
1 1

Verifying Verified Code

Prof. Arie Gurfinkel
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

virtual presentation at VSTTE 2023

joint work with S. Priya, Y. Su, Y. Bao, X. Zhou, and Y. Vizel

2 2

The Team

Siddharth Priya

University of
Waterloo

Xiang Zhou

University of
Waterloo,
now Intel

Yusen Su

University of
Waterloo

Prof. Yakir Vizel

The Technion

Prof. Yuyan Bao

University of
Waterloo, now
Augusta
University

Prof. Arie Gurfinkel

University of
Waterloo

3 3

VSTTE 2005

4 4

VSTTE 2005

5 5

Program and/or model

Automated

Reasoning

Correct

Incorrect

Alan M. Turing. ”Checking a large routine” 1949

Alan M. Turing. 1936: “Undecidable”

Automated (Software) Verification

6 6

[Clarke and Emerson, 1981] [Queille and Sifakis, 1982]

Model Checking

Abstract Interpretation

[Cousot and Cousot, 1977]

Symbolic Execution

[King, 1976]

Automated Software Analysis

7 7

Automated Verification

Deductive Verification

• A user provides a program and a verification certificate

– e.g., inductive invariant, pre- and post-conditions, function summaries, etc.

• A tool automatically checks validity of the certificate

– this is not easy! (might even be undecidable)

• Verification is manual but machine certified

Algorithmic Verification

• A user provides a program and a desired specification

– e.g., program never writes outside of allocated memory

• A tool automatically checks validity of the specification

– and generates a verification certificate if the program is correct

– and generates a counterexample if the program is not correct

• Verification is completely automatic – “push-button”

8 8

http://seahorn.github.io

9 9

Architecture of Seahorn

Heap Abst ract ion

VC Generat ion

Precision:
- Integers

- Float ing point

- Pointers

- Memory contents

 LLVM Opt :

- SSA

- DCE

- Peephole

- CFG Simpl i f icat ion

 Devirtual izat ion

 and

 Except ion Lowering

Property Inst r:
-Buffer overf low

-Nul l dereferences

 Sl icing Assert ions

 Fr on t - en d Mid d le- en d Back - en d

 C/ C+ + LLVM b i t cod e Hor n Clau ses

PDR/ IC3-based

Model checking

 Clang

Array Abst ract ion

Abst ract Interp.

- Intervals

- DBMs

- LDDs

 BMC

 bi t vectors

Template-based

 (Houdini)

10 10

Bounded Model Checking (BMC)

BMC: is a precise static analysis (i.e., verification) technique

• reduce verification to constraint solving with SAT- and SMT-solvers

Pros

• precision, including path sensitivity, machine arithmetic, bit-vector operations,
etc.

• ease of use – everything can be modeled in code

Cons

• scalability (scales to thousands LOC, but not millions)

• requires “unit proofs” and ”mocks” to be effective

Well suited for security properties

• spatial memory safety, information flow, side-channels

11 11

Backend: Verification Condition Generation

C/C++

Compiler

VCGen

SMT Solver

Intermediate

Representation (IR)

Constraints (SMT)

12 12

SOTA Competition

CBMC – Bounded Model Checker for C

• started at CMU and Oxford, now supported by diffblue

• oldest, mature, actively used in industry (Amazon)

• custom C parser, some semantic particularities

KLEE – Symbolic Execution for LLVM

• mature, actively used in academic community

• de-facto symbolic execution engine in LLVM

• unlike BMC, targets bug finding rather than verification

SMACK

• open-sourced BMC engine for LLVM

• uses some components from SeaHorn

SYMBIOTIC

• combines KLEE with slicing for scalability

• winner of multiple SVCOMP competitions

13 13

SeaBMC: BMC for LLVM

SeaHorn-based Open-sourced BMC engine for LLVM

• bit-precise, byte-precise, path-sensitive

Supports many different encodings of verification conditions

• different encodings are better for different SMT solvers

• different encodings are better for different properties

Supports verification-specific extension to computer architecture

• store pointer-specific information directly with a pointer (i.e., fat-pointer)

• store memory object specific information directly with the memory object (i.e.,
shadow memory)

• extensions are done at the semantic level and exposed to developer via
simple API

14 14

Case Study: aws-c-common library

Core C99 package for AWS SDK

• cross-platform primitives

• configuration

• data structures

• error handling

Self-contained

Low-level and platform specific C

Extensively verified using CBMC

• >160 unit proofs

• verify memory safety, representation invariants, basic operations

https://github.com/awslabs/aws-c-common

15 15

Code as Spec (CaS): A Unit Proof

1. int main() {

2. /* data structure */

3. struct aws_array_list list;

4. initialize_bounded_array_list(&list);

5. /* assumptions */

6. assume(aws_array_list_is_valid(&list));

7. assume(list.item_size > 0);
8. ...

9. /* perform operation under verification */

10. size_t capacity = aws_array_list_capacity(&list);

11. /* assertions */

12. assert(aws_array_list_is_valid(&list));

13. assert(capacity == list.current_size /
list.item_size);

14. ...

15. return 0;

16. }

initialization

pre-condition

function to be

verified

post-condition

16 16

Code-as-Spec (CaS) features

Use code to write pre-and-post conditions

• empower developers to write and maintain specifications

• share specifications between multiple tools and techniques

• structure verification effort around unit proofs

A unit proof (like unit test)

• sets the environment for verification (pre-condition)

• calls function under verification

• validates the result (post-condition)

Extend programming language with specification primitives

• non-deterministic (i.e., symbolic) input

• verifier.assume() built-in to specify desired pre-condition

• verifier.assert() built-in to specify statically checked assertions

17 17

Research Questions

RQ1: Does CaS empower multiple (analysis) tools?

• Yes – we use BMC, Symbolic Execution, and Fuzzing all at once

• But – semantics, semantics, semantics

• And – need to design specs with multiple tools in mind

RQ2: Are there bugs in verified code?

• Yes (and No)

– found serious bugs in specifications (but they did not hide bugs in code)

– found (potential) bugs that might manifest in the future

RQ3: Can CaS specs be improved?

• Yes

– writing effective specifications is challenging, no matter what the language

– need built-ins specific for verification to directly express required concepts

• size of referenced memory, modifiability of memory region, etc.

https://github.com/seahorn/verify-c-common

18 18

RQ1: Semantics is important!

Undefined behavior (uninitialized variables) are resolved based on the
internal semantics of CBMC

void list_get_at_ptr_harness() {

 struct List l;

 assume(list_is_bounded(&l));

 ensure_list_has_allocated_data_member(&l);

 void **val = can_fail_malloc(sizeof(void *));

 size_t index;

 assume(list_is_valid(&l) && val != NULL);

 if (list_get_at_ptr(&l, val, index) == SUCCESS)

 assert(l.data != NULL && index < l.length);

 assert(list_is_valid(&l));

}

CBMC

19 19

RQ1: Semantics is important!

No undefined behaviour. Semantics depend on implementation of the
explicit initialization function

void list_get_at_ptr_harness() {

 struct List l;

 memhavoc(&l, sizeof(struct List)));

 assume(list_is_bounded(&l));

 ensure_list_has_allocated_data_member(&l);

 void **val = can_fail_malloc(sizeof(void *));

 size_t index = nd_size_t();

 assume(list_is_valid(&l) && val != NULL);

 if (list_get_at_ptr(&l, val, index) == SUCCESS)

 assert(l.data != NULL && index < l.length);

 assert(list_is_valid(&l));

}

SEAHORN

20 20

RQ1: Does CaS empower multiple (analysis) tools?

Different tools require somewhat different specification of assumptions

• refactor to have different implementation of specs for each style of tools

SeaHorn libFuzzer

size_t len = nd_size_t();
size_t cap = nd_size_t();
assume(len <= cap);
assume(cap <= MAX_BUFFER);

buf->len = len;
buf->capacity = cap;
buf->buffer = can_fail_malloc(
 cap * sizeof(*(buf->buffer)));
buf->allocator = sea_allocator();

size_t len = nd_size_t();
size_t cap = nd_size_t();
cap %= MAX_BUFFER;
len = (cap == 0) ? 0 : len % cap;

buf->len = len;
buf->capacity = cap;
buf->buffer = can_fail_malloc(
 cap * sizeof(*(buf->buffer)));
buf->allocator = sea_allocator();

21 21

RQ1: Does CaS empower multiple (analysis) tools?

Different tools require somewhat different specification of assumptions

• refactor to have different implementation of specs for each style of tools

size_t len = nd_size_t();
size_t cap = nd_size_t();
assume(len <= cap);
assume(cap <= MAX_BUFFER);

buf->len = len;
buf->capacity = cap;
buf->buffer = can_fail_malloc(
 cap * sizeof(*(buf->buffer)));
buf->allocator = sea_allocator();

size_t len = nd_size_t();
size_t cap = nd_size_t();
cap %= MAX_BUFFER;
len = (cap == 0) ? 0 : len % cap;

buf->len = len;
buf->capacity = cap;
buf->buffer = can_fail_malloc(
 cap * sizeof(*(buf->buffer)));

buf->allocator = sea_allocator();

SEAHORN libFuzzer

22 22

RQ2: Are there bugs in verified code?

Found bugs in representation invariant

• representation invariant defines basic properties of a data structure

• assumed to be true before any function under verification

• checked that it is maintained at every call

Bug was subtle enough to be preserved by each function

• could hide real bugs in real code (but did not in this case)

bool aws_byte_buf_is_valid(const struct aws_byte_buf *const buf) {

 return buf != NULL &&

 ((buf->capacity == 0 && buf->len == 0 && buf->buffer == NULL) ||

 (buf->capacity > 0 && buf->len <= buf->capacity &&

 AWS_MEM_IS_WRITABLE(buf->buffer, buf->len)));

}

23 23

RQ2: Are there bugs in verified code?

Found bugs in representation invariant

• representation invariant defines basic properties of a data structure

• assumed to be true before any function under verification

• checked that it is maintained at every call

Bug was subtle enough to be preserved by each function

• could hide real bugs in real code (but did not in this case)

bool aws_byte_buf_is_valid(const struct aws_byte_buf *const buf) {

 return buf != NULL &&

 ((buf->capacity == 0 && buf->len == 0 && buf->buffer == NULL) ||

 (buf->capacity > 0 && buf->len <= buf->capacity &&

 AWS_MEM_IS_WRITABLE(buf->buffer, buf->capacity)));

}

24 24

Vacuity in CaS

Vacuity is a known sanity check in temporal model checking

• also known as antecedent failure

• a property is satisfied vacuously if

– it is true in the model

– a much stronger property is true

• e.g., always if p then q is true, but also always not p is true

In CaS, properties are not specified in a specialized language

• properties are embedded in code, they are part of code

• What is vacuity in this case?

Our definition: sassert is satisfied vacuously iff it is never reachable

• e.g., if (c) { sassert(0); }

25 25

RQ2: (potential) bug due to UB: Bug

AWS_STATIC_IMPL
bool aws_is_mem_zeroed(const void *buf, size_t bufsize) {
 const uint64_t *buf_u64 = (const uint64_t *)buf;
 const size_t num_u64_checks = bufsize / 8;
 size_t i;

 for (i = 0; i < num_u64_checks; ++i) {

 if (buf_u64[i]) {
 return false;

 }
 }
 ...
}

26 26

Found (potential) bug due to UB: Fix

AWS_STATIC_IMPL
bool aws_is_mem_zeroed(const void *buf, size_t bufsize) {
 const uint64_t *buf_u64 = (const uint64_t *)buf;
 const size_t num_u64_checks = bufsize / 8;
 size_t i;
 uint64_t val;
 for (i = 0; i < num_u64_checks; ++i) {
 memcpy(&val, &buf_u64[i], sizeof(val));
 if (val) {

 return false;
 }

 }
 ...
}

27 27

RQ3: Can CaS specs be improved?

Writing specifications is no different than writing code

• there is good code, there is ok code, there is bad code

• sometimes, there is better code

• e.g., we improve specification of linked list data structure to verify faster while
checking stronger properties

However, need additional built-in functions to communicate intention in
the specifications

• is_deref(p, sz) – true if pointer p points to at least sz accessible bytes

• is_mod(p) – true if object pointed to by pointer p has been modified recently

• is_alloc(p) – true if object pointed to be p is (still) allocated

• …

Reusing CaS between tools requires standard for built-ins!

28 28

Case Study Architecture

EXE

LLVM IR

KLEE

Symbolic Execution
Tests

CBMC

BMC Engine

 Coverage

 Cex

libFuzzer

Fuzz Testing Library

Coverage

Reports

LLVM IR

Goto-binGoto-cc

Clang

Clang

Clang
Proof Lib

SeaHorn

Unit Proof

Original

Adapted

Unit

proof

stubs

CBMC SeaHorn

aws-c-common Vacuity

Cex, Test

SeaHorn

BMC Engine

KLEE

libFuzzer CBMC
SMACK

BMC EngineLLVM IR Clang

Output

Cex

SMACK

https://github.com/seahorn/verify-c-common

29 29

SEABMC
Bounded Model Checker for LLVM (C, C++, Rust …)

30 30

SEA-IR – purify memory operations

Unlimited registers: Each register has a type – scalar,

pointer, or memory

All operations are pure: SEA-IR extends LLVM IR by making

dependency information between memory operations explicit

31 31

SEA-IR – purify memory operations

Example: SEA-IR program with pure memory operations

• Blue and Red are distinct def-use memory chains

• This distinction helps generate simpler VC

P0 and P1 always read from distinct memories

malloc always creates unique memory.

D
e

f-
u

s
e
 m

e
m

o
ry

 c
h

a
in

s

...

P0, M0 = malloc 1, MINIT

P1, M1 = malloc 1, MINIT

M2 = store 0, P0, M0

M3 = store 0, P1, M1

R0 = load P0, M2

R1 = load P1, M3
...

32 32

SEA-IR: Program transformation

int main() {
 int s = nd_int();
 assume(s > -5);
 if (s > 0) {
 s = s - nd_int();

 }
 assert(s > -5);
 return 0;
}

define main() {
BB0:
 R0 = nd_int()
 R1 = R0 > -5
 assume R1
 R2 = R0 > 0
 br R2, BB1, BB2
BB1:
 R3 = nd_int()
 R4 = R0 - R3
 br BB2
BB2:
 PHINODE = phi [R4, BB1], [R0, BB0]
 R5 = PHINODE > -5
 assume(!R5)
 assert false
 halt
}

define main() {
BB0:
 R0 = nd_int()
 R1 = R0 > -5
 R2 = R0 > 0
 br R2, BB1, BB2
BB1:
 R3 = nd_int()
 R4 = R0 - R3
 br BB2
BB2:
 GAMMA = select R2, R4, R0
 R5 = GAMMA > -5
 R6 = !R5
 R7 = R1 && R6
 assume R7
 assert false
 halt
}

(r4 = r0 - r3) &&
(r2 = r0 > 0)
(gamma = ite(r2, r4, r0)) &&
(gamma > -5)
(r6 = !r5) &&
(r1 = r0 > -5) &&
(r7 = r1 && r6) &&
r7 &&
!false

C program: nd_int returns

a non-deterministic int;

assume and assert have

usual meanings

SA program: SEA-IR

program in control flow

form with phi nodes. It

has a single assert (SA).

GSA program: SEA-IR

program in gated SSA form

(GSA). It has a single

assume and a single assert

(SASA).

VCGen from GSA program

using pure dataflow

analysis.

VC generation can happen from different SEA-IR forms – control flow or dataflow.

SA prog. GSA prog. VCSource prog.

33 33

Shadow memory and fat pointers

Shadow every byte (or word)

of program memory with program state
metadata

• Memcheck – addressable, initialized memory?

• Eraser – concurrent access follows locking

discipline

Recent CBMC-SSM extension has shadow

memory for CBMC

– CBMC-SSM: Bounded Model Checking of C Programs with
Symbolic Shadow Memory, ASE 2022, Bernd
Fischer, Salvatore La Torre, Gennaro Parlato, Peter
Schrammel

Prog

Memory

Metadata0 Metadata1 Metadata2

Addr0

Addr1

...

AddrN

Metadata0 Metadata1Address Metadata2

Shadow mem representation

Fat pointer representation
Some metadata can be "cached" at
pointers instead of memory, saving
memory accesses. This scheme is
called Fat pointers.

34 34

Fat pointer application – detect OOB access

int main() {
 char *p = (char *) malloc(sizeof(char));
 *p = 255;
 *(p+8) = 255;
 return 0
}

OOB access;
Undefined behaviour

int main() { ​
 char *p = (char *) malloc(sizeof(char));​
 sea_is_deref(p, 0);
 *p = 255; ​
 sea_is_deref(p, 8);
 *(p+8) = 255; ​
 return 0 ​
}

Base Address Offset Size

p 0 1

Base Address Offset Size

p 8 1

sym(R1 = isderef P0 B) ==
 r1 = 0 <= p0.offset + B < p0.size

isderef semantics

Contrast with CBMC: CBMC overloads

pointer bits to store metadata adding

constraints on the addresses that can

be modelled. Fat pointers have no

such limitation!

35 35

Shadow memory application – detect UAF

int main() {
 char *p = (char *)malloc(sizeof(char));
 *p = 0;
 free(p);
 *p = 255;
 return 0
}

UAF; Undefined behaviour

int main() {​
 char *p = (char *) malloc(sizeof(char));​
 sea_is_alloc(p);
 *p = 0;​
 free(p);​
 sea_is_alloc(p);
 *p = 255;​
 return 0​
}Intrinsic like sea_is_alloc operate on

program metadata.

Note: This scheme relies on fat pointers

that store base address.

Intrinsics to track other program

properties – e.g., sea_is_mod (RO

memory integrity)

Prog

Memory

Base Offset Size isAlloc

p -- -- -- 0 or 1

36 36

BACKEND: VCGEN as a (symbolic) VM

36

V

C
G

e
n

IR

VC

(SEA-IR)

Instructions

SMT

formula (VC)

Symbolic Virtual Machine

ALU
add, sub, or

Interpreter
%83 = load i32, i32* %81

Memory Manager
loadIntFromMemory, loadPtrFromMemory

Memory Rep
lambdas, arrays

Memory Allocator
dynamic, static, …

Constant

Evaluator
eval globals

~ 10 KLOC of C++

Swap components to affect VCGen!

External View Internal View

37 37

aws-c-common benchmark verification time

SEABMC CBMC SMACK SYMBIOTIC KLEE

Total Time 710s 6,398s 6,370s 10,946s 5,741s

Comparision with SeaBMC, CBMC, SMACK, SYMBIOTIC, KLEE

Read only memory proof using shadow memory (rewrite 70 proofs)

SEABMC config Total time

Shadow 90s

No shadow 143s

https://github.com/seahorn/verify-c-common

38 38
https://www.rust-lang.org/

39 39

Rust makes memory problems obsolete…

40 40

Rust is mature enough to be used in Linux

https://www.zdnet.com/article/linus-torvalds-rust-will-go-into-linux-6-1/

41 41

Do only safe Rust programs compile?

fn main() {

let a = [1, 2, 3, 4, 5];

let index = 10;

let element = a[index];

println!("{}", element);

} Compile fails: Out-of-bounds access detected at

compile time.

Compile ok: Out-of-bounds access not detected at

compile time or run time.

Unsafe access in safe code!

let element = a[index];

| ^^^^^^^^ index out of

bounds: the len is 5 but the index is 10

fn main() {

let a = [1, 2, 3, 4, 5];

let mut p = a.as_ptr();

let slice;

unsafe {

p = p.offset(10);

slice = slice::from_raw_parts(p, 1);

}

println!("{}", slice[0]);

}

42 42https://users.rust-lang.org/t/exploring-rust-developing-a-custom-graph/57785

43 43

The Case for BMC for Rust

Rust is a great advancement for low-level languages

The type system is great at finding many subtle issues

However, any non-trivial program requires unsafe handling of raw
pointers

Problem: Unsafe bits in Rust, make the whole program unsafe!

Solution: Use LLVM Bounded Model Checking for whole program
analysis of unsafe Rust programs

44 44

c-rust: The SeaHorn Rust Pipeline

Compile

with LTO
C entrypoint

Rust src as

library

Stubbed out

functions

LLVM

bitcode

https://github.com/agurfinkel/c-rust

with Siddharth Priya, Boris Jancic, Thomas Hart

45 45

c-rust: Research Challenges

We can now verify Rust programs by reducing them to LLVM IR (i.e., C-
like programs)

This is similar to analyzing x86 executables (or analyzing assembly)

• Pro: verification does not depend on the compiler (and finds compiler bugs)

• Cons: scalability is a challenge

– verification does not benefit from higher-level ownership concepts

– verification is complicated by complex complier lowering of concepts

Challenge 1

• develop low-level intermediate representation (IR) that captures ownership
semantics

Challenge 2

• efficient verification of IR with ownership semantics

46 46

Extend SEA-IR with explicit Ownership Operations

Introduce new SEA-IR operations

• mvmem2reg, die, brmem2reg, to represent, moving, returning, and borrowing
ownership of pointers between memory and registers

• wrcache, rdcache to cache metadata directly at a pointer

// Px are pointer registers
// Rx are data registers
// Mx are memory registers
// (contain a memory region)
P0 = load PP0, M0
R0 = load P0, M0
R1 = R0 + 1
M1 = store R1, P0, M0
R2 = load P1, M1
R3 = R2 + 1
M2 = store R3, P1, M1
// P0, P1 may alias.
// Reload data at P0.
R4 = load P0, M2
assert R4 == 5
die P0

SEA-IR program with aliasing..

// P0 is moved.
// Hence, a unique ptr
P0 = mvmem2reg PP0, M0
R0 = load P0, M0
R1 = R0 + 1
// Cache write through P0
// as P0 unique
P2 = wrcache R1, P0
M1 = store R1, P2, M0
R2 = load P1, M1
R3 = R2 + 1
M2 = store R3, P1, M1
// Cache read as P2 unique
R5 = rdcache P2
R4 = load P0, M2
// Assert on cached value
assert R5 == 5
die P2

SEA-IR with explicit ownership

P0 = mvmem2reg PP0, M0
R0 = load P0, M0
R1 = R0 + 1
P2 = wrcache R1, P0
R5 = rdcache P2
assert R5 == 5

Extraneous instructions
removed, including
mem access through P0

47 47

Verification time comparison

C

• memory operations generated in
verification conditions

• verification time grows with array
size

Rust

• verification time does not depend
on array size

• very small vectors on stack
generate memory load/store
operations

48 48

Conclusion

Code-as-Spec empowers developers to write specifications
• familiar from unit testing
• executable counterexamples provide familiar feedback
• effectively share specifications between very different QA tools

Beware of bugs in specifications
• simple vacuity is very helpful
• much more research work is required!

SeaBMC – a new Bounded Model Checker for LLVM
• supports many features of LLVM IR

– including memcpy, memmove, overflow instrinsics, etc.
• easy-to-use by using standard “de-facto” language semantics and integration with

mainstream constructor

• performance comparable / better than state-of-the-art
• support for fat pointers and shadow memory simplifies property specification
• support for Rust is in active development – looking for interesting case studies

49 49

References

SeaHorn

• http://seahorn.github.io/

• includes CHC (spacer), AbsInt (clam/crab), BMC (SeaBmc), Alias (SeaDsa)

Case-Studies

• https://github.com/seahorn/verify-c-common

• https://github.com/seahorn/verifyTrusty

• https://github.com/agurfinkel/c-rust

Papers

• Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao, Arie
Gurfinkel: Verifying Verified Code. The 19th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2021)

• Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao, Arie
Gurfinkel: Bounded Model Checking for LLVM. The 22nd International
Conference on Formal Methods in Computer-Aided Design (FMCAD 2022)

Blogs (on c-rust)

• http://seahorn.github.io/blog/

http://seahorn.github.io/
https://github.com/seahorn/verify-c-common
https://github.com/seahorn/verifyTrusty
https://github.com/seahorn/verify-c-common/blob/master/assets/paper_expanded.pdf
https://github.com/seahorn/verify-c-common/blob/master/assets/fmcad2022.pdf

50 50

END

	Slide 1: Verifying Verified Code
	Slide 2: The Team
	Slide 3: VSTTE 2005
	Slide 4: VSTTE 2005
	Slide 5: Automated (Software) Verification
	Slide 6: Automated Software Analysis
	Slide 7: Automated Verification
	Slide 8
	Slide 9: Architecture of Seahorn
	Slide 10: Bounded Model Checking (BMC)
	Slide 11: Backend: Verification Condition Generation
	Slide 12: SOTA Competition
	Slide 13: SeaBMC: BMC for LLVM
	Slide 14: Case Study: aws-c-common library
	Slide 15: Code as Spec (CaS): A Unit Proof
	Slide 16: Code-as-Spec (CaS) features
	Slide 17: Research Questions
	Slide 18: RQ1: Semantics is important!
	Slide 19: RQ1: Semantics is important!
	Slide 20: RQ1: Does CaS empower multiple (analysis) tools?
	Slide 21: RQ1: Does CaS empower multiple (analysis) tools?
	Slide 22: RQ2: Are there bugs in verified code?
	Slide 23: RQ2: Are there bugs in verified code?
	Slide 24: Vacuity in CaS
	Slide 25: RQ2: (potential) bug due to UB: Bug
	Slide 26: Found (potential) bug due to UB: Fix
	Slide 27: RQ3: Can CaS specs be improved?
	Slide 28: Case Study Architecture
	Slide 29: SeaBMC
	Slide 30: SEA-IR – purify memory operations
	Slide 31: SEA-IR – purify memory operations
	Slide 32: SEA-IR: Program transformation
	Slide 33: Shadow memory and fat pointers
	Slide 34: Fat pointer application – detect OOB access
	Slide 35: Shadow memory application – detect UAF
	Slide 36: BACKEND: VCGEN as a (symbolic) VM
	Slide 37: aws-c-common benchmark verification time
	Slide 38
	Slide 39: Rust makes memory problems obsolete…
	Slide 40: Rust is mature enough to be used in Linux
	Slide 41: Do only safe Rust programs compile?
	Slide 42
	Slide 43: The Case for BMC for Rust
	Slide 44: c-rust: The SeaHorn Rust Pipeline
	Slide 45: c-rust: Research Challenges
	Slide 46: Extend SEA-IR with explicit Ownership Operations
	Slide 47: Verification time comparison
	Slide 48: Conclusion
	Slide 49: References
	Slide 50: END

