
Machine Learning and Invariant
Synthesis

Arie Gurfinkel

Dept. of Electrical and Computer Engineering

University of Waterloo

Waterloo ML + Security + Verification Workshop

August 26 – 30, 2019

Waterloo, Ontario, Canada

2 2

Program and/or model

Automated
Reasoning

Correct

Incorrect

Alan M. Turing. ”Checking a large routine” 1949

Alan M. Turing. 1936: “Undecidable”

Automated (Software) Verification

3 3

P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN) 6) ?

Init) Inv

Inv(X) ^ Tr(X,X 0)) Inv(X 0)

Inv) ¬Bad

Symbolic Reachability Problem

4 4

Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation: Initial ⊆ Inv
• Safety: Inv ∩ Bad = ∅
• Consecution: TR(Inv) ⊆ Inv

Initial

i.e., if s ∈ Inv and s↝t
then t ∈ Inv

5 5

Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation: Initial ⊆ Inv
• Safety: Inv ∩ Bad = ∅
• Consecution: TR(Inv) ⊆ Inv

Initial

System S is safe if Reach ∩ Bad = ∅

Reach

i.e., if s ∈ Inv and s↝t
then t ∈ Inv

6 6

Program Verification with HORN(LIA)
z = x; i = 0;

assume (y > 0);

while (i < y) {

z = z + 1;

i = i + 1;

}

assert(z == x + y);

z = x & i = 0 & y > 0 è Inv(x, y, z, i)

Inv(x, y, z, i) & i < y & z1=z+1 & i1=i+1 è Inv(x, y, z1, i1)

Inv(x, y, z, i) & i >= y & z != x+y è false

IS SAT?

7 7

In SMT-LIB
(set-logic HORN)

;; Inv(x, y, z, i)

(declare-fun Inv (Int Int Int Int) Bool)

(assert

(forall ((A Int) (B Int) (C Int) (D Int))

(=> (and (> B 0) (= C A) (= D 0))

(Inv A B C D)))

)

(assert

(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))

(=>

(and (Inv A B C D) (< D B) (= C1 (+ C 1)) (= D1 (+ D
1)))

(Inv A B C1 D1)

)

)

)

(assert

(forall ((A Int) (B Int) (C Int) (D Int))

(=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))

false

)

)

)

(check-sat)

(get-model)

$ z3 add-by-one.smt2
sat

(model

(define-fun Inv ((x!0 Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool

(and (<= (+ x!2 (* (- 1) x!0) (* (- 1) x!3)) 0)

(<= (+ x!2 (* (- 1) x!0) (* (- 1) x!1)) 0)

(<= (+ x!0 x!3 (* (- 1) x!2)) 0)))

)

Inv(x, y, z, i)

z = x + i

z <= x + y

8 8

Spacer: Solving SMT-constrained CHC

Spacer: SAT procedure for SMT-constrained Horn Clauses

• now the default CHC solver in Z3

– https://github.com/Z3Prover/z3

– dev branch at https://github.com/agurfinkel/z3

Supported SMT-Theories

• Linear Real and Integer Arithmetic

• Quantifier-free theory of arrays

• Universally quantified theory of arrays + arithmetic

• Best-effort support for many other SMT-theories

– data-structures, bit-vectors, non-linear arithmetic

Support for Non-Linear CHC

• for procedure summaries in inter-procedural verification conditions

• for compositional reasoning: abstraction, assume-guarantee, thread modular,

etc.

https://github.com/Z3Prover/z3

9 9

(Un)Decidability Barrier

The problem of finding a safe inductive invariant is highly undecidable
• In many cases, even whenever the problem of finding a finite counterexample

is decidable, the inductive invariant problem remains undecidable
• In particular, in this talk, we assume that all components of the transition

system are in linear arithmetic (LIA or LRA)

The problem of validating whether a candidate formula (or set of states)
is an inductive invariant is (often) decidable
• In particular, decidability of the counterexample problem implies decidability

of validating candidate invariants
• In particular, validating inductive invariants is decidable for transition systems

over LRA and LIA

The problem of finding inductive invariant is decidable for transition
system over propositional logic
• a.k.a, the Finite State Model Checking

10 10

Machine Learning for (Software) Verification

Treat invariant discovery as a machine learning problem

The object being learned is an inductive invariant
• described in some language or data structure

Samples are various artifacts from program execution
• e.g., a program state is a vector in Rn

An invariant is a classifier that separates good and bad states
• A state is good if it is reachable state of the program
• A state is bad if it can reach a state that violates the property
• An invariant (if it exists) contains all good states, no bad states, and can

classify other states arbitrarily

11 11

ML for Verification: The Old Guard

There is a long history of applications of “machine learning” in software
verification
• after all, the problem is undecidable and no solution is perfect

For the purpose of this talk, the most relevant are:
Daikon
• Daikon is an implementation of dynamic detection of likely invariants, by M.

Ernst, A. Czeislery , W. Griswoldz , and D. Notkin. International Conference
on Software Engineering (ICSE) 2000.

Houdini
• Cormac Flanagan, K. Rustan M. Leino:

Houdini, an Annotation Assistant for ESC/Java. FME 2001: 500-517

https://dblp.uni-trier.de/pers/hd/f/Flanagan:Cormac
https://dblp.uni-trier.de/db/conf/fm/fme2001.html

12 12

Daikon: Overview

1.) n >= 0
2.) s = SUM(B)
3.) 0 £ i £ n

Determined Invariants

13 13

Houdini: Maximal Inductive Subset

Let L be a set of formulas, P=(V, Init, Tr, Bad) a program
A subset X of L is a maximal inductive subset iff it is the
largest subset of X such that

A Maximal Inductive Subset is unique
• inductive invariants are closed under conjunction

Cormac Flanagan, K. Rustan M. Leino¬ Houdini, an Annotation Assistant for ESC/Java. FME 2001¬ 500-517

Init(u)) ^`2X`(u)

^`2X`(u) ^ Tr(u, v)) ^`2X`(v)

14 14

Houdini: Algorithm Sketch

Start with a set of candidates S (the hypothesis space)

Check whether S is inductive (using some decision procedure)
• Yes: terminate
• No: there is s in S that is not preserved by the transition relation; remove s

and repeat

Guarantees to find the maximal inductive subset of S

15 15

ML for Verification: The Newcomers

ICE-DT:
• Pranav Garg, Daniel Neider, P. Madhusudan, Dan Roth:

Learning invariants using decision trees and implication
counterexamples. POPL 2016: 499-512

Data-driven CHC
• He Zhu, Stephen Magill, Suresh Jagannathan:

A data-driven CHC solver. PLDI 2018: 707-721
FreqHorn
• Grigory Fedyukovich, Samuel J. Kaufman, Rastislav Bodík:

Sampling invariants from frequency distributions. FMCAD 2017: 100-107
HOICE
• Adrien Champion, Naoki Kobayashi, Ryosuke Sato:

HoIce: An ICE-Based Non-linear Horn Clause Solver. APLAS 2018

Loop invariants
• Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, Le Song:

Learning Loop Invariants for Program Verification. NeurIPS 2018:

https://dblp.org/pers/hd/g/Garg_0001:Pranav
https://dblp.org/pers/hd/m/Madhusudan:P=
https://dblp.org/pers/hd/r/Roth:Dan
https://dblp.org/db/conf/popl/popl2016.html
https://dblp.org/pers/hd/z/Zhu:He
https://dblp.org/pers/hd/j/Jagannathan:Suresh
https://dblp.org/db/conf/pldi/pldi2018.html
https://dblp.org/pers/hd/k/Kaufman:Samuel_J=
https://dblp.org/pers/hd/b/Bod=iacute=k:Rastislav
https://dblp.org/db/conf/fmcad/fmcad2017.html
https://dblp.org/pers/hd/c/Champion:Adrien
https://dblp.org/pers/hd/s/Sato:Ryosuke
https://dblp.org/db/conf/aplas/aplas2018.html
https://dblp.uni-trier.de/pers/hd/s/Si:Xujie
https://dblp.uni-trier.de/pers/hd/d/Dai:Hanjun
https://dblp.uni-trier.de/pers/hd/r/Raghothaman:Mukund
https://dblp.uni-trier.de/pers/hd/s/Song:Le
https://dblp.uni-trier.de/db/conf/nips/nips2018.html

16 16

LEARNING INDUCTIVE INVARIANTS

17 17

Finding an Inductive Invariant

Discovering an inductive invariants involves two steps

Step 1: find a candidate inductive invariant Inv

Step 2: check whether Inv is an inductive invariant

Invariant Inference is the process of automating both of these
phases

18 18

Finding an Inductive Invariant

Two popular approaches to invariant inference:

Machine Learning based Invariant Synthesis (MLIS)
• e.g. ICE: Pranav Garg, Christof Löding, P. Madhusudan, Daniel Neider: ICE: A Robust

Framework for Learning Invariants. CAV 2014: 69-87
• referred to as a Black-Box approach

SAT-based Model Checking (SAT-MC)
• e.g. IC3: Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI

2011: 70-87
• referred to as a White-Box approach

19 19

Our Goal

Understand the relationship
between SAT-MC and MLIS

What is the fundamental difference
between White-Box and Black-Box?

20 20

Our Goal

• Study two state-of-the-art algorithms: ICE and IC3
• In other words: can we describe IC3 as an instance of ICE?

Understand the relationship
between SAT-MC and MLIS

What is the fundamental difference
between White-Box and Black-Box?

Yakir Vizel, Arie Gurfinkel, Sharon Shoham, Sharad Malik: IC3 - Flipping the E in ICE. VMCAI 2017

https://dblp.uni-trier.de/pers/hd/v/Vizel:Yakir
https://dblp.uni-trier.de/pers/hd/g/Gurfinkel:Arie
https://dblp.uni-trier.de/pers/hd/s/Shoham:Sharon
https://dblp.uni-trier.de/pers/hd/m/Malik:Sharad
https://dblp.uni-trier.de/db/conf/vmcai/vmcai2017.html

21 21

…Rn=post(Rn-1,Tr)

R2=post(R1,Tr)R1=post(INIT,Tr)

INIT

Reachability Analysis

Bad

22 22

Reachability Analysis

Computing states reachable from a set of states S using the post operator

! "#$%& ' = '
"#$%)*+ = "#$%) ' ∪ % $ ∈ ' ∧ ($, %) ∈ 23}

Computing states reaching a set of states S using the pre operator

! "35& ' = '
"35)*+ = "35) ' ∪ % $ ∈ ' ∧ (%, $) ∈ 23}

Transitive closure is denoted by post* and pre*

23 23

Machine Learning-based Invariant Synthesis

MLIS consists of two entities: Teacher and Learner

Learner comes up with a candidate Inv
• Agnostic of the transition system
• Uses machine learning techniques

Learner asks the Teacher if Inv is a safe inductive invariant

If not, Teacher replies with a witness: positive or negative
• Teacher knows the transition system

Referred to as Black-Box

23

24 24

Machine Learning-based Invariant Synthesis

Teacher Learner

candidate
Inv

a witness
s

NO

YES

25 25

Machine Learning-based Invariant Synthesis25

Teacher Learner

candidate
Inv

witness
s

NO

YES

aware of
Tr

not
aware of

Tr

26 26

Given a transition system T=(INIT, Tr, Bad) and a candidate Inv generated by

the Learner

When the Teacher determines Inv is not a safe inductive invariant, a witness is

returned:

• E-example: s ∈ post*(INIT) but s ∉ Inv

• C-example: s ∈ pre*(Bad) and s ∈ Inv

• I-example: (s,t) ∈ T such that s ∈ Inv but t ∉ Inv

Given a set of states S, the triple (E, C, I) is an ICE state
• E ⊆ S, C ⊆ S, I ⊆ S × S

A set J ⊆ S is consistent with ICE state iff

• E ⊆ J and J ∩ C = ∅
• for (s,t) ∈ I, if s ∈ J then t ∈ J

ICE: MLIS Framework (Garg et al. CAV 2014)

27 27

Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation: Initial ⊆ Inv
• Safety: Inv ∩ Bad = ∅
• Consecution: TR(Inv) ⊆ Inv

Initial

i.e., if s ∈ Inv and s↝t
then t ∈ Inv

28 28

ICE (Garg et al. CAV 2014)

29 29

ICE (Garg et al. CAV 2014)

J must be
consistent with QThe Learner is

passive - has no
control over the

Teacher

No requirement
for incrementality

30 30

SAT/SMT-based Model Checking

Search for a counterexample for a specific length

• using Bounded Model Checking with a SAT solver

If a counterexample does not exist, generalize the bounded proof into a
candidate Inv
• using interpolation with the help of a SAT solver

Check if Inv is a safe inductive invariant

• using a SAT solver, like in Houdini

Referred to as White-Box: Rely on a close interaction between the main
algorithm and the decision procedure (SAT/SMT solver) used

31 31

SMT-based Model Checking

counterexample
of length N

exists?
SMT

Generalize
proof

SMT

No + bounded
proof

candidate
Inv

Is safe
inductive
invariant?

SMT

No, N:=N+1Yes

YES

Tr, N=0

Generalizing from bounded proofs

32 32

Key IC3 Data Structure: Inductive Trace !
A sequence of state formulas called frames

32

…."# "$%#&'() "$

Properties of a trace:

• Inductive: "* ∧ ,- → "*/#0

• Monotone: ∀("*→ "*/#
• Safe: ∀("* → ¬345
• Closed: ∃("*→ ⋁8*%# "8

Frame "* over-approximates
states reachable in (steps

33 33

PDR/IC3 – SAT Queries

Trace [F0,…,FN], and Q ⊆ pre*(Bad), a state s ∈ Q ∩ Fi+1

Strengthening
• SAT query: is SAT (Fi ∧ ¬s) ∧ T ∧ s’
• Checking whether (Fi ∧ ¬s) ∧ T → ¬s’ is valid

If the above is satisfiable then there exists a state t in Fi that can reach Bad
• This looks like a C-example

In order to ”fix” Fi the state t must be removed

Now check
• (Fi-1 ∧ ¬t) ∧ T ∧ t’

33

34 34

PDR/IC3 – SAT Queries

Trace [F0,…,FN], try to push a lemma c ∈ Fi to Fi+1

Pushing
• (Fi ∧ c) ∧ T ∧ ¬c’
• is (Fi ∧ c) ∧ T → c’ valid?

If this is satisfiable then there exists a pair (s,t) ∈ T s.t. s ∈ Fi and t ∉ Fi+1

• It looks like an I-example
– Also, can be either an E- or C-example

In order to ”fix” Fi, either s is removed from Fi or t is added to it
• Strengthening vs Weakening

34

35 35

The Problem of Connecting ICE and IC3
35

IC3 reasons about relative induction

F is inductive relative to G when:

• INIT → F, and

• G(V) ∧ F(V) ∧ T(V,V’) → F(V’)

But, in ICE, the Learner (Teacher) asks (answers) about induction

and, the Learner in ICE is passive

• cannot control the Teacher in any way

• No guarantee for incrementality

36 36

RICE – ICE + Relative Induction
36

When G is true
it is a regular

inductive check

G allows the
Learner to have

some control
over the Teacher

37 37

RICE – ICE + Relative Induction

The Teacher in RICE reacts to queries about relative induction

The Learner can “manipulate” the Teacher using relative induction

RICE is a generalization of ICE where the Learner is an active learning
algorithm

37

38 38

RICE – ICE + Relative Induction

The Teacher in RICE reacts to queries about relative induction

Is F inductive relative to G?

If not, a witness is returned:
• E-example: s ∈ post*(INIT) but s ∉ F
• C-example: s ∈ pre*(Bad) and s ∈ F

• I-example: (s,t) ∈ T such that s ∈ F ˄ G but t ∉ F

38

39 39

IC3 AS AN INSTANCE OF RICE

39

40 40

IC3 Learner

The IC3 Learner is active and incremental

Maintains the following:

• a trace [F0, …, FN] of candidates

• RICE state Q=(E, C, I)

The Learner must be consistent with the RICE state

E-examples and C-examples may exist when F is inductive relative to G

• The Teacher may return an E-example or C-example when F is inductive relative to G

40

41 41

IC3 Learner - Strengthening
41

Strengthening:
• a C-example s in Fi

• (Fi ∧ ¬s ∧ ¬C(Q)) ∧ T ∧ (s ∨ C(Q))’

is (¬s ∧ ¬C(Q))
inductive relative to

Fi?

C-example:
add to Q

I-example:
treat like C-

example

E-example: a
cex exists

INIT → F, and
G(V) ∧ F(V) ∧ T(V,V’) → F(V’)

42 42

IC3 Learner - Pushing
42

Pushing:
• a lemma c in Fi

• (Fi ∧ c ∧ ¬C(Q) ∧ Fi+1) ∧ T ∧ (¬c ∨ C(Q) ∨ ¬Fi+1)’

is (c ∧ ¬C(Q) ∧ Fi+1)
inductive relative to

Fi?

C-example: do
not push and

add to Q

I-example: do
not push and

add to Q

E-example: do
not push and

add to Q

INIT → F, and
G(V) ∧ F(V) ∧ T(V,V’) → F(V’)

43 43

IC3 Learner - Pushing
43

Pushing:
• a lemma c in Fi

• (Fi ∧ c ∧ ¬C(Q) ∧ Fi+1) ∧ T ∧ (¬c ∨ C(Q) ∨ ¬Fi+1)’

is (c ∧ ¬C(Q) ∧ Fi+1)
inductive relative to

Fi?

C-example: do
not push and

add to Q

I-example: do
not push and

add to Q

E-example: do
not push and

add to Q

E- and C-examples
may exist even when

relative induction
holds

44 44

IC3 Teacher
44

Using a general Teacher, the described Learner computes a trace [F0, …, FN]
such that
• post*(INIT) → Fi → ¬pre*(Bad)

General Teacher is infeasible
• required to look arbitrary far into the future (for E-examples)

• required to look arbitrary far into the past (for C-examples)

Solution: add restrictions on E- and C-examples

45 45

IC3 Teacher
45

Is F inductive relative to G?

If not, a witness is returned:
• C-example: s ∈ prem(Bad) and s ∈ F
• I-example: (s,t) ∈ T such that s ∈ F ˄ G but t ∉ F
• E-example: s ∈ post0(INIT) but s ∉ F

Claim: Using this IC3 Teacher and the IC3 Learner results in an algorithm
that behaves like (simulates) IC3

46 46

What Can We Learn?
46

Can we lift the restriction that requires E-example to be in INIT only?

• Yes, a variant of IC3, called Quip, does that

There is no “real” weakening mechanism in IC3

• (Not) Pushing is a form of weakening

• But no ‘active’ weakening of candidates

• IC3 is incremental and never restarts

RICE – a fundamentally different framework for MLIS

• exponentially more effective learning (Y. Feldman et al.)

47 47

Program analysis is a difficult (undecidable) problem

• many more solutions/technqiues are needed!

Program Analysis is well suited for ML-based solutions

• Rich space of heuristics

• Easy definition of ‘ground truth’

But much better benchmarks / data sets are needed!

• existing benchmarks are not well suited for empirical research

Is program analysis harder / different than image recognition?

• 5 year olds are amazingly good at recognizing animals

• Not so good at distinguishing good and bad programs

• (are experts really that much better?)

Conclusions

48 48

Puppy?

