Program Verification with Constrained
Horn Clauses

Prof. Arie Gurfinkel
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada

August 10, 2022
CAV, FLOC, 2022

joint work with A. Komuravelli, S. Chaki, G. Fedyukovich, % UNIVERSITY OF

S. Shoham, N. Bjerner, Hari Govind V. K., Y. (Jeff) Chen @ WATERLOO

Software Model Checking of
Programs / Transitions Systems /
Push-down Systems

Satisfiability of Constrained
Horn Logic (CHC) fragment of
First Order Logic

Reduce Model Checking to
FOL Satisfiability

IIIIIIIIIIII

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

YV - (o Ap1[X1 A ApplXa]) = h|X]

e - constraint in a background theory T
e T - background theory
—Linear Arithmetic, Arrays, Bit-Vectors, or combinations
eV - variables, and X; are terms over V
°*D4, ..., P, h - N-ary predicates
e p;[X] - application of a predicate to first-order terms

IIIIIIIIIIII

CHC Satisfiability

I1 - set of CHCs
M - T-model of a set of IT
M satisfies T
M satisfies IT — through first-order interpretation of each predicate p;

A set of clauses is satisfiable if and only if it has a model
» This is the usual FOL satisfiability

T-solution of a set of CHCs II is a substitution o from predicates p,to T-
formulas such that Il is T-valid

In the context of program verification

Program = ¢ iff CHCprogram = @
Inductive Invariant = Solution to CHC
B \LeRsy oF Counter Example Trace = Resolution proof of CHC

Example CHC: Is this SAT?

V- <0 = P(x)
Ve, o' - Plx) Nz <5AN2' =x+1 = P(2)
Ve - Plx) Ax > 10 = false

Yes! This set of clauses is satisfiable
The model is an extension of the standard model of arithmetic with:

Px)={z |z <5}
={5,4,3,2,...}

Note that P(x) is definable by LIA predicate x <=5

IIIIIIIIIIII

Validating the solution
Original CHC
Ve-x <0 = P(x)
Ve, o' - Plx) Nx <5AN2' =x2+1 — P(2)
V- Plx) ANx > 10 = false

Validation of P(x) = {x | x <= 5}

FVr -2 <0 = =<5
Ve, 2 x<H5AhNx<bhAx =z+1 = 2’ <5
FVr-x <5Ax>10 = false

IIIIIIIIIIII

Example CHC: is this SAT?

Ve -2 <0 = Q(x)
Ve, o' - Q) Az <bAhx' =xz+1 = Q')
Ve -Q(x) Nx > 2 = false

No! This set of clauses is unsatisfiable

Justification is a refutation by resolution and instantiation

IIIIIIIIIIII

Example CHC: is this SAT?

Ve -z <0 = Q(x)
Ve, - Qx)ANx <b5Ad =z+1 = Q')
Ve -Q(x) Nz >2 = false

Refutation

Ve-x <0 = Q(x)
Q(0) Ve-Qx) Ne<b = Q(x+1)
Q(1)
Ve -Qx)ANx <bh = Q(z+1)
Q(2)
Ve -Q(x) Nx > 2 = false
false

(z=0)

IIIIIIIIIIII

A Brief History of Modern CHC in MC

PLDI 2012 S. Grebenshchikov, N. P. Lopes, C. Popeea, A. Rybalchenko , “Synthesizing
software verifiers from proof rules’

* Constrained Horn Clauses as input format for Software Model Checkers

SAT 2012 K. Hoder, N. Bjgrner , “Generalized Property Directed Reachability”
e |IC3/PDR for SMT == Solving CHCs

SMT 2012 N. Bjarner, K. L. McMillan, A. Rybalchenko, “Program Verification as
Satisfiability Modulo Theories”

¢ CHC format extension for SMT-LIB

CAV 2014 A. Komuravelli, G., S. Chaki, “SMT-Based Model Checking of Recursive
Programs”

¢ First version of SPACER as an extension of GPDR in Z3

CAV 2015 G, T. Kahsai, A. Komuravelli, J. Navas , “The SeaHorn Verification
Framework”

» First robust and efficient automated verification tool based on CHC solving

2018 1st CHC-COMP, SPACER merged into Z3 master
 https://chc-comp.github.io/2018/

%) WATERLOO

Horn Clauses for Program Verification

Rybalchenko et al. Synthesizing Software
VerifierS from PrOOf RUIeS. PLDI'12 Weakest Preconditions If we apply Boogie directly we obtain a translation

from programs to Horn logic using a weakest liberal pre-condition calculus [26):
Loul\-b[)! wo (40,! WWALILAL 1D aus LlALL: y\.’llll ALV DULALTOOVL Lusw.

with the edges are formulated as follows: ToHorn(program) := wip(Main(), T)A [\ ToHor(decl)
decl€ program
Pinit(To,w, L) + T = x9 where z occurs in w ToHorn(def p(z) {S}) := wi (havoc Io;assume o = T;)
Pezit(To, ret, T) €(xo,w, T) for each label £, and re P Ppre(2); 5, P(zo, ret)
wip(z :=FE,Q):=letz=FE in Q
p(z,ret, L, L) peie(z, ret, L) wip((if E then S; else S,), Q) := wip(((assume E; S;)J(assume —E; S)), Q)
p(z,ret, L, T) ¢ Pezit(z, ret, T) wip(($,082), Q) := wip(S:, Q) A wip(S,,Q)
bos(Ta.w'.e.) ¢ bin(za. w.e:) A —e: A ~wln(S.—(e: = wip(81; 52, Q) := wip(S:, wip(S2,Q))
wip(havoc z,Q) :=Vz . Q
wip(assert ¢, Q) ;= AQ
wip(assume ¢, Q) := ¢ — Q
wip((while E do S),Q) := inv(w) A
~ ((inv(w) AE) = wlip(S, inv(w)))
5. incorrect :- Z=W+1, W>0, W+1< - (A((,-m-(w)A_E) ' Q))

read(A,W,U), read(A,z
6. p(I1,N,B) :- 1<I, I<N, D=I—1, T1=T+1. V=U+1.

read(A, D, U), Write(A To translate a procedure call £ : y := g(E); £ within a procedure p, create
7.o(I.N.A) :-I=1. N>1. SRS

p(wo, wy) + p(wo, wy), call(w;, w), g(w,, w3), return(w,, ws, wy)

+ p(wo, w1), call(w;, w7)
—x=02=E,7x =4,
¢

’ " [’ J |
T =4, .., w =wret' [y, [x]

,)

De Angelis et al. Verifying Array Cafl(w " ;
Programs by Transforming)
Verification Conditions. VMCAI'14

return(w, w’, w"

Bjgrner, Gurfinkel, McMillan, and Rybalchenko:

UNIVERSITY OF Horn Clause Solvers for Program Verification
%9 WATERLOO 9 11

Horn Clauses for Concurrent / Distributed /

Parameterized Systems

For assertions Ry,..., Ry overV and Ey, ..., En over V, V',
CMl1 : nit(V) — R;i(V)
CM2: R;(V) A pi(V, V') - Ri(Vl)

CM3 : (Viel..N\{j} Ri(V)Api(V, V")) — E;(V, V')
CM4: Ri(V)ANE;(V,V)Apr(V,V') — Ry(V')
CM5: Ri(V)A---ARNn(V) A error(V) — false

multi-threaded program P is safe

Rybalchenko et al. Synthesizing Software
Verifiers from Proof Rules. PLDI'12

{R(& Po(1)slo(1)s- -+ s Po) lok)) < dist(p1,---Pi) AR(8;P1, 11, -5 Pis li) }o‘esk Q)
R(g,p1,l1;---,Pks k) < dist(p1,...,px) ANnit(g, 1) A--- Alnit(g, Ix) @)
R P11y, Pis k) <= dist(pr,--,pe) A ((8511) 2 (€511) AR(8,PL 1,5 Pes) (B)
R ,p1,l1,- P k) < dist(po,p1,---,px) A ((g,10) 23 (&/,15)) ARConj(0, ..., k) ©
false dist(pl,...,p,)/\(A (i=piA(e))) eE,-))ARConj(l,...,r) (10)

j=1,...m

Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-
ant. Sy is the symmetric group on {1,...,k}, i.e., the group of all permutations of k numbers; as an
optimisation, any generating subset of Sy, for instance transpositions, can be used instead of Sy. In (10),
we define r = max{m,k}.

Hojjat et al. Horn Clauses for Communicating Timed
Systems. HCVS'14

Init(i, ,©) A Init(j,i,) A
Init(i,4,v) A Init(j, j,v) = L2(i, §,v)
I(3,5,0) A Tr(i,9,7) = I2(4,5,7) ()

(initial) init(g, z1) A -+ - Ainit(g,) = Inv(g, linit, T1, - - - 5 linit, Tk Iz(’i] 5) /\ Tr(j 5 ﬁ/) e Iz(i] 5’) (4)
1J))) 1J)
(induCtiVe) I’I’L’U(g,él,xl,...,Zi,(Ei,---,Z}c,wk)/\s(g,xi,gl,w;) —)Inv(g',ll,xl,...,f;,z;,...,Zk,.' 12(1:"7', 6) /\ I2(’[:, k, E) /\ IQ(j, k, 5) /\ (5)
(non-interference) Inv(g, €1, 1, - -, 2k, Tk) A — 5 5 Yy
Ino(g. £ a1 Loz e 7) A Tr(k,v,v) Nk #iNk #j= I2(i,5,V)
: I5(i, j,v) = —Bad(i, j,)
Inv(g, 1,21, .., lu—1,z-1,€, 27 A s(g,21,9',-) = Inv(g, b1, 1, . .., Lk, k)
(safe) Inv(g, b1, 21, .., £k, zk) Aerr(g, €1, 21, . . ., bm, Tm) — false Figure 3: VC(T) for two-quantifier invariants.
Figure 6. Horn clause encoding for thread modularity at level k (where (£;, s, £;) and (£, s, -) refer to statement s on a1 Gurfinkel et al. SMT-Based Verification of
from £; to £; and, respectively, from £ to some other location in the control flow graph) Parameteri.zed Systems ESE 2016
G UnvERsTY of Hoenicke et al. Thread Modularity at Many
@ WATERLOO | | evels. POPL'17 12

Program Verification with HORN(LIA)

Z = X; 1 = 0;

assume (y > 0);

while (i < vy) { ‘ IS SAT?
Z =2 + 1;
i=1+ 1;
}
assert(z == x + y); -\ /-
z=xXx&1 =08&y >0 = Inv(x, y, z, 1)

Inv(x, vy, z, i) & i <y & z1=z+1 & il=i+1 = Inv(x, y, zl, il)
Inv(x, vy, z, 1) & i >=y & z != x+y = false

%) WATERLOO 13

In SMT-LIB

(set-logic HORN)

55 Inv(x, y, z, 1)

(declare-fun Inv (Int Int Int Int) Bool)

(assert
(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (> B @) (=CA) (=D 9))
(Inv A B C D)))
)
(assert
(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))
(=>
(and (Inv ABCD) (¢<DB) (=C1 (+C1)) (=D1 (+D

1))
(Inv A B C1 D1)
)
)
)
(assert

(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
false

)

(check-sat)
(get-model)

$ z3 add-by-one.smt2

sat

(model

(define-fun Inv ((x!@ Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool
(and (<= (+ x!2 (* (- 1) x!@) (* (- 1) x!3)) 0)
(<= (+ x!2 (* (- 1) x!@) (* (- 1) x!1)) @)

(<= (+ x!o x!I3 (* (- 1) x!2)) 0)))

Inv(x, y, z, 1)

X + 1

Z

Z <= X + Y

sagr;ﬂ UNITVERSITY OF

WATERLOO

14

Program Verification with HORN(LIA)

int inc(int z) { return z + 1; }

assume(x <= 0);

while (x < 5) {

IS SAT?
X = inc(x);

}

assert(x < 10); N\ 7
r=2z+1 = Inc(z, r)
X <= 0 = Inv(x)
Inv(x) & x < 5 & Inc(x, y) = Inv(y)
Inv(x) & x >= 5 & x >= 16 = false

IIIIIIIIIIII

15

In SMT-LIB

(set-logic HORN)
(set—opiion :fp.xform.inline_linear false) $ Z 3 a d d = by = O n e = -Fn . S mt 2

(set-option :fp.xform.inline_eager false)

sat

(

(declare-fun Inv (Int) Bool)
(declare-fun Inc (Int Int) Bool)

(define-fun Inc ((x!@ Int) (x!1 Int)) Bool

(assert (forall ((z Int)) (Inc z (+ z 1)))) (not (>= (+ x!1 (* (- 1) x!e)) 2)))
(define-fun Inv ((x!@ Int)) Bool

(assert (forall ((x Int)) (=> (<= x 0) (Inv x)))) (not (>= x!@ 6)))

(assert (forall ((x Int) (y Int)) (=> (and (< x 5) (Inc x y))
(Inv y))))

(assert (forall ((x Int)) (=> (and (Inv x) (>= x 5) (>= x 10))
false)))

st Inc(x0,x1) :=

(get-model)

X1 <= X0 + 1
Inv(x0) :=
X0 <= 5

%) WATERLOO

Applications of CHCs

Prototyping different strategies and proof rules for verification
o verification by inductive invariants
e modular invariants
e predicate abstraction
e modular proof rules for concurrent systems
o verification of parameterized systems
* type inference for refinement type systems
e synthesis

 create new verification tools by reducing to CHCs

Building automated verification tools

e SeaHorn, JayHorn, RustHorn, ...
e SmartACE, SolCMC, ...

UNIVERSITY OF

WATERLOO

17

Logic-based Algorithmic Verification

Spacer

IIIIIIIIIIII

18

Logic-based Algorithmic Verification

Simulink

G concurrent
w /distributed
’ systems
CPR
[Terrfnination Smart
or C
Contracts

Spacer m
| 1
fs i -

HornDroid

IIIIIIIIIIII

%) WATERLOO 19

Logic-based Algorithmic Verification (in 2022)

Data Trees
@ CAV2022

Java
Rust
Synthesis RustHorn
MESSY: %

Simulink $
| Spacer

IIIIIIIIIIII

%) WATERLOO 20

SmartACE

SolCMC

@ CAV2022

Current State of CHC Solving

Multiple mature solvers using competing techniques and algorithms
e Spacer (in Z3), Eldarica, FreqHorn, Golem, ...

Annual competition
e CHC-COMP: https://chc-comp.qgithub.io/
e in 2022, 7 tracks with 5+1 solvers

Growing collection of benchmarks
e maintained by CHC-COMP
o established (simplified) format
e organized in separate repos under https://github.com/chc-comp

Growing number of academic and industrial users
e SeaHorn, JayHorn, RustHorn, MESSY, SolType, SolC SMTChecker, ...

UNIVERSITY OF

WATERLOO

21

https://chc-comp.github.io/
https://github.com/chc-comp

SOLVING CONSTRAINED
HORN CLAUSES

IIIIIIIIIIII

22

A little bit of complexity

Satisfiability of CHC over most interesting theories is undecidable
e e.9., CHC(Linear Real Arithmetic), CHC(Linear Integer Arithmetic)
e proof: many easy reductions, for example, counter automata

Satisfiability of Linear CHC over Propositional logic is decidable
* Finite state model checking of transition systems
o Complexity: linear in the size of the graph induced by the transition system

Satisfiability of Non-Linear CHC over Propositional logic is decidable
e Finite state model checking of pushdown systems

e Complexity: cubic in the size of the pushdown system

Decidability of some classes of CHC: Difference arithmetic (= timed automata)

UNIVERSITY OF

WATERLOO 23

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN
» QARMC, Eldarica, ...
Maximal Inductive Subset from a finite Candidate space (Houdini)
e TACAS'18: hoice, FregHorn
Machine Learning
 PLDI'18: sample, ML to guess predicates, DT to guess combinations
Abstract Interpretation (Poly, intervals, boxes, arrays...)
o Approximate least model by an abstract domain (SeaHorn, ...)
Interpolation-based Model Checking
e Duality, QARMC, ...

e
SMT-based Unbounded Model Checking (building on IC3/PDR)

« SPACER, Implicit Predicate Abstraction
o

%) WATERLOO

24

Spacer: Solving SMT-constrained CHC

Spacer: SAT procedure for SMT-constrained Horn Clauses
* now the default CHC solver in Z3
— https://github.com/Z3Prover/z3
— dev branch at https://github.com/agurfinkel/z3

Supported SMT-Theories

 Linear Real and Integer Arithmetic
» Quantifier-free theory of arrays
» Universally quantified theory of arrays + arithmetic
e Good support for many other SMT-theories
— bit-vectors, ADT, recursive functions, ...
Supports Non-Linear CHC

 for procedure summaries in inter-procedural verification conditions

 for compositional reasoning: abstraction, assume-guarantee, thread modular,
etc.

UNIVERSITY OF

WATERLOO

25

https://github.com/Z3Prover/z3

A Magician’s Guide to Solving Undecidable
Problems

Develop a procedure P for a decidable problem

Show that P is a decision procedure for the problem
e e.9., model checking of finite-state systems

Choose one of

o Always terminate with some answer (over-approximation)
e Always make useful progress (under-approximation)

Y

Extend procedure P to procedure Q that “solves” the undecidable
problem

* Ensure that Q is still a decision procedure whenever P is
» Ensure that Q either always terminates or makes progress

UNIVERSITY OF

WATERLOO 26

SPACER’s guiding principles for solving CHCs

Make Progress
 always make progress

e if input CHC is unsatisfiable, after enough time, the solving procedure must
terminate with UNSAT

e €.9., examine longer and longer resolution proofs (i.e., unfoldings)

Keep Decidability
 decision procedure for decidable fragments

 usually, we ensure that solving procedures are decision procedures for CHC
over Propositional logic (i.e., finite state model checking)

» "sharpen” decidability result based on specific domain (i.e., LIA, ADT, etc.)
e many open decidability questions remain
— e.g., is Spacer a decision procedure for (encoding) of timed automata?

UNIVERSITY OF

WATERLOO

IC3, PDR, and friends

Init Tr Tr —-Bad

Finite State Machines
m (HW model checking)

[Bradley, VMCAI 2011]

Init Tr Tr —-Bad

Push Down Machines
(SW model checking)
[Hoder&Bjorner, SAT 2012]

%) WATERLOO 28

Verification by Incremental Generalization

l T, N=0

Yes

X

IIIIIIIIIIII

%) WATERLOO

/A counterexampl

of length N

l_ exists?
SMT

\

e

/

No, N:=N+1

No + bounded proof

/

SMT

Generalize proof

\

/

candid
Invy

4 N

Is a safe inductive YES
invariant? —

SMT
/

1

ate

v

31

SPACER

IC3-style search for solutions to
CHCs

Works by recursively blocking
proof obligations (POB)

POB
* BAD states
* Predecessors to BAD
states

Generate predecessors using

quantifier elimination (Model
Based Projection)

%) WATERLOO

7

Is POB reachable?
POB

U

NO

Reachable
states
intersect
with POB ?

YES

Generate
predecessor
@ POB’

Is POB’
reachable?

YES VQ % NO

“4

lemma
state

NO

Learn h
L
reachable J [earn :>
_J

Lemmas
blockPOB ?

NO

32 32

>

Linear CHC Satisfiability

Satisfiability of a set of linear CHCs is reducible to satisfiability of
THREE clauses of the form

nit(X) — P(X)
P(X) A Tr(X,X') = P(X')
P(X) — =Bad(X)

where, X' = {x’ | x in X}, P a fresh predicate, and Init, Bad, and Tr are
constraints

Proof:
add extra arguments to distinguish between predicates

Q(y) A tau — W(y, 2)
P(id='Q’, y) A tau — P(id="W', y, z)

IIIIIIIIIIII

WATERLOO

33

IC3/PDR In Pictures: Search for Finite Cexs

O€ x=3,y=0 x=1y=0

| | | | | 7fl

I N

x <y

Predecessor find M s.t. M = F; ATr Am’
find mst. (M Em)A(m = IV -TrAm')

NewLemma find £s.t. (F;ATr =)Nl = —m)

IIIIIIIIIIII

%) WATERLOO 34

IC3/PDR in Pictures: Is Inductive

O Q\@(
@) O

Algorithm Invariants
InitEFi FiQBad

FigFi+1 FinTriEFg_,_l

Inductive

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

 terminate the algorithm when a solution is found
Unfold

e increase search bound by 1
Candidate

e choose a bad state in the last frame

ﬁ’redecessor \

e extend a pob (backward) consistent with the current frame

e choose an assignment s s.t. (s AFi ATr Apob’) is SAT
NewlLemma

e construct a lemma to explain why pob cannot be extended

\- Find a clause L s.t. L = —pob, Init = L,and F;ATr = L’ /

Induction
e propagate a lemma as far into the future as possible
* (optionally) strengthen by dropping literals

UNIVERSITY OF

WATERLOO

36

Extending IC3/PDR to CHC Solving

Theories with infinitely many models
« infinitely many satisfying assignments
e can’t simply enumerate (when computing predecessor)
e can’t block one assignment at a time (when blocking)

Non-Linear Horn Clauses
e multiple interdependent predecessors
 when a CHC clause depends on multiple predicates

CHC solving is undecidable in general
e want an algorithm that makes progress
e doesn’t get stuck in a decidable sub-problem
« guaranteed to find a counterexample (if it exists)

UNIVERSITY OF

WATERLOO

37

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
 terminate the algorithm when a solution is found

Unfold
e increase search bound by 1
Candidate
e choose a bad state in the last frame (Theory
ﬁ’redecessor dependent

o extend a pob (backward) consistent with the current frame

e choose an assignment s s.t. (s AFi ATr Apob’) is SAT
NewlLemma

e construct a lemma to explain why pob cannot be extended
\- Find aclause L s.t. L = —pob, Init = L,and F; \ATr = L’ /
Induction

e propagate a lemma as far into the future as possible

* (optionally) strengthen by dropping literals

UNIVERSITY OF

WATERLOO

((F,- ATr)V Init’) = ¢/, @' = pob’

Looking for ¢’

NEW LEMMA (SPACER)

IIIIIIIIIIII

%) WATERLOO 39

Spacer: NewLemma Rule

Notation: F(A) = (A(X) A Tr) V Init(X').

NewLemma For 0 < i < N, given a proof obligation (P, + 1) € @ s.t.
F(F;) A P’ is unsatisfiable, add PT = ITp(F(F;), P') to F; for j <i+ 1.

Proof obligation (pob) is blocked using Craig Interpolation
e summarizes the reason why the pob cannot be extended

Generalization is not inductive
e weaker than IC3/PDR
 inductive generalization for arithmetic is still an open problem

Y

UNIVERSITY OF

WATERLOO

40

Interpolation in Spacer

Much simpler than general interpolation problem for A A B
* B is always a conjunction of literals (B is the pob)
* A is dynamically split into DNF by the SMT solver (A is the constraint)
* the signature of B is shared with the signature of A

Interpolation algorithm is reduced to analyzing all theory lemmas in a
proof produced by the SMT solver

e every theory-lemma that mixes B-pure literals with other literals is interpolated
to produce a single literal in the final solution

e interpolation is restricted to clauses of the form (A B;= V A)

Interpolating (UNSAT) Cores
» improve interpolation algorithms and definitions to the specific case of Spacer
e classical interpolation focuses on eliminating non-shared symbols
e in Spacer, the focus is on finding good generalizations

UNIVERSITY OF

WATERLOO 41

s € pre(pob)

s=>3X'.Tr(X,X") Apob(X')

Computing a predecessor s of a proof obligation pob

PREDECESSOR

IIIIIIIIIIII

42

Model Based Projection

Definition: Let ¢ be a formula, X a set of variables, and M a
model of ¢. Then Y = MBP (X, M, ¢) is a Model Based
Projection of X, M, ¢ iff

1. Y is a conjunction of literals
2Vars(y) € Vars(p)\ X
M EY

4 YPv=>3X.¢

Model Based Projection under-approximates existential
quantifier elimination relative to a given model (i.e., satisfying

UUUUUUUUU

WATERLOO 43

Model Based Projection

L Expensive to find a quantifier-free ¢(§) = dz - QO(f, ?)}

1. Find model M of ¢ (x,y)

2. Compute a disjunct of 3x.¢
containing M

IIIIIIIIIIII

44

Fourier—Motzkin Quantifier Elimination for LRA

dr - \;jsi <z ANz <ty
= N\ \, resolve(s; < x,x < t;,x)

Y /\j i <ty

Quadratic increase in the formula size per each eliminated variable

IIIIIIIIIIII

47

Fourier-Motzkin by Example
- S0 < TANST < TANSy < xTA
r<togNx <ti Nx <9

So < tog N8y <tg/ so9 <o
So <t1 N8y <t1 N\syg <ty
So < To NSy <tlo NSy <o

IIIIIIIIIIII

48

Quantifier Elimination with Assumptions

(/\j;éotogtf")AHCE'/\iSi<$/\/\jm<tj
— (/\j;éo tg < tj) AN, resolve(s; < xz,z < tg,x)

Quantifier elimination is simplified by a choice of a minimal upper bound
e For each choice of minimal upper bound, no increase in term size
e Dually, can use largest lower bound

How to chose the assumptions?!
e MBP == use the order chosen by the model

%) WATERLOO 49

MBP Example

- So <X NSsT <xTNSy<xTAN
r<togNax <ti Nz <9

é E;ssumption }

(t() < t1 N1y <t2)
N\
(80<t0/\81<t0/\82<t0)

gelim under the
assumption

%) WATERLOO 50

MBP for Linear Rational Arithmetic

Input: a formula F, variable x, a model M of F

Use the model M to pick the right assumption to eliminate x

Mbp,(M,z = s N\ L)= L|x < s]
Mbp,(M,z # sN\NL)= Mbp,(M,s <x AL)if M(x)> M(s)

Mbp,(M,x # s\ L)= Mbp,(M,—s < —x AL)if M(x) < M(s)

Mbpx(M,/\Si < £U/\/\$ <tj) = /\Si <t0/\/\t0 < tj where M(to) < M(tz),\V/’L

VVXFEBTCSB N. Bjerner, M. Janota: Playing with Quantified Satisfaction. LPAR (short papers) 2015 | ¢4

Spacer: Predecessor Rule

Notation: F(A) = (A(X) A Tr) V Init(X').

Predecessor If (P,i+ 1) € @ and there is a model m(X, X’) s.t.
m = F(F;) AP, add (Py,i) to @, where P, = MBP(X',m, F(F;) N\ P’).

Compute a predecessor pob using Model Based Projection

To ensure progress, Predecessor must be finite
e finitely many possible pob predecessors when all other arguments are fixed

UNIVERSITY OF

WATERLOO

52

Spacer: Solving CHC(LRA)

Unreachable and Reachable
 terminate the algorithm when a solution is found
Unfold
e increase search bound by 1
Candidate
e choose a bad state in the last frame
ﬁ’redecessor \
e extend a pob (backward) consistent with the current frame
e find a model M of s s.t. (F; A Tr A pob’), and let s = MBP(X', F; A Tr A pob’)
NewlLemma

e construct a lemma to explain why pob cannot be extended
\- Find an interpolant L s.t. L==pob, Int=>L,and F;A Tr= L /

Induction

e propagate a lemma as far into the future as possible
 (optionally) strengthen by dropping literals

UNIVERSITY OF

WATERLOO 53

Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is
reducible to satisfiability of THREE (3) clauses of the form

Init(X) = P(X)
P(X)AP(X°) A Tr(X,X° X") — P(X")
P(X) = —Bad(X)

where, X' = {X’ | x in X}, X° = {x° | x in X}, P a fresh predicate, and Init,
Bad, and Tr are constraints

IIIIIIIIIIII

54

Multiple Predecessor POBs

Plx)ANPlyyAe>yANz=z+y — P(z)

How to compute a predecessor for a proof obligation z > 0

Predecessor over the constraint is:
dz-x>yANz=x+yNz>0
= x>yNx+1y>0

Need to create two different proof obligations
 one for P(x) and one for P(y)
 project y using MBP for P(x)
 project x using MBP for P(y)

IIIIIIIIIIII

95

Search non-linear CHC Bad

Cn D|>

vﬁmﬁ ﬁf\lﬁ

In Predecessor, unfold the derivation tree in a fixed depth-first order
e use MBP to create new pobs

Successor: Learn new facts (reachable states) on the way up
e use MBP to propagate facts bottom up

Level

56

Cache Reachable
Spacer states

Input: A safety problem (Init(X), Tr(X, X°, X'), Bad(X)):
. Output: Unreachable or Reachable
POb queue aS |n : < A cex queue @, where a cex ¢ € @ is a pair (m,4), m is a cube over

state variables, and 7 € N. A level N. A set of reachable states REACH.

IC3/PDR A trace Fy, F4,...

Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and F(A) = F(A4, A)
Initially: Q =0, N =0, Fy = Init, Vi > 0- F; = 0, REACH = Init

Require: Init — —Bad

repeat

Unreachable If there is an i < N s.t. F; C Fi1 return Unreachable.

Reachable If REACH A Bad is satisfiable, return Reachable.
Unfold If Fy — —Bad, then set N < N +1 and Q + 0.
Candidate If for some m, m — Fny A Bad, then add (m,N) to Q.

¢ Successor If there is (m,i+1) € @ and a model M s.t. M =, where
Successor and two ¢ = F(VREACH) Am’. Then, add s to REACH, where s’ € MBP({X, X°},).
MustPredecessor If there is (m,i+ 1) € @, and a model M s.t. M = 9, where
Predecessor rules o = F(F:, VREACH) Am’. Then, add s to Q, where s € MBP({X°, X'},).
MayPredecessor If there is (m,i+ 1) € @ and a model M s.t. M = 1, where
use M BP N) = F(F,) Am’. Then, add s to Q, where s° € MBP({X, X'},).

NewLemma If there is an (m,i+ 1) € @, s.t. F(F;) Am' is unsatisfiable. Then, add
o = ItP(F(F;),m’) to Fj, for all 0 < j < i+ 1.

ReQueue If (m,i) € Q,0< i< N and F(F;—1) Am’ is unsatisfiable, then add
(m,i+1) to Q.

Push For 0 <i < N and a clause (p V) € F;, if ¢ € Fir1, F(p A F;) — ¢, then

add ¢ to F}, for all j <i+1.

NewlLemma rule until oo;
uses ITP

VVXFESFIQTL A. Komuravelli, G., S. Chaki: SMT-Based Model Checking for Recursive Programs. CAV 2014 ¢

The Curse of
Interpolantion

DANGER

Hari Govind V. K., J. Chen, S. Shoham, G.; Global Guidance for Local Generalization in Model Checking. CAV 2020

WATERLOO 58

Spacer Tom ONLY knows how to do

Local reasoning

Generalizing from single predecessors
results in limited exploration horizon

Generalization typically relies on interpolation

Interpolation can work wonders!
e.g., generate breakthrough terms like equality: a = b

60

Ground Control to Spacer Tom:

We've got a PROBLEM!

Not aware of the structure of the inductive proof so far

Interpolant is very much dependent
on heuristics in the underlying SMT engine
a+b<4 isjustaslikelyasa=»>b

Crucial in infinite-state systems than in finite-state systems
there are usually infinitely many generalizations to choose from

61

Spacer Tom can be MISSGUIDED!

As illustrated by

Myopic generalization

Excessive generalization

Getting stuck in a rut

Lets see
lh‘“ we have

L

Ahal

it MUST be

some sort of

meteorite
pattern

Without
gravity, ball pen
DOES NOT

Without

gravity,
fountain pen

ut worry not!
I brought this
$1 million

L

work in space DOES NOT o
work in space :
ZX y
[PEPT A
. ‘ 2+1:=3 | 1 + 100000 = 100001

'i and therefore

greater than 1!

: —J

62

Spacer Tom can be MISSGUIDED!

Myopic Generalization

a, = 0;

b, = 0;

while (nd()) {

inv: (a - ¢ = b - d)
if (nd()) {a++; b++;}
else {c++; C++;}
}

assert (a < ¢ > b < d);

nd () returns a non-deterministic Boolean value.

63

a, ¢
b, d
while (nd()) {

inv: (a - ¢ = b - d)

if (nd()) {a++; b++;}
else {c++; d++;}

}

assert (a < c = b < d);

64

a, ¢
b, d
while (nd()) {

inv: (a - ¢ = b - d)

if (nd()) {a++; b++;}
else {c++; d++;}

}

assert (a < c = b < d);

65

a, ¢
b, d
while (nd()) {

inv: (a - ¢ = b - d)

if (nd()) {a++; b++;}
else {c++; d++;}

}

assert (a < c = b < d);

66

a, ¢
b, d
while (nd()) {

inv: (a - ¢ = b - d)

if (nd()) {a++; b++;}
else {c++; d++;}

}

assert (a < c = b < d);

inv: (a -

c=b-4d)

if (nd()) {a++; b++;}
else {c++; d++;}

}

assert (a < c = b < d);

68

@ @ @ @
O O O O
© O © O © O
© O © O © O

O © O

a-c<3 a-c¢c< -3
=2>b-d<3 =b-d«< -3

inv: (a - ¢ = b - d)

if (nd()) {a++; b++;}
else {c++; d++57

}

assert (a2 < ¢ =2 b < d);

69

Data Driven Generalization & Lemma Discovery

Global view of the current solver state
e group lemmas (and pobs) based on syntactic/semantic similarity
— we currently use anti-unification on interpreted constants
» detect whenever global proof is diverging and mitigate

One lemma to rule them all
* merge lemmas in group to form a single universal lemma
e interpolation and inductive generalization can be applied to generalize further
* new lemma reduces the global proof by blocking all POBs in its group

Reduce, reuse, recycle
e under-approximate groups that cannot be merged in current theory
 learn multiple (simple) lemmas to block a (complex) proof obligation

UNIVERSITY OF

WATERLOO 70

Ground Control to Spacer Tom:

(a,i + 1)
>

POB Queue

(', 7)

(©,])

(v, t)

Lemma Trace

71

Ground Control to Spacer Tom:

Global Guidance trinity

combine multiple
lemmas into one

Concretize Conjecture

simplify terms by drop literals that
concrete values are in the way

72

1st Global Guidance to GSpacer Tom:

if (Y -vl e L - =7) then
add 1y to trace

73

1st Global Guidance to GSpacer Tom:

if (Y- -v¢ € L -y =) then
add 1y to trace

74

1st Global Guidance to GSpacer Tom:

if (Y- -vl e L -y =) then
add 1y to trace

75

1st Global Guidance to GSpacer Tom:

if (Y- -vl e L -y =) then
add 1y to trace

76

Subsume Rule in Action:

Subsume Rule on LIA

77

Subsume Rule in Action:

Subsume Rule on LIA

78

Subsume Rule in Action:

Subsume Rule on LIA

79

Subsume Rule in Action:

Subsume Rule on LIA

a-c<b-d

80

Subsume Rule in Action:

Subsume Rule on LIA

81

Summary of Subsume Rule in Spacer

In general, subsume rule requires
e a method to cluster lemmas/pobs together to discover common pattern
e i.e., multiple lemmas are different instances of some more general pattern

* a method to merge lemmas into a single lemma that strengthens all lemmas
in a cluster

For LIA, we implement subsume as follows
o clustering: anti-unification on constants
» two lemmas are cluster if they only differ in some numeric constants
e merge: convex closure (CC)
* implement CC symbolically using quantifier elimination, approximate by MBP
Integrated in Spacer via the strategy
— cluster lemmas as they are learned
— when the cluster is large enough, merge and create a conjecture
— add conjecture as may pob

UNIVERSITY OF

WATERLOO

Ground Control to Spacer Tom:

(a,i + 1)
>

‘
(a',T)

—
(v, t)

(©,])
Conjecture
Concretize

%) WATERLOO

Implementation and Evaluation

Implemented in Spacer (still PR in Z3)
o https://github.com/Z3Prover/z3/pull/6026

Supports
 Linear Integer Arithmetic, Linear Real Arithmetic
 Linear and Non-linear CHCs
* (in progress) Quantified Arrays and Fixed-Size Bit-Vectors

Evaluated on LIA instances from CHC-COMP

IIIIIIIIIIII

84

https://github.com/Z3Prover/z3/pull/6026

Evaluation on CHC-COMP

[No interpolation!

SPACER // GSPACN
Bench y \
SC fw bw SC

fw bw VBS
safe unsafe safe unsafe safe unsafe||safe unsafe safe unsafe safe unsafe||safe unsafe
CHC-18 159 66 163 69 68 |(1214 67 214 63 69 (229 74
CHC-19 193 84 186 &4 84 (|202 84 196 85 84 ||207 85

fw and bw are different interpolation strategies
sc configuration disables interpolation

GSpacer won 3 of the 4 tracks at CHC-COMP 2020

%) WATERLOO 85

Linear Arbitrary (LArb) from PLDI 18

Data-driven, machine learning based
invariant inference algorithm

Evaluation showed promise on

A Data-Driven CHC Solver

He Zhu Stephen Magill Suresh Jagannathan
Galois, Inc., USA Galois, Inc., USA Purdue University, USA
hezhu@galois.com stephen@galois.com suresh@cs.purdue.edu

Abstract

We present a data-driven technique to solve Constrained
Horn Clauses (CHCs) that encode verification conditions of
programs containing unconstrained loops and recursions.
Our CHC solver neither constrains the search space from
which a predicate’s components are inferred (e.g., by con-
straining the number of variables or the values of coefficients
used to specify an invariant), nor fixes the shape of the pred-
icate itself (e.g., by bounding the number and kind of logi-
1 i 4 L 3 Ll

) Toct T

correspond to unknown inductive loop invariants and in-
ductive pre- and post-conditions of recursive functions. If
adequate inductive invariants are given to interpret each
unknown predicate, the problem of checking whether a pro-
gram satisfies its specification can be efficiently reduced to
determining the logical validity of the VCs, and is decid-
able with modern automated decision procedures for some
fragments of first-order logic. However inductive invariant
inference is still very challenging, and is even more so in the
presence o peste . g arv rec

a subset of SV-COMP benchmarks

%) WATERLOO

H. Zhu, S. Magill, S. Jagannathan: A data-driven CHC solver. PLDI 2018

87

GSpacer versus LArb

On CHC-COMP instnaces, LArb is not competitive even against Spacer
w/o global guidance

Instead, we compare GSpacer and LArb on benchmarks from PLDI'18
paper

Bench SPACER LARB GSPACER VB

safe unsafe safe unsafe safe unsafe safe unsafe
PLDI18 216 68 270 65 279 68 284 68

%) WATERLOO VB stands for virtual best 38

Conclusion

Global Guidance
‘.
Lemma Trace
/3 S

-

Concretize Subsume

F Y
A 4

Global guidance technique to mitigate limitations of local
reasoning

Stable under different interpolation strategies

Data driven guidance for MC is better than both invariant
inference and local reasoning

89

CHC MODULO BIT-VECTORS

Hari Govind V. K., G. Fedyukovich, G: Word Level Property Directed Reachability. ICCAD 2020

IIIIIIIIIIII

%) WATERLOO 9

Motivating example

Predecessors to Bad states:

uint32_t x =1 = 1;
) S (x = -1, y = -2),

while (1) (x =1, y = 0), Very specific
invariant: (x +y) & 1 == 0 (X +y = l),
{ (x +y = -3)

X = x + 2 % nd();

y =y +2*xnd(); :
How to generalize from

assert(x + vy !=1);
} (x +y !I=1),
(x +y I=-3) .
nd () returns a non-deterministic to

uint32_t value.

((x +y) &1 ==20) 7

Computing predecessors

<

Model Based Projection (MBP):

92

MBP for arithmetic operators in BV

Y, y), M EY(x,y)

Model Based
Rewriting

x+t(y) <t(z)

!

x < t(z) —t(y)
and side conditions

% Conjunction of literals: t(x) i t(y,z) J

Model Based Resolving

Py)

x <t(y)Ax > t(z)

!

t(z) < t(y) and
side conditions

93

MBP for arithm "~ — " *
) 2 y=0 z<t(x)

-y tx)<-y-1 y#0
t(x)+y22 Ladds] tx)+y >

[addp]

) +y<z ol) +y<z e) +y<z e)ty >z e

y#0 z<y-1 x<-y-1

tx)2z-y tx)<-y—-1 y#0 y=0 z<t(x)
lp(x, y)’ M F lp(x’ y) tx)+y>z (adds] tx)+y>z ladd] txX)+y>z ladds]

Yy <) —tx) t() < ta(x) y<hx)-tux) -ty “h(x) <y HGx) <t(x) t(x)#0
n@ryzam o W@yzam o 0+ 5 < 609 [boths]
a<bbs<a a<b a>b b<a-1 1<a <t)<y Ll
azp 1 5y aapmed “a<n M So<y yem ™ x < k [bothics]

Figure 2: Rewrite rules for BV arithmetic. Terms ,(x), ,(x), and t(x) contain constant x. Terms y and z do not contain x. Terms a and b may or may not contain x.
Rules add, to add; rewrite unsigned inequalities so that #(x) is the sole term on one side of the inequality. Rules bothx; to bothx, rewrite inequalities that contain

Model Based e e 1
Rewriting

% Conjunction of literals: t(x) i t(y,z) J

MEP A A (A e <aese N AL A Bescr <5 0 A

MBPz M,lﬁ/\(/\a,-<ai><x)/\(/_\ﬁj><xsbj) YA
’

i
(ar X (LCM div ar) div LCM) < (by X (LCM div Py) div LCM) A

/\ ai < (2"-1) div (LcM div aj) A

— M(x) X1L.CM € Zzn_1, where M(x) is the value of x in M,
— for each i, M |= a; < (2"—1) div (LcM div «;), and
— for each j: M |= b; < (2"—1) div (LcM div B)).

94

MBP for full BY

MBP, (Y, x,M)
Y (x,y) < arithmetic literals in ¢ (x,y) ‘

m[x = M(x)]

o (x,y),
M E p(x,y)

T @,y \ P&, y)

(PAS)=3x.9p(x,y)?

Drop all literals ¢ from S s.t

FAS (PAS\?)=3x.p(x,y)

95

Spacer

(p,i + 1)
>

POB Queue Lemma Trace

>

)

a = MBlw,v'; M) t =ITP(F; ATr, @)

But there are no good interpolation strategies for BV !!!

96

Instantiated guidance rules for BV

Subsume

Conjecture

98

beyond Spacer

CHC SOLVERS

IIIIIIIIIIII

99

CHC

COoMP Report on the 2022 edition

https://chc-comp.github.io/

Emanuele De Angelis, Inst. for Systems Analysis and Computer Science - National Research Council, Italy

Hari Govind V K, University of Waterloo, Canada

https://chc-comp.github.io/CHC-COMP2022 presentation.pdf

%) WATERLOO 100

The Eldarica Horn Solver

e A Horn solver tailored to verification of software and infinite-state
systems

(@)

O
O
O

Algorithms:
Theories:
Input formats:
Output:

Predicate abstraction, CEGAR, Craig interpolation
LIA, NIA, BV, ADTs, arrays, heap

SMT-LIB, Prolog (+ built-in C front-end)

Full solution + counterexample output

e Open-source, entirely implemented in Scala

e Started in 2011, since then developed continuously

E.g., integration of new theories, hand-in-hand with development of new
decision/interpolation procedures

Upcoming: LRA, improved heap support

(@)

(@)

e https://github.com/uuverifiers/eldarica

ELDARICA

https://github.com/uuverifiers/eldarica

Architecture

Horn
clauses
Prolog,
SMT-LIB

Programs
NTS, C,

—

Timed
autom.

A\

Horn
Encoder

Accelerator
(FLATA) —
‘t ELDARICA
‘ CEGAR|™
Preprocessor — :
Engine
)
Global Craig
Loop Interpolator
Analyser | |(PRINCESS)

SAT
Sol

UNSAT
Cex

Hossein Hojjat, Philipp Rummer: “The ELDARICA Horn Solver” (FMCAD 2018)

Key feature: global invari *eriace oveles (tion methods

with closed-form

representations
N/
Horn N/
clauses Accelerator
-
Prolog, (FLATA) PIDARICA | SAT

A\

SMT-LIB ! Sol
| CEGAR
i Preprocessor I—» :
! Engine UNSAT

L

Y ! Cex

Progr?:ms Global Craig
dentify d Loop Interpolator
2:2;222?%3 / Analyser | | (PRINCESS)

variable
relationships,
etc.

FregHorn: CHC solving by enumerative search

G. Fedyukovich, S. Kaufman, R. Bodik, FMCAD’17

High-level view:

e Loop between a candidate
generator and SMT-solver

e Synthesizes lemmas separately
Candidate generator

 Syntax-Guided Synthesis (SyGuS) 1

e Non-recursive grammars

obtained from ASTs of verification SMT check 1
conditions l,

e Learnes from positive / negative

candidates SMT check 2
SMT-based decision maker 3
o Off-the-shelf SMT solver mEE

* Does not need interpolation or lr
quantifier elimination SMT check n P \/

e Easy to maintain

UNIVERSITY OF

WATERLOO 104

FreqgHorn: CHC applications/extensions

Safety of numerical programs: (6] it

* Accelerated using interpolation and Houdini | Fedyukovich and R. Bodik, TACAS'18

» Accelerated using data learning and quantifier elimination

Fedyukovich, Prabhu, Madhukar, Gupta, FMCAD’18

» Extended to arrays and quantified invariants -||-, CAV’19

« Extended to disjunctive invariants Riley and Fedyukovich, FSE’22
(Non)-termination of programs

« Ranking functions, recurrence sets Fedyukovich, Zhang, Gupta, CAV'18
Modular analysis

» Generation of function summaries Pick, Fedyukovich, Gupta, VMCAI'21

* Proving hyperproperties Pick, Fedyukovich, Gupta, FMCAD’20

Specification synthesis

 From invariants to spec and back | Prabhu, Fedyukovich, Madhukar, D’Souza, PLDI’21

Test case generation

* Invariants block unreachable branches Zlatkin and Fedyukovich, TACAS’22

%) WATERLOO 105

Golem: Overview

Solver for Constrained Horn Clauses

Developed at US| Formal Verification and Security Lab (Lugano,
Switzerland) by Martin Blicha et al.

Craig interpolation-based algorithm for CHC solving

Tight integration with interpolating SMT solver OpenSMT

Supports linear real and integer arithmetic as the background theory

Available at https://github.com/usi-verification-and-security/golem

%) WATERLOO 106

http://verify.inf.usi.ch/
https://github.com/usi-verification-and-security/opensmt/

Golem: Brief History

Summer 2020

e first commits
Winter 2020

e Impact engine [McMillan '06] (Lazy Abstraction with Interpolants)
March 2021

e 3 medals at CHC-COMP 21
May 2021

o Spacer engine [Komuravelli et al. '16]
Summer 2021

 TPA engine [Blicha et al. '22] (Transition Power Abstraction)
April 2022

* 4 medals at CHC-COMP 22

%) WATERLOO 107

Golem: Architecture

! e ™)
[OpenSMT}_—_—_; Engines
SR
IMPACT
—
() \/ I R)
smt2 > Interpreter | | Preprocessor | || SPACER
L J‘ o /‘ —_
TPA
o J
- \ J
UNSAT
|
proof

%) WATERLOO 108

Golem: Future

Extend supported background theories (arrays, ADTSs)
Extend TPA engine to support nonlinear CHC systems

Golem as backend for Korn

Golem as backend for SolCMC (Alt et al. '22)

Develop proper API for Golem as library

Support Datalog input format

%) WATERLOO 109

https://github.com/gernst/korn
https://docs.soliditylang.org/en/latest/smtchecker.html

Helping Users of CHC Solvers

SAT
(SAFE)

UNSAT
(UNSAFE)

@)

i w"'"“ rust-horn s SOLIDITY

%) WATERLOO Sieo 110

HST: Spacer Visualizer (ver. 1)

O O O O

O

Created by Matteo Marescotti as a side-project to understand Spacer behavior
Extremely useful in understanding what Spacer is doing

Intendent for internal use only

%) WATERLOO 11

HST: Spacer Visualizer (ver. 2)

Poking is done running

/235123 tp.spacer.trace_file=spacer.log fp.print

O 5% |82 [I

Node 562, Expr 16817 , Parent 13082
’ P_PO|

Lemmas summarization

(>= (+ (* 2 inv_mainl3_ 1 n) inv_mainl3_2 n (* (- 2) inv_mainl

(or (< inv_mainl3_3_n inv_mainl3_0_n)

with Aishwarya Ramanathan, Nham Le, and Richard Trefler
e based on Vampire Visualizer by Bernhard Gleiss

%) WATERLOO

https://github.com/nhamlv-55/spacer-visualization/

112

Art, Science, and Magic of CHCs

Model Checking of Safety Properties is CHC satisfiability
e Logic: Constrained Horn Clauses (CHC)
e “Decision” procedure: Spacer
o Constraints: arithmetic, bv, arrays, quantifiers, adt + recfn, ...

Art: finding the right encoding from the problem domain to logic
o the difference between easy to impossible
e encodings can “simulate” specialized algorithms

Science: Progress, termination (when decidable)

e while the underlying problem is undecidable, many fragment or sub-problems
are decidable

Magic: actually solving useful problems

e interpolation, heuristics, generalizations, ...
e the list is endless

UNIVERSITY OF

WATERLOO 113

END

%) WATERLOO 114

ADT AND RECURSIVE
FUNCTIONS

IIIIIIIIIIII

115

Automatic program verification

method Main(x: List, i: Int)

requires length(x) == T—=—
{

while(*)

inv: length(x) == 1
inv: 1 >= ©

{

if (x = nil) {
X, 1 := x.tail, i - 1;
}
}

assert(i >= 0);

}

—

\L Algebraic Data Type

] List: nil |

cons(h, t)

Recursive Function

%) WATERLOO

length(1l):
match 1
case nil => @
case cons(h, t) => 1 +
length(t)

How to automatically come up with inv
in the presence of ADTs and RFs?

116

Constrained Horn Clauses

Constraints on uninterpreted predicates
All constraints are horn clauses

Clength(zD= i = inv(z,1)

inv(z,i) A @ ' =tail(x) NiN= 1 — 1 = inv(x’, 1)

AD

List: nil |
cons(h, t)

%) WATERLOO

inv(x,i) AN< 0= L

modulo ADT,RF RF

length(1l):
match 1
case nil => ©
case cons(h, t) => 1 + length(t)

method Main(x: List, i: Int)
requires length(x) == i

while(*)
inv: ?
{
if (x != nil) {
X, i := x.tail, i - 1;
b3
b
assert(i >= 0);

}

118 118

Solutions to CHCs (inductive invariants of programs)

Any interpretation that satisfies all constraints

* Interpretations are expressed in some Ianguage
Solution

length(x) =i = inv(x, 1)

inv(x, i) Ao #nil Ao’ = tail(z) Ni' =1 — 1= inv(a’, 7 inv(z,i) £ length(z) =i
; g

inv(z, i) Ni< 0= L1

Synthesize RFs Construct solutions with those RFs

Apply RFs to arguments

%) WATERLOO 119

Encoding RF applications in CHCs

Solution

length(z) =i = inv(x,1)
inv(z, i) Az #nil AN’ = tail(x) Ni' =i —1 = inv(2’, i)
inv(z, i) Ni<0= 1

inv(x,i) = length(z) = i

Use ghost variables to capture RF applications (term abstraction)

Solutio

length(xz) =i = inv(x,i,1)
. A

inv(x,i,l')/\le_ngth(x) = j A x # nil inv(x,i,j)

j=i

2’ = tail(x) Ni' =i — 1 Alength(z') = j' = inv(2’, 4, §)
inv(x,i,7) ANlength(x) =jANi< 0= L

Assume: RF applications are given || Search for solutions without RFs

UNIVERSITY OF

WATERLOO 20 120

Challenge: RFs are hard!!!!

length(1l):
match 1
case nil => ©
case cons(h, t) => 1 +
length(t)

® Need inductive reasoning

Givenalist 1, show length(l) >= ©

® 2 sources of undecidability

RFs without any

Uninterpreted Predicates CHCs without any RFs

UNIVERSITY OF

WATERLOO 121

Typical approach: Relationification

Relationify RFs

mod mod
ADT ADT
Encode RFs as CHCs RF

| length(x) = j e Length(«f,j)l

length(x) =i = inv(x,,1)
inv(x,i,7) Alength(x) = j A x # nil A
v’ =tail(x) Ni' =1 — 1 Nlength(z') = j' = inv(2',4, j)
inv(x,i,7) Nlength(x) =jNi < 0= L

UNIVERSITY OF

WATERLOO 22 199

Typical approach: Relationification Relationity R

mod mod
ADT ADT
Encode RFs as CHCs RF
| length(z) = j e Length(x,j)l Solution
inv(xz,i,7) 2=

r=nil N\i =0= Length(x,1)
Length(z,i) Az’ # nil A
r = tail(x') Ni' =1+1i= Length(z',i)

Length(x,i) = inv(x,i,1)
inv(x,i,7) A Length(x,j) A x # nil N
' = tail(x) Nt =1 — 1A Length(z', j') = inv(z’, i, 5")
inv(x,i,j) N\ Length(x,j) Ni < 0= L

ey

UNIVERSITY OF

WATERLOO 123

123

Typical h: Relationificati Relaionify s
ypical approach: Relationification l

mod mod
ADT ADT
Encode RFs as CHCs RF

| length(x) = j e Length(«f,j)l

r=nil Ni =0= Length(z,1) Preserves sat

Length(x,i) Az’ # nil A
r = tail(x') Ni' =1+1i= Length(z',i)

© Inductive
summaries of RFs

Length(zx,i) = inv(x,i,1)

inv(z, 1, j) A Length(z, j) Az # nil A ® Sometimes no satisfying
' = tail(x) Nt =1 — 1A Length(z', j') = inv(z’, i, 5") summary is expressible

inv(x,i,j) N\ Length(x,j) Ni < 0= L

UNIVERSITY OF
124 124

WATERLOO

Typical approach: Relationification Relationity R

mod mod
ADT ADT
RF

CONTRIBUTION 1:
Relationification preserves satisfiability but not
solutions

WE NEED RFs !!!

%) WATERLOO 195

Solving CHCs modulo ADTs and RFs

Relationify and

— =5 RACER

mod mod
Spacer style algorithm
ADT ADT
R F R F Unroll and abstract RF to overcome

undecidability

Relationified Predicates to

infer inductive summaries of RFs))
Always find a counter example, if one

+ exists.

Original RFs to preserve solutions

%) WATERLOO

126

126

Contains RFs and Uninterpreted Predicates
x=mnil Ni =0 = Length(x,1)
Length(z,i) A’ # nil A
xr =tail(z') Ni' =1+1i= Length(z',i)
Length(x,i) = inv(x,i,1)
inv(x,i,7) A\ Length(z, j) A x # nil A
2’ = tail(x) Ni' =i — 1A Length(2', ") = inv(z’, i, j")
inv(x,i,7) A Length(z,j) Ni < 0= L

%) WATERLOO

127

127

Contains RFs and Uninterpreted Predicates
x=mnil Ni =0 = Length(x,1)
Length(z,i) A’ # nil A
xr =tail(z') Ni' =1+1i= Length(z',i)
length(x) =i A\ Length(z,1) = inv(z,i,1)
inv(zx,i,7) Alength(x) = j A Length(x,j) N x # nil A
' =tail(x) Ni' =1 — 1 ANlength(x'") = 7' A Length(2', j") = inv(a’, 7', 7")
inv(z,i,5) Alength(x) = j A Length(z,j) Ni < 0= L

© Inductive summaries of RFs @ 2 sources of
Undecidability

© All solutions are preserved

%) WATERLOO 128 128

RF abstraction

Unroll and replace with an uninterpreted function

length(l):
match 1
case nil => ©
case cons(h, t) => 1 + match t
case nil => 0
case cons(hh, tt) => 1 + length,(tt)

[No Definition }

Reasoning with uninterpreted functions is decidable

Over-approximates RF

%) WATERLOO 129

CRC4= with RF abstraction

The more you unroll, the more solutions you get
No RFs after abstraction!!!!

© Inductive summaries of RFs

© More solutions than just

Relationification A

© 1 source of Undecidability

%) WATERLOO 130

UF abstraction

* Remove all literals with Uninterpreted Functions
* QOver-approximates RF

* Used to remove UF before quantifier elimination

%) WATERLOO 131

Solving CHCs modulo ADTs and RFs

Relationify and

— =5 RACER

mod mod
ADT ADT Spacer style algorithm
R F R F Unroll and abstract RF to overcome

undecidability

Relationified Predicates to
infer inductive summaries of RFs

Always find a counter example, if one

L %

Original RFs to preserve solutions

E/gy WXFESFIQTCOO 132 132

RACER

7

Is POB reachable? \
POB

4

NO

Reachable
states
intersect

with POB ?
YES

Generate
predecessor

Is POB’

reachable?

reachable

NO

Lemmas

UF abstraction

> block POB?
M

%4
YES

%) WATERLOO

A%
NO

RF abstraction

134

134

RACER

Uses (abstractions of) RF when searching for and verifying solutions
» Periodically increases depth of unrolling
Uses Relationified predicate to produce

1. Inductive summaries of RFs
2. Counter-examples

© Makes no undecidable queries to SMT solver

© Always find a counter-example, if one exists

UNIVERSITY OF

WATERLOO 135 135

