
© 2011 Carnegie Mellon University

BOXES: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki

Software Engineering Institute
Carnegie Mellon University

January 28, 2011

2

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

3

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Software Engineering Institute (SEI)

Department of Defense R&D Laboratory (FFRDC)

Created in 1984

Under contract to Carnegie Mellon University

Offices in Pittsburgh, PA; Washington, DC; and Frankfurt, Germany

SEI Mission: advance software engineering and related disciplines to
ensure the development and operation of systems with predictable and
improved cost, schedule, and quality.

4

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

SEI Technical Programs

Networked Systems Survivability (CERT)
• Secure Software and Systems
• Cyberthreat and Vulnerability Analysis
• Enterprise Workforce Development
• Forensics

Software Engineering Process
Management (SEPM)
• Capability Maturity Model Integration (CMMI)
• Team Software Process (TSP)
• Software Engineering Measurement and Analysis (SEMA)

Acquisition Support (ASP)

Research, Technology, and System
Solutions (RTSS)
• Architecture-Centric Engineering
• Product Line Practice
• System of Systems Practice
• System of Systems Software Assurance
• Ultra-Large-Scale (ULS) System Perspective

Independent Research and
Development (IR&D)

5

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Research, Technology, and System Solutions
(RTSS) Program

Mission

Discover the mutual influences of structure
and behavior for software-reliant systems
at all scales to assure key quality attributes
for the achievement of business and mission
goals.

Vision

Assured and flexible
system capabilities at all scales

6

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Problems Faced by the DoD

Ultra-large-scale

systems

webs of software-

reliant systems,

people, economies,

and cultures

Embedded
systems
software
embedded in
hardware devices

Stand-alone
systems
software
applications

Software
product lines
families of
similar
systems

Systems of
systems
federations of
independent
systems

DoD’s ability to rapidly develop and field software-reliant capability across a variety
of systems is deficient. Part of the reason rests with DoD’s acquisition process; part
of the reason is technical.

Software systems science and engineering are inadequate to

• determine how to structure and adapt systems at all scales
• manage interactions among these types of systems
• assure software-reliant capabilities that are sufficiently reliable, secure,

responsive, and adaptable to change

Predict and control behavior Assure and bound behavior

Coupling to organizational structure and practices increases

7

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

RTSS: Research Mapping

Ultra-large-scale

systems

Embedded
systems

Stand-alone
systems

Software
product lines

Systems of
systems

Product Line Practice
focus

Architecture-Centric Engineering addresses all scales of systems

• Quality attribute foundations and analysis

• Architecture-centric practices

• Architecture principles for ULS systems

SoS Practice focus

SoS Software Assurance focus

• Engineering and technology for

SoS

• Integrated practices for SoS

• Failure patterns and mitigations in SoS

• Theories, Principles, and Methods

• Barriers/incentives to assurance

technology adoption

8

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Outline

Software Engineering Institute (SEI)

Introduction

Basic Abstract Interpretation

Boxes Abstract Domain

Conclusion

9

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Software is Everywhere

10

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Software is Full of Bugs!

“Software easily rates as the most poorly constructed,

unreliable, and least maintainable technological artifacts

invented by man”

 Paul Strassman, former CIO of Xerox

11

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Software Bugs are Expensive!

Intel Pentium FDIV Bug

• Estimated cost: $500 Million

Y2K bug

• Estimated cost: >$500 Billion

Northeast Blackout of 2003

• “a programming error identified as the cause of alarm failure”

• Estimated cost: $6-$10 Billion

“The cost of software bugs to the U.S.

economy is estimated at $60 B/year”
 NIST, 2002

12

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Some Examples of Software Disasters

Between 1985 and 1987, Therac-25 gave patients massive overdoses
of radiation, approximately 100 times the intended dose. Three patients
died as a direct consequence.

On February 25, 1991, during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabia, failed to track and intercept an
incoming Iraqi Scud missile. The Scud struck an American Army
barracks, killing 28 soldiers and injuring around 100 other people.

On June 4, 1996 an unmanned Ariane 5 rocket launched by the
European Space Agency forty seconds after lift-off. The rocket was on
its first voyage, after a decade of development costing $7 billion. The
destroyed rocket and its cargo were valued at $500 million.

 Details at http://www5.in.tum.de/~huckle/bugse.html

13

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Recent Examples

In July 2010, The Food and Drug Administration ordered Baxter
International to recall all of its Colleague infusion pumps in use and
provide a refund or no-cost replacement to United States customers. It
has been working with Baxter since 1999 to correct numerous device
flaws. Some of the issues were caused by simple buffer overflow.

In December 2010, the Skype network went down for 3 days. The
source of the outage was traced to a software bug in Skype version 5.

In January 2011, two German researchers have shown that most
“feature” mobile phones can be “killed” by sending a simple SMS
message (SMS of Death). The attack exploits many bugs in the
implementation of SMS protocol in the phones. It can potentially bring
down all mobile communication…

14

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Software Engineering is very complex

• Complicated algorithms

• Many interconnected components

• Legacy systems

• Huge programming APIs

• …

Software Engineers need better tools to deal with this complexity!

Why so many bugs?

15

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

What Software Engineers Need Are …

Tools that give better confidence than testing while remaining easy to
use

And at the same time, are

• … fully automatic

• … (reasonably) easy to use

• … provide (measurable) guarantees

• … come with guidelines and methodologies to apply effectively

• … apply to real software systems

16

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Automated Software Analysis

Program
Automated

Analysis

Correct

Incorrect

Software Model Checking with

Predicate Abstraction

e.g., Microsoft’s SDV

Abstract Interpretation with

Numeric Abstraction

e.g., ASTREE, Polyspace

17

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Numeric Abstract Interpretation

Analysis is restricted to a fixed Abstract Domain

Abstract Domain ≡ “a (possibly infinite) set of predicates from a
fixed theory” + efficient (abstract) operations

Abstract Domain Abstract Elements

Sign 0 < x, x = 0, x > 0

Box (or Interval) c1  x  c2

Octagon ± x ± y  c

Polyhedra a1x1 + a2x2 + a3x3 + a4  0

Common Numeric Abstract Domains

Legend

x,y program variables

c,ci,ai numeric constants

18

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Abstract Interpretation w/ Box Domain (1)

x := 0

while (x < 1000) {

 x := x + 1;

}

assert (x == 1000);

Program

x = 0

x = 0

x = 1

0<= x <=1

0<= x <=1

1<= x <=2

0<= x <=2

0<= x <=2

1<= x <=3

0<= x <=1000

0<= x < 1000

1<= x <= 1000

x = 1000

widening

1 2 3 4 5 Steps: 6 7 8 9

10 11 12 13 14

19

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Abstract Domain as an Interface

interface AbstractDomain(V) :

• V – set of variables

• A – abstract elements

• E – expressions

• S – statements

α : E → A γ : A → E meet : A  A → A

isTop : A → bool isBot : A → bool join : A  A → A

leq : A  A → bool αPost : S → (A → A) widen : A  A → A

All operations are over-approximations, e.g.,

 γ (a) || γ (b)  γ (join (a, b))

 γ (a) && γ (b)  γ (meet (a,b))

abstract concretize

abstract transformer order

20

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Example: Box Abstract Domain

(1, 10) meet (2, 12) = (2,10)

(1, 3) join (7, 12) = (1,12)

1  x  10 (1, 10) α γ 1  x  10

(a, b) meet (c, d) = (max(a,c), min(b,d))

(a, b) join (c, d) = (min(a,c),max(b,d))

αPost (x := x + 1) ((a, b)) = (a+1, b+1) (1, 10) + 1 = (2, 11)

Definition of Operations Examples

over-approximation

abstract concretize

21

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Abstract Interpretation w/ Box Domain (2)

assume (i=1 || i=2)

if (i = 1)

 x1 := i;

else if (i = 2)

 x2 := -4;

if (i = 1)

 assert (x1 > 0);

else if (i = 2)

 assert (x2 < 0);

1 <= i <= 2

i=1

i=1 && x1=1

i=2

i=2 && x2=-4

1 <= i <= 2

i=1

i=2

Loss of

precision due

to join

False

Positive

Program

1 2 3 4 5 Steps: 6 7 8

22

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Disjunctive Refinement of an Abstract Domain

Bounded disjunctions

• extend base domain with disjunctions of size at most k

• all operations are done by lifting corresponding base domain operations

• easy to implement by modifying program control flow graph

Finite Powerset Domain [Bagnara et al.]

• extend base domain with all finite disjunctions

• most operations are done by lifting corresponding base domain opertions

• finding a good widening is complex (and often tricky)

Predicate Abstraction

• extend finite base domain with all disjunctions

• domain elements are represented by BDDs

• no widening required

OUR

WORK

23

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Outline

Software Engineering Institute (SEI)

Introduction

Basic Abstract Interpretation

Boxes Abstract Domain

Conclusion

24

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Boxes: Semantic View

Boxes are “finite union of box values”

(alternatively)

Boxes are “Boolean formulas over interval constraints”

25

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Linear Decision Diagrams in a Nutshell*

x + 2y < 10

z < 10

1 0

Linear Decision Diagram

decision
node

true
terminal

false
edge

(x + 2y < 10) OR

(x + 2y  10 AND z < 10)

Linear Arithmetic Formula

Operations

• Propositional (AND, OR, NOT)

• Existential Quantification false
terminal

true
edge

Compact Representation

• Sharing sub-expressions

• Local numeric reductions

• Dynamic node reordering

*joint work w/ Ofer Strichman

26

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Boxes: Representation

Represented by (Interval) Linear Decision Diagrams (LDD)

• BDDs + non-terminal nodes are labeled by interval constraints + extra rules

• retain complexity of BDD operations

• canonical representation for Boxes Abstract Domain

• available at http://lindd.sf.net

x ≤1

10

x < 2

y < 1

y ≤ 3

LDD Semantics

1 2

1

3

(x ≤ 1 || x ≥ 2)

&&

1 ≤ y ≤ 3

Syntax

http://lindd.sf.net/

27

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Abstract Domain Operations

Additional operations

• set difference f ∖ g implemented by f ⋀¬g

• BoxHull (f) – smallest Box containing f

• BoxJoin (f, g) – smallest Box containing the union of Box f and Box g

Operation Complexity

f ⋀ g O(|f||g|)

ITE(h, f, g) O(|h||f||g|)

¬ f O(1)

Operation Complexity

f ⋁ g O(|f||g|)

f ⇒ g O(|f||g|)

∃U. f O(|f| 2|U|)

Basic domain operations are implemented by LDD operations

meet
join

order
(semantic)

All operations are polynomial in the size of the representation

projection

28

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Transfer Functions (Post)
x ≤1

10

x < 2

y < 1

y ≤ 3

x ≤2

10

x < 3

y < 1

y ≤ 3

x ≤2

1

y < 1

y ≤ 3

x ≤2

1

x < 3

y < 1

y ≤ 3

x ≤1

1

y < 1

y ≤ 3

x ≤1

1

x < 2

y < 1

y ≤ 3

x := x + 1

x := x + 1 x := x + 1

expensive

boxes

box

polynomial

29

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Widening: The Problem

widen

(x  1  2  y  3) 

(2  x  3  1  y  2)

(x  1.5  1.5  y  3) 

(2  x  3  1  y  2)

30

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Step Function

A function on the reals ℝ is a step function if it can be written as a finite
linear combination of semi-open intervals

 f(x) = α1 f1 (x) +  + αn fn (x)

where fi 2 ℝ and αi(x)=1 if x 2 [ai, bi) and 0 otherwise, for i=1,…,n

Weisstein, Eric W. "Step Function." From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/StepFunction.html

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/StepFunction.html

31

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Step Functions as an Abstract Domain

1 2 3

x

32

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Step Functions as an Abstract Domain

STEP(D) an abstract domain of step functions over an abstract domain D

• elements are step functions ℝ→D

• order is pointwise: f ⊑ g iff 8 x . f(x) ⊑D g(x)

• join is pointwise: f ⊔ g is ¸ x . f(x) ⊔D g(x)

• meet is pointwise: f ⊓ g is ¸ x . f(x) ⊓D g (x)

• widen is pointwise: f ∇ g is ¸ x . f(x) ∇D g(x) ????

[0,3] [0,0] [1,10]

x

box

33

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Pointwise Extension of Widen Diverges

[0,3] [0,0] [1,9]

[0,5] [0,0] [1,10] [1,9] [1,9]

[0,∞] [0,0] [1,∞] [1,9] [1,9]

[0,∞] [0,0] [1,∞] [1,9] [1,9] [1,10]

[0,∞] [0,0] [1,∞] [1,9] [1,9]

[0,∞] [0,0] [1,∞] [1,9] [1,9] [1,10]

1

2

WDN

3

WDN

4

34

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Widening for Step Functions

[0,3] [0,0] [1,9]

[0,5] [0,0] [1,10] [1,9] [1,9]

1

2

[0,∞] [0,0] [1,∞] [1,9] [1,9]

[0,∞] [0,0] [1,∞] [1,∞] [1,∞]

[0,∞] [0,0] [1,∞]

Step 1

Step 2

Step 3

35

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Back to Boxes

Boxes are Step functions!

• 1-dim Boxes are STEP({⊥,⊤}) ℝ→{⊥,⊤}

• 2-dim Boxes are STEP (STEP ({⊥,⊤}) ℝ→ℝ→{⊥,⊤}

• n-dim Boxes are STEPn ({⊥,⊤}) ℝn→{⊥,⊤}

Widen for {⊥,⊤} is trivial

Widen for n-dim Boxes is defined recursively on dimensions

We give a polynomial time algorithm that implements this widen operator
directly on LDDs. (See paper for details)

36

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Widen: An Example

widen

x

y

x

y

x

y

37

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Widening: Example

1

2

Step 1

Step 2

Step 3

[2,3] [1,2]

[1.5,3] [1,2]

[-∞,3] [1,2] [1.5,3]

[-∞,3] [1,2] [1.5,3] [1.5,3]

[-∞,3] [1,2] [1.5,3]

38

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Widen: An Example

widen

x

y

x

y

x

y

39

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Boxes versus Finite Powersets

 Boxes Finite Powerset

Base domain Box Any

Representation Decision Diagram Set / DNF

Domain order semantic syntactic

Complexity
polynomial in

representation

polynomial in

representation

Singleton Widen Box base domain

Widen Step Function Multiple Choices

Our work

Bagnara et al.

Parma Polyhedra Library (PPL)

40

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Experiments: Invariant Computation

Abstract Domains

• LDD Boxes – Our Boxes domain using LDDs

• PPL Boxes – Pointset_Powerset<Rational_Box> of PPL

Analyzer

• custom analyzer on top of LLVM compiler infrustructure

• computes loop invariants for all loops over all SSA variables in a function

Benchmark

• from open source software: mplayer, CUDD, make, …

• Stats: 5,727 functions

 9 – 9,052 variables (avg. 238, std. 492)

 0 – 241 loops (avg. 7, std. 12)

41

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Results: Time

88%

12%

LDD Boxes

Success Failure

14%

86%

PPL Boxes

Success Failure

Total time = 118 min Total time = 201 min

5727 functions, each run with a time limit of 60s

42

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Results: Precision

32%

1%

44%

23%

Incomparable LDD less precise LDD more precise Same result

43

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Conclusion

Boxes: A new disjunctive abstract domain of sets of boxes

• efficient representation based on Linear Decision Diagrams

• semantic order relation

• efficient operations and widening

• more precise and efficient than finite powersets of box

A new widening scheme

• lifting widening from a base domain to the domain of step functions

Future Work

• applications

• extending the technique to richer base domains, i.e., octagons, TVPI

– representation and base operations are easy (already exist in LDD)

– widening?

http://lindd.sf.net

44

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

LDD Based Analysis Infrastructure

Linear Decision Diagram (LDD) Engine

CUDD Linear Arithmetic Theories

BOXES

Invariant

Generator
Software Model

Checker Concurrency +

Real Time Scheduling

SAS’10

Foundations

Current Work

FMCAD’09

45

Boxes: Abstract Domain of Boxes

Arie Gurfinkel and Sagar Chaki
© 2011 Carnegie Mellon University

Contact Information

Presenter

Arie Gurfinkel

RTSS

Telephone: +1 412-268-7788

Email: arie@cmu.edu

U.S. mail:

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Web:

www.sei.cmu.edu

http://www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

© 2011 Carnegie Mellon University

THE END

