Verifying Verified Code

Prof. Arie Gurfinkel
Department of Electrical and Computer Engineering
University of Waterloo
W aterloo, Ontario, Canada

virtual presentation at VSTTE 2023

joint work with S. Priya, Y. Su, Y. Bao, X. Zhou, and Y. Vizel

WATERLOO

WATERLOO

The Team

2

Siddharth Priya

University of
W aterloo

334
Prof. Yuyan Bao

University of
Waterloo, now
Augusta
University

Xiang Zhou

University of
W aterloo,
now Intel

Prof. Yakir Vizel
The Technion

Yusen Su

University of
W aterloo

(-

2

Prof. Arie Gurfinkel

University of
W aterloo

VSTTE 2005

%) WATERLOO

VSTTE 2005

SPRINGER LINK

Find ajournal Publish with us Q Search

S Working Conference on Verified Software: Theories, Tools, and Experiments

Ly VSTTE 2005: Verified Software: Theories, Tools, Experiments pp 347-353 | Cite as

Home > Verified Software: Theories, Tools, Experiments > Chapter

Model-Checking Software Using Precise Abstractions

Marsha Chechik & Arie Gurfinkel

Chapter

%) WATERLOO

Automated (Software) Verification

Program and/or model

/V Correct
Reasoning T x

Automated

Incorrect

How can one check a routine in the sense of making suro that it is right?

prograsaer should muke a number of dofinite assertions which can be checked
individually, and from which the correctness of the whole programmse easily

5 WiATERL followa. _;

Automated Software Analysis

Model Checking

[Clarke and Emerson, 1981] [Queille and Sifakis, 1982]

Abstract Interpretation Symbolic Execution

[Cousot and Cousot, 1977] [King, 1976]

Automated Verification

Deductive Verification
» A user provides a program and a verification certificate
— e.g., inductive invariant, pre- and post-conditions, function summaries, etc.
A tool automatically checks validity of the certificate
— this is not easy! (might even be undecidable)
« Verification is manual but machine certified

Algorithmic Verification
» A user provides a program and a desired specification
— e.g., program never writes outside of allocated memory

X UNIVERSITY OF

% WATERLOO 7

SeaHorn | A Verification Fr %

& C f seahorn.github.io O &8 3
HE Apps w Getting Started Google Bookmark Note in Reader Add to Wish List + Pocket Google Bookmark » || Other Bookmarks
SeaHorn . O
Home About Download Publications People %, -
G,
G
. %

A fully automated verification framework for LLVM-based
languages.

http://seahorn.github.1io

Architecture of Seahorn

ﬁ LLVM Opt: \\ (\
- SSA
- DCE
- Peephole
QCFGSimpIificationj
N

~

Devirtualization
and
Exception Loweringj

Property Instr:
-Buffer overflow
-Null dereferences
N\)

()
Slicing Assertions

\o /.

J

Front-end Middle-end Back-end
%) WATERLOO 9

Bounded Model Checking (BMC)

BMC: is a precise static analysis (i.e., verification) technigue
* reduce verification to constraint solving with SAT- and SMT-solvers

Pros

* precision, including path sensitivity, machine arithmetic, bit-vector operations,
etc.

« ease of use — everything can be modeled in code

Cons
« scalability (scales to thousands LOC, but not millions)
* requires “unit proofs” and "mocks” to be effective

Well suited for security properties
 spatial memory safety, information flow, side-channels

UNIVERSITY OF

WATERLOO

10

Backend: Verification Condition Generation

N e 7
A /jv ;
)

)\@@) Intermediate

[CIC++ Representation (IR)
Compiler

Constraints (SMT)

Yi
SMT Solver

WATERLOO

SOTA Competition

CBMC — Bounded Model Checker for C
« started at CMU and Oxford, now supported by diffblue
« oldest, mature, actively used in industry (Amazon)
« custom C parser, some semantic particularities

KLEE — Symbolic Execution for LLVM
* mature, actively used in academic community
 de-facto symbolic execution engine in LLVM
 unlike BMC, targets bug finding rather than verification

SMACK
- open-sourced BMC engine for LLVM *

* uses some components from SeaHorn
SYMBIOTIC

« combines KLEE with slicing for scalability s ~
« winner of multiple SVCOMP competitions Sym b I Ot I c

UNIVERSITY OF

%) WATERLOO 12

SeaBMC: BMC for LLVM

SeaHorn-based Open-sourced BMC engine for LLVM
* bit-precise, byte-precise, path-sensitive

Supports many different encodings of verification conditions
« different encodings are better for different SMT solvers
« different encodings are better for different properties

Supports verification-specific extension to computer architecture
* store pointer-specific information directly with a pointer (i.e., fat-pointer)

» store memory object specific information directly with the memory object (i.e.,
shadow memory)

» extensions are done at the semantic level and exposed to developer via
simple API

UNIVERSITY OF

WATERLOO 13

Case Study: aws-c-common library

Core C99 package for AWS SDK = (v s
e cross-platform primitives @ awslabs aws-c-common
. . Core c99 package for AWS SDK for C. Includes cross-platform primitives,
) CO nfl g u ratl O n configuration, data structures, and error handling.
&3 Apache-2.0 License
- data structures r 168 ss ¥ oaors

¢ Star & Watch ~

« error handling
Self-contained

Low-level and platform specific C

Extensively verified using CBMC
« >160 unit proofs
« verify memory safety, representation invariants, basic operations

WATERLOO https://github.com/awslabs/aws-c-common | ,

>

Code as Spec (CaS): A Unit Proof

1. int main() {

2. /* data structure */

3. struct aws_array_list list;

4. initialize_bounded_array_list(&list); ‘
5. /* assumptions */

6. assume(aws_array_list_is_valid(&list));

7. assume(list.item_size > 0); ‘
8.

9. /* perform operation under verification */

10. size_t capacity = aws_array_list_capacity(&list); ‘
11. /* assertions */

12. assert(aws_array_list_is valid(&list));

13. assert(capacity == list.current_size / ‘

list.item_size);
14.
15. return 0;

16. }

UNIVERSITY OF

WATERLOO

initialization

pre-condition

function to be
verified

post-condition

15

Code-as-Spec (CaS) features

Use code to write pre-and-post conditions
« empower developers to write and maintain specifications
 share specifications between multiple tools and techniques
« structure verification effort around unit proofs

A unit proof (like unit test)
* sets the environment for verification (pre-condition)
« calls function under verification
« validates the result (post-condition)

Extend programming language with specification primitives
» non-deterministic (i.e., symbolic) input
« verifier.assume() built-into specify desired pre-condition
« verifier.assert() built-into specify statically checked assertions

UNIVERSITY OF

WATERLOO

16

https://github.com/seahorn/verify-c-common

Research Questions

RQ1: Does CaS empower multiple (analysis) tools?
* Yes — we use BMC, Symbolic Execution, and Fuzzing all at once
* But — semantics, semantics, semantics
* And — need to design specs with multiple tools in mind

RQ2: Are there bugs in verified code?
* Yes (and No)
— found serious bugs in specifications (but they did not hide bugs in code)
— found (potential) bugs that might manifest in the future

RQ3: Can CaS specs be improved?
* Yes
— writing effective specificationsis challenging, no matter what the language
— need built-ins specific for verification to directly express required concepts
* size of referenced memory, modifiability of memory region, etc.

UNIVERSITY OF

WATERLOO 17

CBMC

RQ1: Semantics is important!

void list get at ptr_harness() {
struct List 1;

assume(list is bounded(&1));

ensure_list has_allocated data _member(&1l);

void **val = can_fail malloc(sizeof(void *));

size t index;

assume(list_is_valid(&l) && val != NULL);

if (list _get at ptr(&l, val, index) == SUCCESS)
assert(l.data != NULL && index < 1l.length);

assert(list is valid(&l));

}

Undefined behavior (uninitialized variables) are resolved based on the
Internal semantics of CBMC

%) WATERLOO

SEAHORN

RQ1: Semantics is important!

void list get at ptr_harness() {

struct List 1;

memhavoc (&1, sizeof(struct List)));

assume(list is bounded(&l));

ensure_list has_allocated data _member(&1);

void **val = can_fail malloc(sizeof(void *));

size t index = nd_size t();

assume(list is valid(&l) && val != NULL);

if (list_get at _ptr(&1l, val, index) == SUCCESS)
assert(l.data != NULL & & index < 1l.length);

assert(list is valid(&l));
}

No undefined behaviour. Semantics depend on implementation of the
explicit initialization function

%) WATERLOO 19

RQ1: Does CaS empower multiple (analysis) tools?

Different tools require somewnhat different specification of assumptions

« refactor to have different implementation of specs for each style of tools

SeaHorn

libFuzzer

size t len
size t cap =
assume(len
assume(cap

nd _size t();
nd _size t();
<= cap);

<= MAX_BUFFER);

buf->len = len;
buf->capacity = cap;
buf->buffer = can_fail malloc(
cap * sizeof (*(buf->buffer)));
buf->allocator = sea _allocator();

size t len = nd_size t();
size t cap = nd_size t();
cap %= MAX_BUFFER;
len = (cap == 0) ? @ : len % cap;
buf->len = len;
buf->capacity = cap;
buf->buffer = can_fail malloc(

cap * sizeof (*(buf->buffer)));
buf->allocator = sea _allocator();

@

WATERLOO

20

RQ1: Does CaS empower multiple (analysis) tools?

Different tools require somewnhat different specification of assumptions
« refactor to have different implementation of specs for each style of tools

Y\ TN . .
" e 4‘
gﬁ SEAHORN libFuzzer "N
size t len = nd_size t(); size t len = nd_size t();
size t cap = nd_size t(); size t cap = nd_size t();
assume(len <= cap); cap %= MAX BUFFER;
assume(cap <= MAX BUFFER); len = (cap == 0) ? @ : len % cap;
buf->len = len; buf->len = len;
buf->capacity = cap; buf->capacity = cap;
buf->buffer = can_fail malloc(buf->buffer = can_fail malloc(

cap * sizeof(*(buf->buffer))); cap * sizeof(*(buf->buffer)));
e R buf->allocator = sea_allocator();

%) WATERLOO 21

RQ2: Are there bugs in verified code?

Found bugs in representation invariant
 representation invariant defines basic properties of a data structure
« assumedto be true before any function under verification
» checked that it is maintained at every call

Bug was subtle enough to be preserved by each function
 could hide real bugs in real code (but did not in this case)

bool aws byte buf is valid(const struct aws byte buf *const buf) {
return buf != NULL &&
((buf->capacity == @ && buf->len == @ && buf->buffer == NULL) ||
(buf->capacity > @ & buf->len <= buf->capacity &&
AWS_MEM_IS WRITABLE(buf->buffer, buf->len)));

UNIVERSITY OF

WATERLOO 92

RQ2: Are there bugs in verified code?

Found bugs in representation invariant
 representation invariant defines basic properties of a data structure
« assumedto be true before any function under verification
» checked that it is maintained at every call

Bug was subtle enough to be preserved by each function
 could hide real bugs in real code (but did not in this case)

bool aws byte buf is valid(const struct aws byte buf *const buf) {
return buf != NULL &&
((buf->capacity == @ && buf->len == @ && buf->buffer == NULL) ||
(buf->capacity > @ & buf->len <= buf->capacity &&
AWS MEM IS WRITABLE(buf->buffer, buf->capacity)));

UNIVERSITY OF

WATERLOO 23

Vacuity in CaS

Vacuity is a known sanity check in temporal model checking
« also known as antecedent failure
 a property is satisfied vacuously if
— itis true in the model
—a much stronger property is true
* e.g., always if p then q is true, but also always not p is true

In CaS, properties are not specified in a specialized language
* properties are embedded in code, they are part of code
« Whatis vacuity in this case?

Our definition: sassert is satisfied vacuously iff it is never reachable
e.g., if (c) { sassert(0); }

UNIVERSITY OF

WATERLOO

24

RQ2: (potential) bug due to UB: Bug

AWS_STATIC_ IMPL

bool aws is mem_zeroed(const void *buf, size t bufsize) {
const uint64_t *buf u64 = (const uintée4_t *)buf;
const size t num u64 checks = bufsize / 8;
size t i;

for (i = 0; i < num_u64_checks; ++1) {

if (buf u64[i]) {
return false;

}
¥

IIIIIIIIIIII

25

Found (potential) bug due to UB: Fix

AWS STATIC IMPL
bool aws is mem_zeroed(const void *buf, size t bufsize) {
const uint64_t *buf u64 = (const uintée4_t *)buf;
const size t num u64 checks = bufsize / 8;
size t i;
uinte4 t val;
for (1 = 0; i < num u64 checks; ++i) {
memcpy(&val, &buf u64[i], sizeof(val));
if (val) {
return false;
}
}

IIIIIIIIIIII

26

RQ3: Can CaS specs be improved?

Writing specifications is no different than writing code
* there is good code, there is ok code, there is bad code

* sometimes, there is better code

» e.g., we improve specification of linked list data structure to verify faster while
checking stronger properties

However, need additional built-in functions to communicate intention in
the specifications
« is _deref(p, sz) — true if pointer p points to at least sz accessible bytes
* is _mod(p) — true if object pointed to by pointer p has been modified recently
« is _alloc(p) — true if object pointed to be p is (still) allocated

Reusing CaS between tools requires standard for built-ins!

UNIVERSITY OF

WATERLOO

27

Case Study Architecture

Goto-cc - Goto-bin

P4

Unit :
proof CBMC SeaHorn
stubs
aws-c-common
Ve
Original
Unit Proof
Adapted
Proof Lib KLEE N
SMACK SeaHorn
libFuzzer CBMC

Z

Clang mmm) LLVM IR
Clang mmmp LLVMIR
Clang - EXE
Clang mmmp LLVM IR

A 4

¥ ¥ @

. 4

https://github.com/seahorn/verify-c-common

UNIVERSITY OF

%) WATERLOO

CBMC ' Coverage
BMC Engine -® S
p
SeaHorn Vacuity
PMIC Engine ® Cex, Test
: J
p
KLEE
Symbolic Execution mmmm) Tests
J
e
libFuzzer Coverage
Fuzz Testing Library m—) P
J
SMACK Output
BMC Engine —) 5% Cex
28

Bounded Model Checker for LLVM (C, C++, Rust ...)

SEABMC

IIIIIIIIIIII

29

SEA-IR — purify memory operations

PR :@:= fun main(){BB+}

BB == L :PHI* St (BR | halt)
BR == brE L L | brL

PHI = R=rphi (R, LI(, R, L])* |

M = phi [M, L1(, [M, L1)* |

S = RDEF | MDEF | VS

RDEF 1= R=E | P, M=allocaR, M |
P, M=mallocR, M | R=1cadP, M |
P=1cadP, M | M= freeP, M

MDEF ::= M = storeR, P, M | M =storeP, P, M

VS == assert R | assumeR

Unlimited registers: Each register has a type — scalar,
pointer, or memory

All operations are pure: SEA-IR extends LLVM IR by making
dependency information between memory operations explicit

%) WATERLOO

SEA-IR — purify memory operations

malloc always creates unique memory.

F PO, M@ = malloc 1, MINIT
@ P1, M1 = malloc 1, MINIT
=
> M2 = store 0, PO, MO
£
()
E|=M3 = store 0, P1, Ml
g
¢4 RO = load PO, M2

R1 = load P1, M3

PO and P1 always read from distinct memories

Example: SEA-IR program with pure memory operations
- Blue and Red are distinct def-use memory chains
 This distinction helps generate simpler VC

WATERLOO

31

SEA-IR:

int main() {
int s = nd_int();

if (s > 0) {
s = s - nd_int();
}

assert(s > -5);
return 0;

C program: nd_int returns
a non-deterministic int;
assume and assert have
usual meanings

Program transformation

define main() {

BBO:
RO
R1

R2
br
BB1:
R3
R4
br
BB2:

R5 = PHINODE > -5

nd_int()
= RO > -5

=RO >0
R2, BB1, BB2

= nd_int()
= RO - R3
BB2

assert false
halt

}

SA program: SEA-IR
program in control flow
form with phi nodes. It
has a single assert (SA).

define main() {

BBO:
RO = nd_int()
R1 = RO > -5
R2 = RO > @
BB1:
R3 = nd_int()
R4 = RO - R3
BB2:

R5 = GAMMA > -5
R6 = IR5
R7 = R1 && R6

halt

GSA program: SEA-IR
program in gated SSA form
(GSA). It has a single
assume and a single assert
(SASA).

(rd = ro - r3) &

(r2 =re > 0)

(gamma = ite(r2, r4, ro)) &
(gamma > -5)

(r6 = !r5) &&

(rl =re > -5) &

(r7 = rl && r6) &&

r7 &&

Ifalse

VCGen from GSA program
using pure dataflow
analysis.

VC generation can happen from different SEA-IR forms — control flow or dataflow.

%) WATERLOO

32

Shadow memory and fat pointers

Shadow every byte (or word)
of program memory with program state

metadata
* Memcheck — addressable, initialized memory?
. Prog MetadataO
« Eraser — concurrent access follows locking -
discipline
Recent CBMC-SSM extension has shadow Addr0
memory for CBMC Addr1

— CBMC-SSM: Bounded Model Checking of C Programs with
Symbolic Shadow Memory, ASE 2022, Bernd
Fischer, Salvatore La Torre, Gennaro Parlato, Peter

Schrammel AddrN

Shadow mem representation

vetadatao

Some metadata can be "cached" at X i
Fat pointer representation

pointers instead of memory, saving
memory accesses. This scheme is
called Fat pointers.

%r,«iﬂ UNIVERSITY OF

% WATERLOO

33

Fat pointer application — detect OOB access

int main() {
char *p = (char *) malloc(sizeof(char));
*p = 255;
*(p+8) = 255; === (OB access;
return © Undefined behaviour

}

sym(R1
ri

isderef PO B) ==
@ <= pO.offset + B < pO@.size

isderef semantics

Contrast with CBMC: CBMC overloads
pointer bits to store metadata adding
constraints on the addresses that can
be modelled. Fat pointers have no
such limitation!

WATERLOO

int main() {
char *p = (char *) malloc(sizeof(char));

W sea_is_deref(p, 0);

*p = 255;

sea_is _deref(p, 8);
*(p+8) = 255;
return o

}

P 0 1

P 8 1

34

Shadow memory application — detect UAF

int main() { int main() {
char *p = (char *)malloc(sizeof(char)); char *p = (char *) malloc(sizeof(char));
*p = 0; v
free(p); *p = 0;
* = . .
P 255"“‘--—UAF;Undefined behaviour free(p);
return O)(
} *p = 255;
return ©
Intrinsic like sea_is alloc operate on }

program metadata.

. . . Prog Base
Note: This scheme relies on fat pointers Memory

that store base address. p — — -- Oori

Intrinsics to track other program
properties — e.g., sea_is mod (RO
memory integrity)

%) WATERLOO

Y
<

BACKEND: VCGEN as a (symbolic) VM

VC

UNIVERSITY OF

WATERLOO

Swap components to affect VCGen!

Symbolic Virtual Machine

Memory Manager

loadIntFromMemory, loadPtrFromMemory

(SEA-IR)
Instructions ' A
ALU

add, sub, or

SMT

Memory Rep

lambdas, arrays

formula (VC)

Constant

Evaluator
eval globals

e

VCGen

Memory Allocator

dynamic, static, ..

10 KLOC of C+

?

External View

r——=—=—=—===-===71

Internal View

+
N I I S S - - - — — —

36

36

aws-c-common benchmark verification time

Comparision with SeaBMC, CBMC, SMACK, SYMBIOTIC, KLEE

Statistics SEABMC CBMC SMACK SYMBIOTIC KLEE
category C loc avg (s) sud(s) time (5) avg (s) std(s) time (s) et Bdto avg(s) sd(s) time (s) et fido avg(s) sd(s) cine (s) o avg (s) std(s) time (s)
arbanetic 6 22 1 0 3 4 0 2 6 20 3 1 18 6 [0 135 281 809 6 1 o 5
amay 4 3% 2 1 7 6 o 23 4 w1 53 98 213 4 o 1" 4 44 4 26 2 103
amay _list 24 3150 3 kK n 19 3 450 24 () 5 1 126 23 o 43 68 980 4 41 38 994
Pl 2.908 29 10 252 29 o2 27 50 29 o 162 1,168 b 96 1592

SYMBIOTIC KLEE

total 169 20790 710 6,398 420 6370 1055 10946 5741

TABLE II: Verification results for SEABMC, CBMC, SMACK, SYMBIOTIC, and KLEE. Timeout for SMACK and SEABMC
is 200s, and 5,000s for SYMBIOTIC. cnt, fld, to, avg, std and time, are the number of verification tasks, failed cases, timeout
cases, average run-time, standard deviation, and total run-time in seconds, per category.

Read only memory proof using shadow memory (rewrite 70 proofs)

Shadow 90s

No shadow 143s

httEs://github.com/seahorn/veril‘x—c-common

%) WATERLOO 37

>

A language empowering everyone
to build reliable and efficient software.

Why Rust?

Performance

Rust is blazingly fast and memory-
efficient: with no runtime or garbage
collector, it can power performance-
critical services, run on embedded
devices, and easily integrate with other
languages.

Reliability

Rust's rich type system and ownership
model guarantee memory-safety and
thread-safety — enabling you to eliminate
many classes of bugs at compile-time.

UNIVERSITY OF

WATERLOO

httgs://vwvw. rust-lang.org/

GET STARTED

Version 1.65.0

Productivity

Rust has great documentation, a friendly
compiler with useful error messages, and
top-notch tooling — an integrated
package manager and build tool, smart
multi-editor support with auto-
completion and type inspections, an
auto-formatter, and more.

38

>

Rust makes memory problems obsolete...

« Tweet Q, Search Twitter

-1y Mark Russinovich €& . :

P @markrussinovich Rﬂ‘ ﬂ““t mp e
Speaking of languages, it's time to halt starting any ﬁ\ ‘l‘:’:f‘f’:’:gj‘:?a
new prjECtE n C‘{C++ and use Rust .fDF thD.SE CTO of Microsoft Azure, author of
scenarios where a non-GC language is required. For novels Rogue Code, Zero Day and
the sake of security and reliability. the industry should Trojan Hares, Wincows intemess,

Sysinternals tools. Opinions are my

declare those languages as deprecated. own.

6:50 PM - Sep 19, 2022 - TweetDeck

UNIVERSITY OF

WATERLOO

39

Rust is mature enough to be used in Linux

Home / Innovation / Services & Software / Operating Systems / Linux

Linus Torvalds: Rust will go into Linux 6.1

At the Kernel Maintainers Summit, the question wasn't,
"Would Rust make it into Linux?" Instead, it was, "What to do
about its compilers?”

B ¥ é £ Written by Steven Vaughan-Nichols, Senior Contributing Editor
on Sept. 19, 2022

WATERLOO https://www.zdnet.com/article/linus-torvalds-rust-will-go-into-linux-6-1/

Do only safe Rust programs compile?

fn main() { .
let a = [1, 2, 3, 4, 5]; let element = a[index];
let index = 10; | ANANAAAA index out of
let element = a[index]; bounds: the len is 5 but the index is 10
println!("{}", element);

} Compile fails: Out-of-bounds access detected at

compile time.
fn main() {

let a = [1, 2, 3, 4, 5];
let mut p = a.as_ptr();
let slice;

unsafe { Unsafe access in safe code!
p = p.offset(10);
slice = slice::from_raw_parts(p, 1);

Compile ok: Out-of-bounds access not detected at
compile time or run time.

)
println!("{}", slice[0]);

%) WATERLOO

41

>

& Exploring Rust / Developing a Custom Graph

grossdan Apr '21

Hello,

| am new to Rust -- exploring whether to use it. My aim is to create a mini in-memory custom graph
database with some augmented low level features.

| am reading that graph structures are in particular difficult to program in Rust [1], given its ownership
model -- | am curious how steep the leaning curve would be to get this right.

It seems that | can't use existing libraries (e.g. petgraph), given some custom features i need -- e.g.
allowance for multiple links between same two nodes.

Given that pointers are a key capability in Rust -- i wonder why a simple linked structure such as a
2071828 Apr '21

Rust's ownership model mostly requires object instances to form a tree whose root is a local variable in
some function. Cross-linking between different branches of the same tree is tricky at best, impossible at
worst. To represent general graph structures, there's two main approaches:

» Use shared-ownership references (Rc or Arc), which can be arbitrarily interlinked, but incur a

runtime cost.
« Store the graph elements in one or more flat collections; use IDs instead of pointers to refer to

other elements.

UNIVERSITY OF

WATERLOO https://users.rust-lang.org/t/exploring-rust-developing-a-custom-graph/57785

42

The Case for BMC for Rust

Rust is a great advancement for low-level languages
The type system is great at finding many subtle issues

However, any non-trivial program requires unsafe handling of raw
pointers

Problem: Unsafe bits in Rust, make the whole program unsafe!

Solution: Use LLVM Bounded Model Checking for whole program
analysis of unsafe Rust programs

IIIIIIIIIIII

WATERLOO

c-rust: The SeaHorn Rust Pipeline

@D

UNIVERSITY OF

WATERLOO

V&

WORK IN PROGRESS

H Lokathor / tinyvec ' Fublic

Just, really the littlest Vec you could need. So smol.

& docs.rs/tinyvec
& Apache-2.0 and 2 other licenses found

¥y 540stars % 45forks A~ Activity

T Star Q Notifications

<> Code () Issues 14 11 Pullrequests 1

I - = O 5 github

! | Sign up | O

B servo/ rust-smallvec ' Public

"Small vecter” optimization for Rust: store up to a small
number of items on the stack

&5 Apache-2.0, MIT licenses found

vr 1dkstars % 127 forks A~ Activity

Ty Star L Notifications

<> Code (O Issues 30 i1 Pullrequests 7

https://github.com/agurfinkel/c-rust

44

with Siddharth Priya, Boris Jancic, Thomas Hart

c-rust: Research Challenges

We can now verify Rust programs by reducing themto LLVM IR (i.e., C-
like programs)

This is similar to analyzing x86 executables (or analyzing assembly)
 Pro: verification does not depend on the compiler (and finds compiler bugs)
» Cons: scalability is a challenge

— verification does not benefit from higher-level ownership concepts
— verification is complicated by complex complier lowering of concepts

Challenge 1

» develop low-level intermediate representation (IR) that captures ownership
semantics

Challenge 2
« efficient verification of IR with ownership semantics

UNIVERSITY OF

WATERLOO

45

Extend SEA-IR with explicit Ownership Operations

Extraneous instructions
removed, including

SEA-IR program with aliasing.. SEA-IR with explicit ownership
mem access through PO

// Px are pointer registers // P@ is moved.

// Rx are data registers // Hence, a unique ptr
// Mx are memory registers

// (contain a memory region) R6 = load P8, MO
R1T = RO + 1
// Cache write through P9 PO nvmem2reg PPO, MO

A b3 2 ureacne &1, Po v - load po, o
M1 = store R1, PO, M@ -
‘ M1 = store R1, P2, M@ ‘ E; = E?C;C;e o v
;g - Sor 1R3 P1, M1 Eg _ égag ?1' " R5 = rdcache P2’
= store R3, , = i
M2 = store R3, P1, M1 assert R5 5

// PO, P1 may alias.

ii Reload data at P@O.

assert R4 == 5
die PO

ii Cache read as P2 unique

R4 = load PO, M2
// Assert on cached value

die P2

Introduce new SEA-IR operations

 mvmem2reg,die, brmem2reg, to represent, moving, returning, and borrowing
ownership of pointers between memory and registers

* wrcache, rdcache to cache metadata directly at a pointer

%) WATERLOO 46

Verification time comparison

C

* memory operations generated in
verification conditions

« verification time grows with array
Size

Rust

« verification time does not depend
on array size

 very small vectors on stack

generate memory load/store
operations

%) WATERLOO

Language
— C
Rust

V&

400 £00 800 1000

Array Size

47

Conclusion

Code-as-Spec empowers developers to write specifications
« familiar from unit testing
« executable counterexamples provide familiar feedback
« effectively share specifications between very different QA tools

Beware of bugs in specifications
» simple vacuity is very helpful
« much more research work is required!

SeaBMC - a new Bounded Model Checker for LLVM
» supports many features of LLVM IR
— including memcpy, memmove, overflow instrinsics, etc.

easy-to-use by using standard “de-facto” language semantics and integration with
mainstream constructor

performance comparable / better than state-of-the-art
support for fat pointers and shadow memory simplifies property specification
support for Rust is in active development— looking for interesting case studies

%) WATERLOO 48

References

SeaHorn
* http://seahorn.qgithub.io/
* includes CHC (spacer), Absint (clam/crab), BMC (SeaBmc), Alias (SeaDsa)

Case-Studies
 https://qgithub.com/seahorn/verify-c-common
 https://github.com/seahorn/verifyTrusty
* https://github.com/agurfinkel/c-rust

Papers

 Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao, Arie
Gurfinkel: Verifying Verified Code. The 19th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2021)

« Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao, Arie
Gurfinkel: Bounded Model Checking for LLVM. The 22nd International
Conference on Formal Methods in Computer-Aided Design (FMCAD 2022)

Blogs (on c-rust)
* http://seahorn.github.io/blog/

UNIVERSITY OF

WATERLOO

49

http://seahorn.github.io/
https://github.com/seahorn/verify-c-common
https://github.com/seahorn/verifyTrusty
https://github.com/seahorn/verify-c-common/blob/master/assets/paper_expanded.pdf
https://github.com/seahorn/verify-c-common/blob/master/assets/fmcad2022.pdf

END

%) WATERLOO

	Slide 1: Verifying Verified Code
	Slide 2: The Team
	Slide 3: VSTTE 2005
	Slide 4: VSTTE 2005
	Slide 5: Automated (Software) Verification
	Slide 6: Automated Software Analysis
	Slide 7: Automated Verification
	Slide 8
	Slide 9: Architecture of Seahorn
	Slide 10: Bounded Model Checking (BMC)
	Slide 11: Backend: Verification Condition Generation
	Slide 12: SOTA Competition
	Slide 13: SeaBMC: BMC for LLVM
	Slide 14: Case Study: aws-c-common library
	Slide 15: Code as Spec (CaS): A Unit Proof
	Slide 16: Code-as-Spec (CaS) features
	Slide 17: Research Questions
	Slide 18: RQ1: Semantics is important!
	Slide 19: RQ1: Semantics is important!
	Slide 20: RQ1: Does CaS empower multiple (analysis) tools?
	Slide 21: RQ1: Does CaS empower multiple (analysis) tools?
	Slide 22: RQ2: Are there bugs in verified code?
	Slide 23: RQ2: Are there bugs in verified code?
	Slide 24: Vacuity in CaS
	Slide 25: RQ2: (potential) bug due to UB: Bug
	Slide 26: Found (potential) bug due to UB: Fix
	Slide 27: RQ3: Can CaS specs be improved?
	Slide 28: Case Study Architecture
	Slide 29: SeaBMC
	Slide 30: SEA-IR – purify memory operations
	Slide 31: SEA-IR – purify memory operations
	Slide 32: SEA-IR: Program transformation
	Slide 33: Shadow memory and fat pointers
	Slide 34: Fat pointer application – detect OOB access
	Slide 35: Shadow memory application – detect UAF
	Slide 36: BACKEND: VCGEN as a (symbolic) VM
	Slide 37: aws-c-common benchmark verification time
	Slide 38
	Slide 39: Rust makes memory problems obsolete…
	Slide 40: Rust is mature enough to be used in Linux
	Slide 41: Do only safe Rust programs compile?
	Slide 42
	Slide 43: The Case for BMC for Rust
	Slide 44: c-rust: The SeaHorn Rust Pipeline
	Slide 45: c-rust: Research Challenges
	Slide 46: Extend SEA-IR with explicit Ownership Operations
	Slide 47: Verification time comparison
	Slide 48: Conclusion
	Slide 49: References
	Slide 50: END

