas)
• Although, in general different lemmas are of different “quality”

and having some choice may be beneficial

19 19

Immediate improvement: unlimited pushing
// Push each clause to the highest possible frame up to N
IC3_Push_Unlimited()

for k = 1 .. do
for c Î Fk \ Fk+1 do

if (Fk Ù Tr Þ c’)
add c to Fk+1

if (Fk = Fk+1)
F¥ ¬ Fk

if (F¥ Þ ¬Bad)
return “Proof” // F¥ is a safe inductive invariant

Claim: after pushing F¥ represents a maximal inductive subset of all lemmas
discovered so far

Remark: the idea to compute maximal inductive invariants is suggested in
PDR but claimed to be ineffective. In our implementation, “unlimited pushing”
leads to ~10% overall speed up.

20 20

Pushing is Useful

Why pushing is useful:
• During the execution of IC3, the sets Fi are incrementally

strengthened, and so it may happen
that Fk Ù TR Þ c’, even though this was not true at the time that c was
discovered

Why pushing is good:
• By pushing c from Fk to Fk+1, we make Fk more inductive

(and if Fk becomes equal to Fk+1, then Fk becomes an inductive
invariant)

• Suppose that cÎFk blocks a proof obligation (s, k).
By pushing c from Fk to Fk+1, we also block the proof obligation (s, k+1)

• Pushing Clauses = Improving Convergence = Reusing old lemmas for
blocking bad states

21 21

What Happens when Pushing Fails
Why pushing may fail: suppose that c Î Fk \ Fk+1 but Fk Ù TR does not
imply c’. Why?

There are two alternatives:
1. c is a valid over-approximation of states reachable within k+1 steps,

but Fk is not strong enough to imply this
• We can strengthen the inductive trace so that Fk Ù TR Þ c’ becomes

true

2. c is NOT a valid over-approximation of states reachable within k+1
steps
• There is a real forward reachable state r that is excluded by c
• c has no chance to be in the safe inductive invariant
• c is a bad lemma

A similar reasoning is used in:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD
2013

22 22

Two interdependent ideas
1. Prioritize pushing existing lemmas

• Given a lemma c Î Fk \ Fk+1, we can add (¬c, k+1) as a may-proof-
obligation
• May-proof-obligations are “nice to block”, but do not need to be

blocked
• If (¬c, k+1) can be blocked, then c is pushed to Fk+1
• If (¬c, k+1) cannot be blocked, then we discover a concrete reachable

state r that is excluded by c and that explains why c cannot be inductive

2. Discover and use new forward reachable states
• These are an under-approximation of forward reachable states
• Given a reachable state, all the existing lemmas that exclude it are bad

• Bad lemmas are never pushed
• Reachable states may show that certain may-proof-obligations cannot be

blocked
• Reachable states may be used when generalizing lemmas
• Conceptually, computing new reachable states can be thought of as new

Init states

23 23

Quip

Input:
• A safety verification problem (Init, Tr, Bad)

Output:
• A counterexample (if the problem is UNSAFE),
• A safe inductive invariant (if the problem is SAFE)
• Resource Limit

Main Data-structures:
• A current working level N
• An inductive trace (same as IC3)
• A set of proof obligations (similar to IC3)
• A set R of forward reachable states

24 24

Proof Obligations in Quip
A proof obligation in Quip is a triple (s, i, p), where
• s is a (generalized) cube over state variables
• i is a natural number
• p Î {may, must}

Remarks:
• As in IC3, if (s, i, p) is a proof obligation and i³1, then (s, i-1) is

assumed to be already blocked
• As in IC3, all proof obligations are managed via a priority queue:

• Proof obligations with smallest level are considered first
• In case of a tie, proof obligations with smallest number of literals are

considered first
• (additional criteria for tie-breaking)

• Have a “parent map” from a proof obligation to its parent proof
obligation
• parent(t) = s if (t, k-1, q) is a predecessor of (s, k, p)
• In fact, this is usually done in IC3 as well (for trace reconstruction)

25 25

Recursive Blocking Stage in Quip (1)
1. Each time that we examine a proof obligation (s, k, p), check whether

s intersects a reachable state rÎR

2. Discover new reachable states when possible
• Claim: if s intersects rÎR and if parent(s) exists, then there exists a

reachable state r’ that intersects parent(s)
• Indeed, ALL states in s lead to a state in parent(s)
• Therefore r leads to a state in parent(s) as well

• A similar idea is present in: C. Wu, C. Wu, C. Lai, C. Huang: A
counterexample-guided interpolant generation algorithm for SAT-
based model checking. TCAD 2014

3. When (s, k, p) is blocked by an inductive lemma ¬t, add (t, k+1, may)
as a new proof obligation
• Push ¬t to Fk+1 instead of blocking (s, k+1)

4. Clear all proof obligations if their number becomes too large
(important, not in pseudocode)

26 26

Recursive Blocking Stage in Quip (2)

// Find a reachable state rÎs, or strengthen the inductive trace
s.t. FN Þ ¬s
Quip_recBlockCube(s, N, q)

Add(Q, (s, N, q))
while ¬Empty(Q) do

(s, k, p) ¬ Pop(Q)
if (k = 0) && (p = must) return “Counterexample”
if (k = 0) && (p = may)

find a state r one-step-reachable from Init,
such that r intersects parent(s)

add r to R; continue
if (Fk Þ ¬s) continue
if (s intersects some state rÎR) && (p = must) return

“Counterexample”
if (s intersects some state rÎR) && (p = may)

if parent(s) exists, find a state r’ one-step-reachable
from r,

such that r’ intersects parent(s)
add r’ to R; continue

// -- continued on the next slide --

27 27

Recursive Blocking Stage in Quip (3)

Quip_recBlockCube(s, N, p)
// -- continued from the previous slide –-

if (Fk-1 Ù Tr Ù s’) is SAT
t ¬ generalized predecessor of s
Add(Q, (t, k-1, p))
Add(Q, (s, k, p))

else
¬t ¬ generalize ¬s by inductive

generalization (to level m³k)
add ¬t to Fm
if (m<N)

if (t = s) Add(Q, (t, m+1, p))
else Add(Q, (t, m+1, may))

// attempt to block t (not s)

28 28

Experiments: IC3 vs. Quip on HWMCC’13 and ’14

• Implemented in IBM formal verification tool Rulebase-Sixthsense

• Data for 140 instances that were not trivially solved by
preprocessing but could be solved either by IC3 or Quip within
1-hour

• Detailed results at http://arieg.bitbucket.org/quip

29 29

Experiments: IC3 vs. Quip on HWMCC’13 and ‘14

IC3 (sec)

Q
ui

p
(s

ec
)

• Data for 140 instances from prev slide

30 30

• Improve handling of forward reachable states (both for performance and memory)

• Generalize forward reachable states

• Incorporate these ideas with other known IC3 developments
• Abstraction-Refinement:

Y. Vizel, O. Grumberg, S. Shoham: Lazy abstraction and SAT-based reachability
in hardware model checking. FMCAD 2012

• Lemma generalization:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD 2013

• Experiment with other ways to combine the ideas into a full algorithm

• Lift Quip to more general domains

Quip – future work

31 31

K-Induction without Unrolling

FMCAD’17

Arie Gurfinkel
Alexander Ivrii

32 32

Induction:

k-step Induction:

K-induction Principle
[SSS2000]

P(s0)
∀i:	P(si)	⇒ P(si+1)
∀i:	P(si)	

P(s0..k-1)
∀i:	P(si..i+k-1)	⇒ P(si+k)

∀i:	P(si)	

33 33

SAT-based Model Checking with K-induction

Let the k-unrolling of transition relation be defined as:
Uk = T<0>∧ T<1>∧ ... ∧ T<k-1>

Use SAT solver to check validity of two formulas:
• Base case:

I<0> ∧ Uk-1⇒ P<0>...P<k-1>

• Induction step:

Uk ∧ P<0>...P<k-1>⇒P<k>

If both are valid, then P is true in all the reachable states

If the base case is invalid, there is a counterexample

If the induction step is invalid, increase k and try again

34 34

Simple path assumption

Unfortunately, k-induction is not complete
• some properties are not k-inductive for any k
• for example,

Simple path restriction:
• There is a path to ¬P iff there is a simple path to ¬P (path with no repeated

states)

P P ¬P

35 35

Complete k-induction with simple paths

Let simple(s0..k) be defined as:
• ∀i,j in	0..k	:	(i ≠	j)	⇒ si ≠	sj

k-induction over simple paths:

P(s0..k-1)
∀i:	simple(s0..k)	∧ P(si..i+k-1)	⇒ P(si+k)

∀i:	P(si)	

Must	hold	for	k	large	enough,	since	a	length	of	the	longest	simple	
path	is	bounded	(recurrence	diameter)

36 36

Terminology: k-invariants and k-induction

• j is an invariant if it holds on all reachable states

• j is a k-invariant if it holds on all states reachable in up to k
steps:

Init(X0) Ù Tr(X0, X1) Ù … Ù Tr(XN-1, XN) Þ j(XN) for all 0 ≤ N ≤ k

• j is a k-inductive invariant if j is a (k-1)-invariant, and
j(X0) Ù Tr(X0, X1) Ù … Ù j(Xk-1) Ù Tr(Xk-1, Xk) Þ j(Xk)

• k-induction states that if j is a k-inductive invariant, then j is an
invariant

37 37

k-induction vs IC3

• k-induction and IC3 have complementary strengths, both
theoretically and practically

• Can we understand both algorithms in a common way?
• we present an IC3-like algorithm to show whether a given

safety property is k-inductive

• Can we devise an effective algorithm combining the two?
• we show how IC3 can be extended with k-inductive

reasoning – with minor modifications of the IC3-algorithm

38 38

k-induction vs IC3

k-induction and IC3 algorithms are heavily used for unbounded
model checking in both hardware and software domains

Theoretically, the two algorithms have complementary strengths:
• k-induction (with loop-free constraints) is stronger than 1-

induction
• IC3 derives new lemmas to strengthen the property

Practically (on hardware benchmarks)
• k-induction is mostly successful for small values of k (up to 10)
• IC3 solves many more properties than k-induction
• However, there are properties that can be proved by k-induction

with low value of k, but IC3 “gets lost”

39 39

k-induction without unrolling

• We present K-IND – an algorithm to decide whether a
(k-1)-invariant formula j is k-inductive

• K-IND returns:
• j is k-inductive, OR
• j is not k-inductive (and a counterexample to k-

induction)

• Highlights:
• Does not unroll the transition relation

• Guarantees loop-free constraints without
introducing expensive unique-state constraints

40 40

K-IND: for k=3 and without loop-free constraints
• Let j be 2-invariant

• No Init-state can reach a ¬j-state in 0, 1 or 2 steps
• Taking 0, 1 or 2 successive predecessors of a ¬j-state cannot get

to an Init-state

• We want to check/determine whether j is 3-inductive invariant

• j(X0) Ù Tr(X0, X1) Ù j(X1) Ù Tr(X1, X2) Ù j(X2) Ù Tr(X2, X3) Þ j(X3) ?

• Equivalently, we want to check whether the following formula is
satisfiable

• j(X0) Ù Tr(X0, X1) Ù j(X1) Ù Tr(X1, X2) Ù j(X2) Ù Tr(X2, X3) Ù ¬j(X3)

• Equivalently, j is a 3-inductive invariant if and only if we cannot start
from a ¬j-state and find 3 successive predecessors satisfying j

41 41

K-IND: demonstration

• We use an IC3-like algorithm to check satisfiability:
j(X0) Ù Tr(X0, X1) Ù j(X1) Ù Tr(X1, X2) Ù j(X2) Ù Tr(X2, X3) Ù ¬j(X3)

• For simplicity, assume that j = ¬s, where s is a cube over registers

• t is a predecessor of s
• u is a predecessor of t
• v is a predecessor of u
• We have found 3 successive predecessors: j is not 3-inductive

• Moreover, if v is an Init-state, then we have a counter-example to j

stuv

j Ù Tr Ù s’ j Ù Tr Ù t’ j Ù Tr Ù u’

42 42

K-IND: demonstration

• We use an IC3-like algorithm to check satisfiability:
j(X0) Ù Tr(X0, X1) Ù j(X1) Ù Tr(X1, X2) Ù j(X2) Ù Tr(X2, X3) Ù ¬j(X3)

• For simplicity, assume that j = ¬s, where s is a cube over registers

• Suppose now that t has no predecessors satisfying j

• As in IC3, we can learn a lemma ¬t that explains why t is not reachable
• All SAT queries are made relative to the same frame
• All lemmas “hold for all frames”
• No need re-enqueue discharged proof obligations

st

j Ù Tr Ù s’ j Ù Tr Ù t’

43 43

K-IND: demonstration

• Putting it all together:
• Keep a stack of proof obligations {(s, i)}, initially {(¬j, 0)}

• Where i represents the “depth” rather than “level”
• Keep a set of lemmas G, initially empty
• Iteratively:

• Take the top proof obligation t and make a predecessor query
G Ù j Ù Tr Ù t’

• If found a depth-3 predecessor u and u is Init, return “Counter-Example”
• Else if found a depth-3 predecessor, return “Counter-Example to 2-

induction”
• Else if found a predecessor u, add a new proof obligation (u, i-1)
• Else adds ¬t to G
• If G Þ ¬s, return “Blocked”

• As in IC3, we can generalize ¬t as long as InitÞ¬t and G Ù j Ù Tr Ù ¬t Þ ¬t’
• in this case, the algorithm may return “Blocked” even when j is not 3-

inductive
• But, G is still an inductive invariant proving j

44 44

K-IND: loop-free constraints

• To integrate simple-path constraints, add (the negations of) all parent
states to the predecessor queries

• Here s, t, u, v are generalized proof obligations (= sets of states)

stuv

¬s Ù j Ù Tr Ù s’
¬tÙ¬s Ù j Ù Tr Ù t’

¬uÙ¬tÙ¬s Ù j Ù Tr Ù u’

45 45

K-IND: relatively k-inductive

• Let F be 0-invariant (Init Þ F)

• j is a k-inductive invariant relative to F if j is a k-invariant, and

j(X0) Ù F(X0) Ù Tr(X0, X1) Ù … Ù j(Xk-1) Ù F(Xk-1) Ù Tr(Xk-1, Xk) Þ j(Xk)

• K-IND can be extended to determine if j is k-inductive relative to F

46 46

K-IND: experimental results

In practice (on hardware benchmarks, and without loop-free constraints):

• K-IND solves a few more properties than k-induction
• Due to lemma generalization

• When solved by both, k-induction is usually faster than K-IND
• Exactly in the same way as BMC is usually faster than IC3 when looking for

counterexamples

47 47

KIC3: K-Inductive IC3

• Related Work: PD-KIND
• “Property-Directed k-Induction”, Dejan Jovanović and Bruno

Dutertre, FMCAD’2016
• Variant of IC3/PDR based on k-induction
• Effective on SMT benchmarks
• Requires unrolling transition relation for validating k-inductive

queries
• A direct implementation of PD-KIND for hardware does not scale

• Has strongly inspired our solution

• We present KIC3
• A framework extending IC3 with k-inductive reasoning
• Integrates k-induction into IC3 with minor modifications of the IC3-

framework
• But does not fully incorporate loop-free constraints

48 48

k-inductive blocking

• Given a proof obligation (s, i), we can attempt to block s using k-induction
relative to Fi-1
• Can choose any k ≤ i

• Let’s suppose that Fi-1 Ù ¬s Ù Tr Ù s’ is satisfiable, and t is a predecessor of
s in Fi-1

• IC3:
• Adds a new proof obligation (t, i-1)
• Proceeds to checking whether Fi-2 Ù ¬t Ù Tr Ù t’ is satisfiable

• k-inductive blocking (for k > 1):
• Adds a new proof obligation (t, i)
• Proceeds to checking whether Fi-1 Ù ¬t Ù Tr Ù t’ is satisfiable

49 49

Comparison of KIC3-blocking and IC3-blocking

• What happens if both Fi-2 Ù ¬t Ù Tr Ù t’ and Fi-1 Ù ¬t Ù Tr Ù t’ are UNSAT?
• IC3 learns a lemma valid (at least) to Fi-1
• k-inductive blocking learns a lemma valid (at least) to Fi
• Lemmas learned by k-inductive blocking are in general of “higher quality”

• What happens if Fi-2 Ù ¬t Ù Tr Ù t’ is UNSAT, while Fi-1 Ù ¬t Ù Tr Ù t’ is SAT?
• IC3 stops blocking (t, i-1) and returns to blocking (s, i)
• k-inductive blocking continues blocking predecessors of t
• If k-inductive blocking succeeds blocking the topmost proof-obligation (s, i)

• It may learn more lemmas, but all of these lemmas are valid (at least) to Fi

• Recall that using k-induction to block (s, i) may return “counterexample-to-k-induction”
• Simple solution: fall back to blocking (s, i) using IC3
• Inspired by PD-KIND: block this counterexample-to-k-induction using IC3* and

continue blocking (s, i) using k-induction
•

*or we can again use m-inductive blocking for a suitable value of m

50 50

Alternative ways to think about KIC3-blocking

• k-inductive blocking is IC3 with a slightly different strategy for
managing proof obligations
• IC3 schedules proof obligations at the lowest level they are

unknown
• k-inductive blocking may schedule proof obligations to higher

levels instead

• k-inductive blocking can be thought of as abstraction
• Given a proof obligation (t, j), IC3 checks whether ¬t is

inductive relative to Fj-1
• However, any abstraction of Fj-1 can be used instead
• For example, using only lemmas from Fi-1 closely

corresponds to KIC3

51 51

Which states to block using KIC3-blocking?

• For the experiments, we modified the procedure for recursive
blocking of (¬Bad, i):
• First, use k-inductive blocking of (¬Bad, i)
• If unsuccessful, block (¬Bad, i) as usual

• Can also use k-inductive blocking during the pushing stage of the IC3
algorithm
• Directly inspired by PD-KIND

52 52

Experimental Results

• Implemented in IBM’s formal verification tool on top of Quip

• 238 single-property designs from HWMCC’15
(all the designs that are not solved by simple logic synthesis, but are solved
either by at least one configuration considered)

• Experimented with k = the induction depth, and m = the number of
counterexamples to k-induction blocked using IC3

• 15-minutes time-limit (per property)

53 53

Experimental Results

• Increasing k, while fixing m=0:
• Slightly in favor of using k-induction
• Runtimes are highly correlated

• The scatter plot has k=5 and m=0
• Points above diagonal = wins for IC3
• Points below diagonal = wins for

KIC3

• IC3 solves 230 properties in 52,776
s

• KIC3 solves 233 properties in
51,695 s

• Similar observations on proprietary
designs and larger time-limits

54 54

Experimental Results

• Increasing m, while fixing k:
• Significantly degrades performance
• Runtimes are less correlated

• The scatter plot has k=5 and m=5
• Points above diagonal = wins for IC3
• Points below diagonal = wins for

KIC3

• IC3 solves 230 properties in 52,776
s

• KIC3 solves 224 properties in
57,864 s

• Similar observations on proprietary
designs and larger time-limits

55 55

Conclusion

IC3 is a great algorithm for hardware Model Checking
• but, it can still be improved

QUIP: QUest for an Inductive Proof
• aggressively push existing lemmas
• enlarge initial state by computing reachable states
• use reachable states to prune bad lemmas

KIC3: IC3 and k-induction
• k-induction without unrolling (and without simple path constraints)
• integrates easily into IC3 framework
• expensive, hard to control when to apply

IC3 is a great framework to explore MC strategies

56 56

