Program Verification with Constrained
Horn Clauses

Prof. Arie Gurfinkel
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada

April 12th 2023

joint work with A. Komuravelli, S. Chaki, G. Fedyukovich, % UNIVERSITY OF

S. Shoham, N. Bjerner, Hari Govind V. K., Y. (Jeff) Chen @ WATERLOO

>

Infamous Software Disasters

Between 1985 and 1987, Therac-25 gave patients massive overdoses
of radiation, approximately 100 times the intended dose. Three patients
died as a direct consequence.

On February 25, 1991, during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabia, failed to track and intercept an
incoming Iraqi Scud missile. The Scud struck an American Army
barracks, killing 28 soldiers and injuring around 100 other people.

On June 4, 1996 an unmanned Ariane 5 rocket launched by the
European Space Agency forty seconds after lift-off. The rocket was on
its first voyage, after a decade of development costing $7 billion. The
destroyed rocket and its cargo were valued at $500 million.

http://www5.in.tum.de/~huckle/bugse.html

IIIIIIIIIIII

WATERLOO

“Recent” Software “Disasters”

BUSINESS

FAA Finds New Software Problem in Boeing’s 737 MAX

Plane maker agrees to address the problem and believes it can be fixed with a software tweak

By Andrew Tangel and Andy Pasztor
Updated June 26,2019 9:55 pm ET

& vt pA TEXT

Boeing Co. and federal regulators said they have identified a new software problem on the
737 MAX, further delaying the process of returning the troubled jet to service.

Opinion The millennium bug wasreal -and 20
) years later we face the same threats
Martyn Thomas
Tue 31 Dec 2019 09.00 GMT The Y2K problem is now seen as a bit of a joke - but only a fool
_ = Wwouldbe complacent about the vulnerability of IT systems

https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history.html#slide1

%) WATERLOO 3

https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history.html

“Smart” Contracts Disasters

https://Inews.bitcoin.com/25-of-all-smart-contracts-contain-critical-bugs/

L0101001110000@1 000000011
JO0000110110001 100010
.1000110110001000 110

000110111001100100

25% of All Smart Contracts

13,732 views | Jul10, 2018, 11:38pm

Contain Critical Bugs Blockchain Smart Contracts:
More Trouble Than They Are
£ coindesk Wor th?

Bitcoin 24h Ethereum 24h XRP 24h Sherman Lee Contributor ®
$7,53714 +1.30% $14116 +2.74% $0.217891 +1¢ Asia
7
o Twrite about deep tech, crypto, and artificial intelligence.

Story from Tech —

The DAO Attacked:

Code Issue Leads to
$60 Million Ether Theft

Jun 17,2016 at 13:00 UTC = Updated Jun 18, 2016 at 13:46 UTC

%) WATERLOO 4

https://news.bitcoin.com/25-of-all-smart-contracts-contain-critical-bugs/

“Smart” Contracts Disasters

@ PYMNTS TV Today B2B Retail Fintech ConnectedEconomy ™ Crypto EMEA

Aku’s Nightmare: $34M Locked Forever as
Flaw Highlights Danger of Smart Contracts

BY PYMNTS | APRIL 25, 2022 OYylA= 100

In the case of the high-profile Aku Dreams project, created by former baseball player Micah Johnson, a series of coding
errors turned into a $34 million disaster, locking 11,539 ether into a smart contract that cannot pay out.

But Aku Dreams’ problems cannot be totally attributed to hackers. The part of the smart contract that caused the problem

was not exploited directly, and thus gives a better argument for proponents who say that smart contracts should not be
made unchangeable.

https://www.pymnts.com/blockchain/2022/akus-nightmare-34m-locked-forever-as-flaw-highlights-danger-of-smart-contracts/

https://twitter.com/OxInuarashi/status/1517674505975394304

%) WATERLOO 5

Proving that Android’s, Java's and
Python’s sorting algorithm is broken (and
showing how to fix it)

© February 24,2015 @ Envisage Written by Stijn de Gouw. & S$s

Tim Peters developed the Timsort hybrid sorting algorithm in 2002. It is a clever combina-
tion of ideas from merge sort and insertion sort, and designed to perform well on real
world data. TimSort was first developed for Python, but later ported to Java (where it ap-
pears as java.util.Collections.sort and java.util.Arrays.sort) by Joshua Bloch (the designer
of Java Collections who also pointed out that most binary search algorithms were broken).
TimSort is today used as the default sorting algorithm for Android SDK, Sun’s JDK and
OpenJDK. Given the popularity of these platforms this means that the number of comput-
ers, cloud services and mobile phones that use TimSort for sorting is well into the billions.

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

%) WATERLOO

Automated (Software) Verification

Program and/or model

/V Correct
Reasoning \ X

Automated

Incorrect

Alan M. Turing. "Checking a large routine” 1949

How can one check a routine in the sense of making sure that it is right?

prograsaer should make a number of dofinite assortions which can be checked
individually, and from which the correctness of the whole programme casily

WATERL FolLow.

Automated Software Analysis

Model Checking

[Clarke and Emerson, 1981] [Queille and Sifakis, 1982]

Abstract Interpretation Symbolic Execution

[Cousot and Cousot, 1977] [King, 1976]

Automated Verification

Deductive Verification
A user provides a program and a verification certificate
— e.g., inductive invariant, pre- and post-conditions, function summaries, etc.
* A tool automatically checks validity of the certificate
— this is not easy! (might even be undecidable)
« Verification is manual but machine certified

mgorithmic Verification \
« A user provides a program and a desired specification

— e.g., program never writes outside of allocated memory
« A tool automatically checks validity of the specification

— and generates a verification certificate if the program is correct

— and generates a counterexample if the program is not correct
\-Verification is completely automatic — “push-button” /

UNIVERSITY OF

WATERLOO 9

Software Model Checking of
Programs / Transitions Systems /
Push-down Systems

Satisfiability of Constrained
Horn Logic (CHC) fragment of
First Order Logic

Reduce Model Checking to
FOL Satisfiability

IIIIIIIIIIII

10

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

YV - (o Ap1[X1 A ApplXa]) = h|X]

* ¢ - constraint in a background theory T
« T - background theory
—Linear Arithmetic, Arrays, Bit-Vectors, or combinations
I/ - variables, and X; are terms over V
*Dq, -, Py h - N-ary predicates
 p;[X] - application of a predicate to first-order terms

IIIIIIIIIIII

%) WATERLOO 1

CHC Satisfiability

I1 - set of CHCs
M - T-model of a set of IT
M satisfies T
M satisfies IT — through first-order interpretation of each predicate p;

A set of clauses is satisfiable if and only if it has a model
 This is the usual FOL satisfiability

T-solution of a set of CHCs II is a substitution o from predicates p,to T-
formulas such that Il is T-valid

In the context of program verification

Program = ¢ iff CHCprogram = @
Inductive Invariant = Solution to CHC
B \LeRsy oF Counter Example Trace = Resolution proof of CHC

12

Example CHC: Is this SAT?

V- <0 = P(x)
Ve, o' - Plx) Nz <5AN2' =x+1 = P(2)
Ve - Plx) Ax > 10 = false

Yes! This set of clauses is satisfiable
The model is an extension of the standard model of arithmetic with:

Px)={z |z <5}
={5,4,3,2,...}

Note that P(x) is definable by LIA predicate x <=5

IIIIIIIIIIII

%) WATERLOO 13

Validating the solution
Original CHC
Ve-x <0 = P(x)
Ve, o' - Plx) Nx <5AN2' =x2+1 — P(2)
V- Plx) ANx > 10 = false

Validation of P(x) = {x | x <= 5}

FVr -2 <0 = =<5
Ve, 2 x<H5AhNx<bhAx =z+1 = 2’ <5
FVr-x <5Ax>10 = false

IIIIIIIIIIII

14

Example CHC: is this SAT?

Ve -2 <0 = Q(x)
Ve, o' - Q) Az <bAhx' =xz+1 = Q')
Ve -Q(x) Nx > 2 = false

No! This set of clauses is unsatisfiable

Justification is a refutation by resolution and instantiation

IIIIIIIIIIII

%) WATERLOO 15

Example CHC: is this SAT?

Ve -z <0 = Q(x)
Ve, - Qx)ANx <b5Ad =z+1 = Q')
Ve -Q(x) Nz >2 = false

Refutation

Ve-x <0 = Q(x)
Q(0) Ve-Qx) Ne<b = Q(x+1)
Q(1)
Ve -Qx)ANx <bh = Q(z+1)
Q(2)
Ve -Q(x) Nx > 2 = false
false

(z=0)

IIIIIIIIIIII

16

Spacer

INTERACTIVE TUTORIAL

https://github.com/agurfinkel/spacer-on-jupyter/blob/master/[FSU_2023.ipynb

try it on Google Colab ¢)

IIIIIIIIIIII

%) WATERLOO 17

Applications of CHCs

Prototyping different strategies and proof rules for verification
« verification by inductive invariants

modular invariants

predicate abstraction

modular proof rules for concurrent systems

verification of parameterized systems

type inference for refinement type systems

synthesis

create new verification tools by reducing to CHCs

Building automated verification tools

« SeaHorn, JayHorn, RustHorn, ...
« SmartACE, SolCMC, ...

UNIVERSITY OF

WATERLOO

22

Horn Clauses for Program Verification

Rybalchenko et al. Synthesizing Software
VerifierS from PrOOf RUIeS. PLDI'12 Weakest Preconditions If we apply Boogie directly we obtain a translation

from programs to Horn logic using a weakest liberal pre-condition calculus [26):
Loul\-b[)! wo (40,! WWALILAL 1D aus LlALL: y\.’llll ALV DULALTOOVL Lusw.

with the edges are formulated as follows: ToHorn(program) := wip(Main(), T)A [\ ToHor(decl)
decl€ program
Pinit(To,w, L) + T = x9 where z occurs in w ToHorn(def p(z) {S}) := wi (havoc Io;assume o = T;)
Pezit(To, ret, T) €(xo,w, T) for each label £, and re P Ppre(2); 5, P(zo, ret)
wip(z :=FE,Q):=letz=FE in Q
p(z,ret, L, L) peie(z, ret, L) wip((if E then S; else S,), Q) := wip(((assume E; S;)J(assume —E; S)), Q)
p(z,ret, L, T) ¢ Pezit(z, ret, T) wip(($,082), Q) := wip(S:, Q) A wip(S,,Q)
bos(Ta.w'.e.) ¢ binlza. w.e:) A —e: A ~wln(S.—(e: = wip(81; 52, Q) := wip(S:, wip(S2,Q))
wip(havoc z,Q) :=Vz . Q
wip(assert ¢, Q) ;= AQ
wip(assume ¢, Q) := ¢ — Q
wip((while E do S),Q) := inv(w) A
~ ((inv(w) AE) = wlip(S, inv(w)))
5. incorrect :- Z=W+1, W>0, W+1< - (A((,-m-(w)A_E) ' Q))

read(A,W,U), read(A,z
6. p(I1,N,B) :- 1<I, I<N, D=I—1, T1=T+1. V=U+1.

read(A, D, U), Write(A To translate a procedure call £ : y := g(E); £ within a procedure p, create
7.o(I.N.A) :-I=1. N>1. SRS

p(wo, wy) + p(wo, wy), call(w;, w), g(w,, w3), return(w,, ws, wy)

+ p(wo, w1), call(w;, w7)
—x=02=E,7x =4,
¢

’ " [’ J |
T =4, .., w =wret' [y, [x]

,)

De Angelis et al. Verifying Array Cafl(w " ;
Programs by Transforming)
Verification Conditions. VMCAI'14

return(w, w’, w"

Bjgrner, Gurfinkel, McMillan, and Rybalchenko:

UNIVERSITY OF Horn Clause Solvers for Program Verification
%9 WATERLOO 9 23

Horn Clauses for Concurrent / Distributed /

Parameterized Systems

For assertions Ry,..., Ry overV and Ey, ..., En over V, V',
CMl1 : nit(V) — R;i(V)
CM2: R;(V) A pi(V, V') - Ri(Vl)

CM3 : (Viel..N\{j} Ri(V)Api(V, V")) — E;(V, V')
CM4: Ri(V)ANE;(V,V)Apr(V,V') — Ry(V')
CM5: Ri(V)A---ARNn(V) A error(V) — false

multi-threaded program P is safe

Rybalchenko et al. Synthesizing Software
Verifiers from Proof Rules. PLDI'12

{R(& Po(1)slo(1)s- -+ s Po) lok)) < dist(p1,---Pi) AR(8;P1, 11, -5 Pis li) }o‘esk Q)
R(g,p1,l1;---,Pks k) < dist(p1,...,px) ANnit(g, 1) A--- Alnit(g, Ix) @)
R P11y, Pis k) <= dist(pr,--,pe) A ((8511) 2 (€511) AR(8,PL 1,5 Pes) (B)
R ,p1,l1,- P k) < dist(po,p1,---,px) A ((g,10) 23 (&/,15)) ARConj(0, ..., k) ©
false dist(pl,...,p,)/\(A (i=piA(e))) eE,-))ARConj(l,...,r) (10)

j=1,...m

Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-
ant. Sy is the symmetric group on {1,...,k}, i.e., the group of all permutations of k numbers; as an
optimisation, any generating subset of Sy, for instance transpositions, can be used instead of Sy. In (10),
we define r = max{m,k}.

Hojjat et al. Horn Clauses for Communicating Timed
Systems. HCVS'14

Init(i, ,©) A Init(j,i,) A
Init(i,4,v) A Init(j, j,v) = L2(i, §,v)
I(3,5,0) A Tr(i,9,7) = I2(4,5,7) ()

(initial) init(g, z1) A -+ - Ainit(g,) = Inv(g, linit, T1, - - - 5 linit, Tk Iz(’i] 5) /\ Tr(j 5 ﬁ/) e Iz(i] 5’) (4)
1J))) 1J)
(induCtiVe) I’I’L’U(g,él,xl,...,Zi,(Ei,---,Z}c,wk)/\s(g,xi,gl,w;) —)Inv(g',ll,xl,...,f;,z;,...,Zk,.' 12(1:"7', 6) /\ I2(’[:, k, E) /\ IQ(j, k, 5) /\ (5)
(non-interference) Inv(g, €1, 1, - -, 2k, Tk) A — 5 5 Yy
Ino(g. £ a1 Loz e 7) A Tr(k,v,v) Nk #iNk #j= I2(i,5,V)
: I5(i, j,v) = —Bad(i, j,)
Inv(g, 1,21, .., lu—1,z-1,€, 27 A s(g,21,9',-) = Inv(g, b1, 1, . .., Lk, k)
(safe) Inv(g, b1, 21, .., £k, zk) Aerr(g, €1, 21, . . ., bm, Tm) — false Figure 3: VC(T) for two-quantifier invariants.
Figure 6. Horn clause encoding for thread modularity at level k (where (£;, s, £;) and (£, s, -) refer to statement s on a1 Gurfinkel et al. SMT-Based Verification of
from £; to £; and, respectively, from £ to some other location in the control flow graph) Parameteri.zed Systems ESE 2016
G UnvERsTY of Hoenicke et al. Thread Modularity at Many
@ WATERLOO | | evels. POPL'17 24

Logic-based Algorithmic Verification

Spacer

IIIIIIIIIIII

25

Logic-based Algorithmic Verification

Simulink

G concurrent
w /distributed
’ systems
CPR
[Terrfnination Smart
or C
Contracts

Spacer m
| 1
fs i -

HornDroid

IIIIIIIIIIII

%) WATERLOO 26

Logic-based Algorithmic Verification (in 2022)

Data Trees
@ CAV2022

Java
Rust
Synthesis RustHorn
MESSY: %

Simulink $
| Spacer

IIIIIIIIIIII

%) WATERLOO 07

SmartACE

SolCMC

@ CAV2022

A Brief History of Modern CHC in MC

PLDI 2012 S. Grebenshchikov, N. P. Lopes, C. Popeea, A. Rybalchenko , “Synthesizing
software verifiers from proof rules’

« Constrained Horn Clauses as input format for Software Model Checkers

SAT 2012 K. Hoder, N. Bjgrner , “Generalized Property Directed Reachability”
« IC3/PDR for SMT == Solving CHCs

SMT 2012 N. Bjarner, K. L. McMillan, A. Rybalchenko, “Program Verification as
Satisfiability Modulo Theories”

« CHC format extension for SMT-LIB

CAV 2014 A. Komuravelli, G., S. Chaki, “SMT-Based Model Checking of Recursive
Programs”

« First version of SPACER as an extension of GPDR in Z3

CAV 2015 G, T. Kahsai, A. Komuravelli, J. Navas , “The SeaHorn Verification
Framework”

« First robust and efficient automated verification tool based on CHC solving

2018 1st CHC-COMP, SPACER merged into Z3 master
* https://chc-comp.github.io/2018/

%) WATERLOO

Current State of CHC Solving

Multiple mature solvers using competing techniques and algorithms
« Spacer (in Z3), Eldarica, FregHorn, Golem, ...

Annual competition
« CHC-COMP: https://chc-comp.qgithub.io/
e in 2022, 7 tracks with 5+1 solvers

Growing collection of benchmarks
* maintained by CHC-COMP
« established (simplified) format
« organized in separate repos under https://github.com/chc-comp

Growing number of academic and industrial users
« SeaHorn, JayHorn, RustHorn, MESSY, SolType, SolC SMTChecker, ...

UNIVERSITY OF

WATERLOO

29

https://chc-comp.github.io/
https://github.com/chc-comp

Art, Science, and Magic of CHCs

Model Checking of Safety Properties is CHC satisfiability
 Logic: Constrained Horn Clauses (CHC)
« “Decision” procedure: Spacer
« Constraints: arithmetic, bv, arrays, quantifiers, adt + recfn, ...

Art: finding the right encoding from the problem domain to logic
« the difference between easy to impossible
« encodings can “simulate” specialized algorithms

Science: Progress, termination (when decidable)

 while the underlying problem is undecidable, many fragment or sub-problems
are decidable

Magic: really solving useful problems

* interpolation, heuristics, generalizations, ...
 the list is endless

UNIVERSITY OF

WATERLOO

30

END

%) WATERLOO

SOLVING CONSTRAINED
HORN CLAUSES

IIIIIIIIIIII

32

A little bit of complexity

Satisfiability of CHC over most interesting theories is undecidable
 e.g., CHC(Linear Real Arithmetic), CHC(Linear Integer Arithmetic)
 proof: many easy reductions, for example, counter automata

Satisfiability of Linear CHC over Propositional logic is decidable
 Finite state model checking of transition systems
« Complexity: linear in the size of the graph induced by the transition system

Satisfiability of Non-Linear CHC over Propositional logic is decidable
 Finite state model checking of pushdown systems

« Complexity: cubic in the size of the pushdown system

Decidability of some classes of CHC: Difference arithmetic (= timed automata)

UNIVERSITY OF

WATERLOO 33

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN
« QARMC, Eldairica, ...
Maximal Inductive Subset from a finite Candidate space (Houdini)
« TACAS'18: hoice, FreqHorn
Machine Learning
« PLDI'18: sample, ML to guess predicates, DT to guess combinations
Abstract Interpretation (Poly, intervals, boxes, arrays...)
« Approximate least model by an abstract domain (SeaHorn, ...)
Interpolation-based Model Checking
 Duality, QARMC, ...

e
SMT-based Unbounded Model Checking (building on IC3/PDR)

« SPACER, Implicit Predicate Abstraction
o

%) WATERLOO

34

Spacer: Solving SMT-constrained CHC

Spacer: SAT procedure for SMT-constrained Horn Clauses
* now the default CHC solver in Z3
— https://github.com/Z3Prover/z3
— dev branch at https://github.com/agurfinkel/z3

Supported SMT-Theories

 Linear Real and Integer Arithmetic
« Quantifier-free theory of arrays
 Universally quantified theory of arrays + arithmetic
« Good support for many other SMT-theories
— bit-vectors, ADT, recursive functions, ...
Supports Non-Linear CHC

« for procedure summaries in inter-procedural verification conditions

« for compositional reasoning: abstraction, assume-guarantee, thread modular,
etc.

UNIVERSITY OF

WATERLOO

35

https://github.com/Z3Prover/z3

A Magician’s Guide to Solving Undecidable
Problems

Develop a procedure P for a decidable problem

Show that P is a decision procedure for the problem
 e.g9., model checking of finite-state systems

Choose one of

« Always terminate with some answer (over-approximation)
« Always make useful progress (under-approximation)

Y

Extend procedure P to procedure Q that “solves” the undecidable
problem

« Ensure that Q is still a decision procedure whenever P is
« Ensure that Q either always terminates or makes progress

UNIVERSITY OF

WATERLOO 36

SPACER’s guiding principles for solving CHCs

Make Progress
- always make progress

« if input CHC is unsatisfiable, after enough time, the solving procedure must
terminate with UNSAT

« e.g., examine longer and longer resolution proofs (i.e., unfoldings)

Keep Decidability
» decision procedure for decidable fragments

« usually, we ensure that solving procedures are decision procedures for CHC
over Propositional logic (i.e., finite state model checking)

 "sharpen” decidability result based on specific domain (i.e., LIA, ADT, etc.)
* many open decidability questions remain
— e.g., is Spacer a decision procedure for (encoding) of timed automata?

UNIVERSITY OF

WATERLOO

IC3, PDR, and friends

Init Tr Tr —-Bad

Finite State Machines
m (HW model checking)

[Bradley, VMCAI 2011]

Init Tr Tr —-Bad

Push Down Machines
(SW model checking)
[Hoder&Bjorner, SAT 2012]

%) WATERLOO 38

Verification by Incremental Generalization

l T, N=0

Yes

X

IIIIIIIIIIII

%) WATERLOO

/A counterexampl

of length N

l_ exists?
SMT

\

e

4

No, N:=N+1

No + bounded proof

/

SMT

Generalize proof

\

/

candid
Invy

4)

Is a safe inductive YES
invariant? —

SMT
/

1

ate

v

41

SPACER

IC3-style search for solutions to
CHCs

Works by recursively blocking
proof obligations (POB)

POB
* BAD states
* Predecessors to BAD
states

Generate predecessors using

quantifier elimination (Model
Based Projection)

%) WATERLOO

7

Is POB reachable?
POB

U

NO

Reachable
states
intersect
with POB ?

YES

Generate
predecessor
@ POB’

Is POB’
reachable?

YES VQ % NO

“4

lemma
state

NO

Learn h
L
reachable J [earn :>
_J

Lemmas
blockPOB ?

NO

4242

Ground Control to Spacer Tom:

(a,i + 1)
>

POB Queue

—
(v, t)

(', 7)

(©,])
Conjecture
Concretize

%) WATERLOO

beyond Spacer

CHC SOLVERS

IIIIIIIIIIII

44

CHC

COoMP Report on the 2022 edition

https://chc-comp.github.io/

Emanuele De Angelis, Inst. for Systems Analysis and Computer Science - National Research Council, Italy

Hari Govind V K, University of Waterloo, Canada

https://chc-comp.github.io/CHC-COMP2022 presentation.pdf

%) WATERLOO 45

Art, Science, and Magic of CHCs

Model Checking of Safety Properties is CHC satisfiability
 Logic: Constrained Horn Clauses (CHC)
« “Decision” procedure: Spacer
« Constraints: arithmetic, bv, arrays, quantifiers, adt + recfn, ...

Art: finding the right encoding from the problem domain to logic
« the difference between easy to impossible
« encodings can “simulate” specialized algorithms

Science: Progress, termination (when decidable)

 while the underlying problem is undecidable, many fragment or sub-problems
are decidable

Magic: really solving useful problems

* interpolation, heuristics, generalizations, ...
 the list is endless

UNIVERSITY OF

WATERLOO

95

END

%) WATERLOO

