Pushing to the Top with K-induction

Arie Gurfinkel
Electrical and Computer Engineering
University of Waterloo

joint work with Alexander lvrii (IBM)

2 WATERLOO

Agenda

IC3 is one of the most powerful algorithms for model checking safety properties
Very active area of research:
« A. Bradley: SAT-Based Model Checking Without Unrolling. VMCAI 2011
(IC3 stands for “Incremental Construction of Inductive Clauses for Indubitable
Correctness”)
* N. Eén, A. Mishchenko, R. Brayton: Efficient implementation of property directed

reachability. FMCAD 2011
(PDR stands for “Property Directed Reachability”)

* In this talk, | present a new |IC3-based algorithm, called QUIP
(QUIP stands for “a QUest for an Inductive Proof”)

 and show how QUIP can be extended with k-induction

%) WATERLOO

A brief preview of Quip

Quip extends IC3 by allowing for

« A wider range of conjectures (proof obligations)
» Designed to push already existing lemmas more aggressively
« Allows to push a given lemma by learning additional supporting
lemmas
(and hopefully to compute an inductive invariant faster)

 Forward reachable states

« Explain why a lemma cannot be pushed
» Allows to keep the number of proof obligations under control

These are integrated into a single algorithmic procedure

The experimental results look good

UNIVERSITY OF

WATERLOO

Problem: Symbolic Safety and Reachability

A transition system P = (V, Init, Tr, Bad)
P is UNSAFE if and only if there exists a number N s.t.

N—-1

Init(Xg) A (/\ Tr XzaXH—l)) A Bad(Xy) #& L
1=0

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init = Inv
Inductive
Inv(X)A Tr(X, X" = Inv(X")
Inv = —Bad Safe

IIIIIIIIIIII

Inductive Invariants

System State Space

. Bad

Initial

System S is safe iff there exists an inductive invariant Inv:

e |nitiation: Initial € Inv
» Safety: InvN Bad=0
* Consecution: TR(Inv) S Inv e ifs € Invand st

thent € Inv

Inductive Invariants

System State Space

. Bad

Initial

System S is safe iff there exists an inductive invariant Inv:

e |nitiation: Initial € Inv
» Safety: InvN Bad=0
* Consecution: TR(Inv) S Inv e ifs € Invand st

thent € Inv
System S is safe if Reach N Bad = @

IIIIIIIIIIII

Generalizing from Bounded Proofs

l T, N=0

Yes

\

A counterexample

of length N

| exists?
SAT

X

IIIIIIIIIIII

%) WATERLOO

/

No,

N:=N+1

No + bounded proof

/

Generalize proof

SAT

\

/

candid
Invy

~

~

Is a safe inductive |YES
invariant? p—

SAT
/

ate

1

v

IC3/PDR

F=1[Fg ..., F\]

IIIIIIIIIIII

F = [Init]

’

—> MkSafe —> CEX

PDR trace
G=[G,, ..., GN]}

Push

F=1[Fg ..., F\]

No Yes SAFE

IC3/PDR In Pictures: MkSafe

p&q&z

<€ O€

<€

MkSafe

p&q

&I 0

5

IIIIIIIIIIII

IC3/PDR in Pictures: Push

Push

< O O\@(
< O€ O

I S | E—

Algorithm Invariants
I S | S Fi>-Bad Init>F,

Fi - Fi+1 Fi /\ Tr - F’i+1

I N |
I S (S | E—
BN B S | N E—
S

IIIIIIIIIIII

Inductiv

10

A quick review of IC3/PDR

Input:
A safety verification problem (Init, Tr, Bad)

Output:

* A counterexample (if the problem is UNSAFE),
A safe inductive invariant (if the problem is SAFE)
* Resource Limit

Main Data-structures:

* A current working level N
* An inductive trace

A set of proof obligations

IIIIIIIIIIII

11

Inductive Trace

Let Fy, Fy, Fy, ..., F. be conjunctions of lemmas (in practice, clauses).

We say that F,, F,, F,, ..., F_ is an inductive trace if:
(1) Fo = INIT
2)Fp=F=>F,=..=F, (monotone)
(3)F,oF,o> ... o F_as sets of lemmas (s. monotone)
(4)F, A TR = F, fori>0 (including F_, A Tr=F_’). (inductive)

Remarks:
This definition is slightly different from the original definition:
» the sequence F,, F,, F,, ... is conceptually infinite (with F, = T for all
sufficiently large i)
* we add F_ as the last element of the trace (as suggested in PDR)

Each F, over-approximates states that are reachable in i steps or less
(in particular, F_ contains all reachable states)

UNIVERSITY OF

WATERLOO

12

Safe Monotone Inductive Trace

* F,over-approximates the states that are reachable in at most i steps
* If F;,; = F;then F;is an inductive invariant

%) WATERLOO 13

Proof Obligations in IC3

A proof obligation in IC3 is a pair (s, i), where
* sis a(generalized) cube over state variables
* 1is a natural number (called /evel)

We say that (s, i) is blocked (or that s is blocked at level i) if F;, = —s.

Given a proof obligation (s, i), IC3 attempts to strengthen the inductive
trace in order to block it.

Remarks:
In IC3, s is identified with a counterexample-to-induction (CTI)

If (s, i) is a proof obligation and i>1, then (s, i-1) is already blocked
All proof obligations are managed via a priority queue:

* Proof obligations with smallest level are considered first
» (additional criteria for tie-breaking)

UNIVERSITY OF

WATERLOO

14

Recursive Blocking Stage in IC3

// Find a counterexample, or strengthen the inductive trace

// s.t. Fy, = —=s holds
IC3 recBlockCube(s, N)
Add(Q, (s, N))
while —Empty(Q) do
(s, k) « Pop(Q)
if (k = 0) return “Counterexample”
if (F, = —s) continue
if (F,.y A Tr A s’) is SAT
t <« generalized predecessor of s
Add(Q, (t, k-1))
Add(Q, (s, k))

else
—t <« generalize —s by inductive generalization (to
level m>k)

add —t to F,
if (m<N) Add(Q, (s, m+l))

%) WATERLOO

15

Pushing stage in IC3

// Push each clause to the highest possible frame up to N
IC3_Push()
for k =1 .. N-1 do
for c € F, \ F,, do
if (FeA Tr =)
add c to F,,
if (Fk = I:k+1)
return “Proof” // F, 1s a safe inductive 1invariant

%) WATERLOO

Towards improving IC3 (1)

IC3 is an excellent algorithm! So, what do we want?

We want more control on which lemmas to learn:

« Each lemma in the inductive trace is neither an over-approximation nor
an under-approximations of reachable states (a lemma in F, only over-
approximates states reachable within k steps):

* IC3 may learn lemmas that are too weak (ex. C,)— prune less
states

« IC3 may learn lemmas that are foo strong (ex. C,) — cannot be in the
inductive invariant

%) WATERLOO

17

Towards improving IC3 (2)

We want to know if an already existing lemma is good (in F_) or
bad (e.g., C, from before):

» Avoid periodically pushing bad lemmas

* |deally, we also want to prune less useful lemmas

We want to prioritize reusing already discovered lemmas over
learning of new ones:
* When the same cube s is blocked at different levels, usually
different lemmas are discovered
 Although, IC3 partially addresses this using pushing (and
other optimizations)
» Use the same lemma to block s (at the expense of deriving
additional supporting lemmas)
 Although, in general different lemmas are of different “quality”
and having some choice may be beneficial

%) WATERLOO 18

Immediate improvement: unlimited pushing

// Push each clause to the highest possible frame =ho—to=—i-
IC3 _Push_Unlimited()
for k =1 .. do
for c € F, \ F.,, do
if (FoA Tr =)
add c to F,
if (Fy = Fiq)
F, < Fy
if (F, = —Bad)
return “Proof” // F_ i1s a safe 1inductive invariant

Claim: after pushing F_ represents a maximal inductive subset of all lemmas
discovered so far

Remark: the idea to compute maximal inductive invariants is suggested in
PDR but claimed to be ineffective. In our implementation, “unlimited pushing”
leads to ~10% overall speed up.

UNIVERSITY OF

WATERLOO

19

Pushing is Useful

Why pushing is useful.

« During the execution of IC3, the sets F, are incrementally
strengthened, and so it may happen
that F, A TR = ¢/, even though this was not true at the time that c was
discovered

Why pushing is good.

« By pushing c from F, to F,.,, we make F, more inductive
(and if F, becomes equal to F,,,, then F, becomes an inductive
invariant)

» Suppose that ceF, blocks a proof obligation (s, k).
By pushing c from F, to F,,,, we also block the proof obligation (s, k+1)

* Pushing Clauses = Improving Convergence = Reusing old lemmas for
blocking bad states

%) WATERLOO 20

What Happens when Pushing Fails

Why pushing may fail: suppose thatc € F, \ F,,, but F, A TR does not
imply c¢’. Why?

There are two alternatives:
1. cis a valid over-approximation of states reachable within k+1 steps,
but F, is not strong enough to imply this
* We can strengthen the inductive trace so that F, A TR = ¢’ becomes
true

2. cis NOT a valid over-approximation of states reachable within k+1
steps
* There is a real forward reachable state r that is excluded by c
* ¢ has no chance to be in the safe inductive invariant
* cis abadlemma

A similar reasoning is used in:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD
2013

UNIVERSITY OF

WATERLOO

21

Two interdependent ideas

1. Prioritize pushing existing lemmas °

oO

 Givenalemmac e F, \ F,,, we can add (—c, k+1) as a may-proof-

obligation

« May-proof-obligations are “nice to block”, but do not need to be
blocked

* If (—c, k+1) can be blocked, then c is pushed to F,,,

If (—c, k+1) cannot be blocked, then we discover a concrete reachable
state r that is excluded by c and that explains why c cannot be inductive

2. Discover and use new forward reachable states

These are an under-approximation of forward reachable states

Given a reachable state, all the existing lemmas that exclude it are bad
 Bad lemmas are never pushed

Reachable states may show that certain may-proof-obligations cannot be

blocked

Reachable states may be used when generalizing lemmas

Conceptually, computing new reachable states can be thought of as new

Init states

UNIVERSITY OF

WATERLOO

22

>

Quip

Input:
A safety verification problem (Init, Tr, Bad)

Output:

« A counterexample (if the problem is UNSAFE),
« A safe inductive invariant (if the problem is SAFE)
* Resource Limit

Main Data-structures:

« A current working level N

* An inductive trace (same as IC3)

» A set of proof obligations (similarto 1C3)
* A set R of forward reachable states

IIIIIIIIIIII

WATERLOO

23

Proof Obligations in Quip

A proof obligation in Quip is a triple (s, i, p), where
* sis a (generalized) cube over state variables
 iis a natural number

* p € {may, must}

Remarks:
« AsinIC3,if (s, i, p)is a proof obligation and i>1, then (s, i-1) is
assumed to be already blocked
« As in IC3, all proof obligations are managed via a priority queue:
» Proof obligations with smallest level are considered first
» In case of a tie, proof obligations with smallest number of literals are
considered first
 (additional criteria for tie-breaking)
« Have a “parent map” from a proof obligation to its parent proof
obligation
« parent(t) = s if (t, k-1, q) is a predecessor of (s, k, p)
* Infact, this is usually done in IC3 as well (for trace reconstruction)

UNIVERSITY OF

WATERLOO

24

Recursive Blocking Stage in Quip (1)

1.

Each time that we examine a proof obligation (s, k, p), check whether
S intersects a reachable state reR

Discover new reachable states when possible

« Claim: if s intersects reR and if parent(s) exists, then there exists a
reachable state r’ that intersects parent(s)
» Indeed, ALL states in s lead to a state in parent(s)

« Therefore r leads to a state in parent(s) as well

» A similar idea is present in: C. Wu, C. Wu, C. Lai, C. Huang: A
counterexample-guided interpolant generation algorithm for SAT-
based model checking. TCAD 2014

When (s, k, p) is blocked by an inductive lemma —t, add (t, k+1, may)
as a new proof obligation
 Push —tto F,, instead of blocking (s, k+1)

Clear all proof obligations if their number becomes too large
(important, not in pseudocode)

UNIVERSITY OF

WATERLOO

25

Recursive Blocking Stage in Quip (2)

// Find a reachable state res, or strengthen the inductive trace
s.t. Fy = —s
Quip_recBlockCube(s, N, q)

while —Empty(Q) do

(s, k, p) < Pop(Q)
if (k = 9) & (p = must) return “Counterexample”
if (k = 0) & (p = may)
find a state r one-step-reachable from Init,
such that r intersects parent(s)
add r to R; continue
if (F, = —s) continue
if (s intersects some state reR) & & (p = must) return
“Counterexample”
if (s intersects some state reR) && (p = may)
if parent(s) exists, find a state r’ one-step-reachable
from r,
such that r’ intersects parent(s)
add r’ to R; continue
// -- continued on the next slide --

%) WATERLOO

26

Recursive Blocking Stage in Quip (3)

Quip_recBlockCube(s, N, p)
// -- continued from the previous slide --
if (F,.;, A Tr A s’) 1s SAT
t < generalized predecessor of s
Add(Q: (t: k_lJ p))

else

—t <« generalize —s by inductive
generalization (to level m>k)

add —t to F,

if (m<N)
if (t = s) Add(Q, (t, m+l, p))
else Add(Q, (t, m+l, may))

// attempt to block t (not s)

IIIIIIIIIIII

Experiments: IC3 vs. Quip on HWMCC’13 and 14

UNSAFE solved UNSAFE time SAFE solved SAFE time
IC3 22 (2) 52,302 76 (7) 137,244
Quip 32 (12) 20,302 99 (30) 69,590

Experimental results on the instances solved by either ITC3 or Quip separated into
unsafe and safe instances. The numbers in parentheses represent the unique solves. The
times are in seconds.

* Implemented in IBM formal verification tool Rulebase-Sixthsense

« Data for 140 instances that were not trivially solved by
preprocessing but could be solved either by IC3 or Quip within
1-hour

» Detailed results at http://arieg.bitbucket.org/quip

%) WATERLOO 28

Experiments: IC3 vs. Quip on HWMCC’13 and ‘14

i X///
X i X 7 . .
1000 5 . 4 « Data for 140 instances from prev slide
3 /// X X/ X
7/ X 4
///% //// X s
—~ 1 // X)(X /
o X %
o 100 3 /7 . ¥ L
Z . /// X)2/(/ X e
" — 7 // //
- // 7 / X
O /// X X/%/ //// X
e X X X%
10 E i d /X (>
i ///)(X >£// X
T X/// X ///
X s X
X)%{/ X /// X
X
14 »" yd
4.7 I
FTTT 1 T Trrrm I T Trrrrry 1 T rrrrry I 1
1 10 100 1000
IC3 (sec)

UNIVERSITY OF

WATERLOO 29

Quip — future work

« Improve handling of forward reachable states (both for performance and memory)
» Generalize forward reachable states
» Incorporate these ideas with other known IC3 developments
« Abstraction-Refinement:
Y. Vizel, O. Grumberg, S. Shoham: Lazy abstraction and SAT-based reachability
in hardware model checking. FMCAD 2012
* Lemma generalization:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD 2013
« Experiment with other ways to combine the ideas into a full algorithm

 Lift Quip to more general domains

%) WATERLOO

IIIIIIIIIIII

K-Induction without Unrolling
FMCAD’17

Arie Gurfinkel
Alexander lvrii

31

K-induction Principle

Induction:

k-step Induction:

IIIIIIIIIIII

P(s,)
Vi: P(s;) = P(s;,,)
Vi: P(s)

P(so.-1)
Vii P(Si..i+k-1) = P(Si+k)

Vi: P(s)

[SSS2000]

32

SAT-based Model Checking with K-induction

Let the k-unrolling of transition relation be defined as:
U =T0 AT A LA T

Use SAT solver to check validity of two formulas:
e Base case:

[A Uy = PO peker

 Induction step:
U, A\ P<0> pskt>= p<k
If both are valid, then P is true in all the reachable states

If the base case is invalid, there is a counterexample

If the induction step is invalid, increase k and try again

%) WATERLOO

Simple path assumption

Unfortunately, k-induction is not complete
e some properties are not k-inductive for any k

 for example,

Simple path restriction:

e There is a path to -P iff there is a simple path to -P (path with no repeated
states)

UNIVERSITY OF

WATERLOO

34

Complete k-induction with simple paths

Let simple(s, ,) be defined as:
e VijinO.k:(i#j) = s #s

K-induction over simple paths:

P(so. k1)
Vi: simple(sy) /\ P(S: i11.1) = P(siyy)
Vi: P(s)

Must hold for k large enough, since a length of the longest simple
path is bounded (recurrence diameter)

IIIIIIIIIIII

35

Terminology: k-invariants and k-induction

* @ is an invariant if it holds on all reachable states

* ¢ is a k-invariant if it holds on all states reachable in up to k
steps:
Init(Xy) A Tr(Xgy, Xq) A oo A Tr(X\.1, Xy) = o(Xy) forall 0 <N <k

* ¢ is a k-inductive invariant if ¢ is a (k-1)-invariant, and

@(Xo) A Tr(Xg, Xq) Ao A @(Kyeq) A TH(X 4, X)) = 9(Xy)

+ k-induction states that if ¢ is a k-inductive invariant, then ¢ is an
invariant

36

k-induction vs IC3

* k-induction and IC3 have complementary strengths, both
theoretically and practically

« Can we understand both algorithms in a common way?

« we present an IC3-like algorithm to show whether a given
safety property is k-inductive

« Can we devise an effective algorithm combining the two?
« we show how IC3 can be extended with k-inductive
reasoning — with minor modifications of the IC3-algorithm

37

>

k-induction vs IC3

k-induction and IC3 algorithms are heavily used for unbounded
model checking in both hardware and software domains

Theoretically, the two algorithms have complementary strengths:

 k-induction (with loop-free constraints) is stronger than 1-
iInduction

» |C3 derives new lemmas to strengthen the property

Practically (on hardware benchmarks)

» k-induction is mostly successful for small values of k (up to 10)

» IC3 solves many more properties than k-induction

 However, there are properties that can be proved by k-induction
with low value of k, but IC3 “gets lost”

IIIIIIIIIIII

WATERLOO

38

k-induction without unrolling

* We present K-IND — an algorithm to decide whether a
(k-1)-invariant formula o is k-inductive

* K-IND returns:
* ¢ is k-inductive, OR
¢ is not k-inductive (and a counterexample to k-
induction)

 Highlights:
 Does not unroll the transition relation

« Guarantees loop-free constraints without
iIntroducing expensive unique-state constraints

IIIIIIIIIIII

39

K-IND: for k=3 and without loop-free constraints

Let ¢ be 2-invariant

* No Init-state can reach a —p-state in 0, 1 or 2 steps

» Taking 0, 1 or 2 successive predecessors of a —p-state cannot get
to an Init-state

« We want to check/determine whether ¢ is 3-inductive invariant
* 0(Xg) A Tr(Xo, Xq) A 9(Xq) A Tr(Xy, Xp) A 9(Xo) A Tr(Xy, X3) = ¢(X3) ?
» Equivalently, we want to check whether the following formula is
satisfiable
* 0(Xg) A Tr(Xo, Xq) A 0(Xq) A Tr(Xy, Xo) A 9(Xo) A Tr(Xy, X3) A —9(X3)

« Equivalently, ¢ is a 3-inductive invariant if and only if we cannot start
from a —-state and find 3 successive predecessors satisfying ¢

UNIVERSITY OF

WATERLOO

40

K-IND: demonstration

* We use an IC3-like algorithm to check satisfiability:
@(Xo) A Tr(Xo, Xg) A @(Xq) A Tr(Xq, X) A 0(X3) A Tr(Xy, X3) A =0(X3)

« For simplicity, assume that ¢ = —s, where s is a cube over registers

QATrAU oATrat QATras

* tis a predecessor of s
* uis a predecessor of t
* Vvis a predecessor of u
* We have found 3 successive predecessors: ¢ is not 3-inductive
« Moreover, if v is an Init-state, then we have a counter-example to ¢

UNIVERSITY OF

WATERLOO

K-IND: demonstration

We use an IC3-like algorithm to check satisfiability:
(Xp) A Tr(Xo, Xq) A @(Xq) A Tr(Xy, X3) A ¢(X3) A Tr(Xy, X3) A =0(X5)

For simplicity, assume that ¢ = —s, where s is a cube over registers

O—0

oATrat @ATras

Suppose now that t has no predecessors satisfying ¢

As in IC3, we can learn a lemma —t that explains why t is not reachable
« All SAT queries are made relative to the same frame
* All lemmas “hold for all frames”
* No need re-enqueue discharged proof obligations

UNIVERSITY OF

WATERLOO

42

K-IND: demonstration

« Putting it all together:

» Keep a stack of proof obligations {(s, i)}, initially {(—¢, 0)}
« Where i represents the “depth” rather than “level”

+ Keep a set of lemmas G, initially empty

 lteratively:
« Take the top proof obligation t and make a predecessor query

GAQPATrAt
 |If found a depth-3 predecessor u and u is Init, return “Counter-Example”
» Else if found a depth-3 predecessor, return “Counter-Example to 2-
induction”

« Else if found a predecessor u, add a new proof obligation (u, i-1)
 Else adds —tto G
e |If G = —s, return “Blocked”

 Asin IC3, we can generalize —t as long as Init=—tand G A @ A Tr A =t = —t’
* in this case, the algorithm may return “Blocked” even when ¢ is not 3-
inductive

» But, G is still an inductive invariant proving ¢

%) WATERLOO

43

K-IND: loop-free constraints

« To integrate simple-path constraints, add (the negations of) all parent
states to the predecessor queries

—UA—IA=S A Q@ ATrA U

—SAQPATIrAS
—tA=SAQATrAt

« Here s, t, u, v are generalized proof obligations (= sets of states)

UNIVERSITY OF

WATERLOO 44

K-IND: relatively k-inductive

* Let F be O-invariant (Init = F)
* ¢ is a k-inductive invariant relative to F if ¢ is a k-invariant, and
P(Xo) A F(Xp) A Tr(Xo, Xq) A oo A 0K 9) A F(Xiq) A Tr(Xiq, X)) = @(X)

« K-IND can be extended to determine if ¢ is k-inductive relative to F

%) WATERLOO 45

K-IND: experimental results

In practice (on hardware benchmarks, and without loop-free constraints):

» K-IND solves a few more properties than k-induction
* Due to lemma generalization

* When solved by both, k-induction is usually faster than K-IND

+ Exactly in the same way as BMC is usually faster than IC3 when looking for
counterexamples

%) WATERLOO

KIC3: K-Inductive IC3

« Related Work: PD-KIND

“Property-Directed k-Induction”, Dejan Jovanovi¢ and Bruno
Dutertre, FMCAD’2016
Variant of IC3/PDR based on k-induction

Effective on SMT benchmarks

Requires unrolling transition relation for validating k-inductive
qgueries

« A direct implementation of PD-KIND for hardware does not scale
Has strongly inspired our solution

* We present KIC3

A framework extending IC3 with k-inductive reasoning

Integrates k-induction into IC3 with minor modifications of the 1C3-
framework

But does not fully incorporate loop-free constraints

UNIVERSITY OF

WATERLOO

47

k-inductive blocking

Given a proof obligation (s, i), we can attempt to block s using k-induction
relative to F,_,

 Canchoose any k <

» Let’s suppose that F_; A —s A Tr A s’ is satisfiable, and t is a predecessor of
sinF,,

« IC3:
» Adds a new proof obligation (t, i-1)
» Proceeds to checking whether F,, A —t A Tr A t' is satisfiable

» k-inductive blocking (for k > 1):
» Adds a new proof obligation (t, i)
» Proceeds to checking whether F, ; A —t A Tr A t" is satisfiable

UNIVERSITY OF

WATERLOO 48

Comparison of KIC3-blocking and IC3-blocking

 What happens if both F oA =t ATrat and F_ ;A =t A Tr At are UNSAT?
* IC3 learns a lemma valid (at least) to F,_,
» k-inductive blocking learns a lemma valid (at least) to F,
« Lemmas learned by k-inductive blocking are in general of “higher quality”

* What happens if F., A =t A Tr A t"is UNSAT, while F_ 4 A =t A Tr A 1" is SAT?
» |C3 stops blocking (t, i-1) and returns to blocking (s, i)
» k-inductive blocking continues blocking predecessors of t
 If k-inductive blocking succeeds blocking the topmost proof-obligation (s, i)
+ It may learn more lemmas, but all of these lemmas are valid (at least) to F,

« Recall that using k-induction to block (s, i) may return “counterexample-to-k-induction”
« Simple solution: fall back to blocking (s, i) using IC3
» Inspired by PD-KIND: block this counterexample-to-k-induction using IC3* and
continue blocking (s, i) using k-induction

*or we can again use m-inductive blocking for a suitable value of m

%) WATERLOO

Alternative ways to think about KIC3-blocking

 Kk-inductive blocking is IC3 with a slightly different strategy for
managing proof obligations
» |C3 schedules proof obligations at the lowest level they are
unknown
 k-inductive blocking may schedule proof obligations to higher
levels instead

« k-inductive blocking can be thought of as abstraction
« Given a proof obligation (t, j), IC3 checks whether —t is
inductive relative to F; 4
* However, any abstraction of F;_, can be used instead
« For example, using only lemmas from F,_, closely
corresponds to KIC3

%) WATERLOO

Which states to block using KIC3-blocking?

* For the experiments, we modified the procedure for recursive
blocking of (—Bad, i):
 First, use k-inductive blocking of (—Bad, i)
* |f unsuccessful, block (—Bad, i) as usual

« Can also use k-inductive blocking during the pushing stage of the IC3

algorithm
 Directly inspired by PD-KIND

IIIIIIIIIIII

51

Experimental Results

Implemented in IBM’s formal verification tool on top of Quip

« 238 single-property designs from HWMCC'15

(all the designs that are not solved by simple logic synthesis, but are solved
either by at least one configuration considered)

» Experimented with k = the induction depth, and m = the number of
counterexamples to k-induction blocked using IC3

* 15-minutes time-limit (per property)

UNIVERSITY OF

WATERLOO

52

Experimental Results

« Increasing k, while fixing m=0: . N N R R A
« Slightly in favor of using k-induction 800 -]
* Runtimes are highly correlated | | e
« The scatter plot has k=5 and m=0 2 ol . 1
« Points above diagonal = wins for IC3 S o £ .
» Points below diagonal = wins for b 500 A L
KIC3 % 400 _+ ,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,]
2 MR N j
« IC3 solves 230 properties in 52,776 5 w0 O A B T
S ool Sopte R S S S i
« KIC3 solves 233 properties in ST
51,695 s +ﬂ£++ -
Nt S N R S S S N
« Similar observations on proprietary Funtme for Quip

designs and larger time-limits

%) WATERLOO

Experimental Results

« Increasing m, while fixing k: R I S R R R
« Significantly degrades performance 800 reveoo koo B
* Runtimes are less correlated -
700 ok g5 S S A TSR -
+ -
* The scatter plot has k=5 and m=5 B e _++ ,,,,, A]
. . . > + -
» Points above diagonal = wins for IC3 $ -
» Points below diagonal = wins for B S0 S S S S e S 7
O)
KIC3 E 400 b ’,’,,;,' ,,, -
».qé 7 + e !
» |C3 solves 230 properties in 52,776 g o [P R A S S St A R N +
+ + .
S)) 200 |4t ﬁ'—w;+¥'—:+ rr -
» KIC3 solves 224 properties in v
57,864 s 100 :+;;;+?f rrrrr T et SO T T e =
#’;
0 1 + 1 1 1 1 + 1 1
0 100 200 300 400 500 600 700 800 900

Runtime for Quip

« Similar observations on proprietary

designs and larger time-limits

%) WATERLOO

Conclusion

IC3 is a great algorithm for hardware Model Checking
e but, it can still be improved

QUIP: QUest for an Inductive Proof

e aggressively push existing lemmas
e enlarge initial state by computing reachable states
e use reachable states to prune bad lemmas

KIC3: IC3 and k-induction

 k-induction without unrolling (and without simple path constraints)
* integrates easily into IC3 framework
e expensive, hard to control when to apply

IC3 is a great framework to explore MC strategies

UNIVERSITY OF

WATERLOO

95

&

56

