
© 2016 Carnegie Mellon University

Automated Program Analysis
with Software Model Checking

Arie Gurfinkel
Software Engineering Institute
Carnegie Mellon University

February, 2016

2
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Static Program Analysis

Reasoning statically about behavior of a program without executing it
• compile-time analysis
• exhaustive, considers all possible executions under all possible environments

and inputs

The algorithmic discovery of properties of program by inspection of the
source text

Manna and Pnueli, “Algorithmic Verification”

Also known as static analysis, program verification, formal methods, etc.

Automated

Analysis

Correct

Incorrect

Program

Specification

3
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Turing, 1936: “undecidable”

4
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Undecidability

The halting problem
• does a program P terminates on input I
• proved undecidable by Alan Turing in 1936
• https://en.wikipedia.org/wiki/Halting_problem

Rice’s Theorem
• for any non-trivial property of partial functions, no general and effective

method can decide whether an algorithm computes a partial function with that
property

• in practice, this means that there is no machine that can always decide
whether the language of a given Turing machine has a particular nontrivial
property

• https://en.wikipedia.org/wiki/Rice%27s_theorem

5
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Living with Undecidability

“Algorithms” that occasionally diverge

Limit programs that can be analyzed
• finite-state, loop-free

Partial (unsound) verification
• analyze only some executions up-to a fixed number of steps

Incomplete verification / Abstraction
• analyze a superset of program executions

Programmer Assistance
• annotations, pre-, post-conditions, inductive invariants

6
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

(Temporal Logic) Model Checking

Automatic verification technique for finite state
concurrent systems.

• Developed independently by Clarke and
Emerson and by Queille and Sifakis in early
1980’s.

• ACM Turing Award 2007

Specifications are written in propositional
temporal logic. (Pnueli 77)

• Computation Tree Logic (CTL), Linear Temporal
Logic (LTL), …

Verification procedure is an intelligent exhaustive
search of the state space of the design

• Statespace explosion

7
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Model Checking since 1981

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

105

10100

101000

1990s: Formal Hardware
Verification in Industry:
Intel, IBM, Motorola, etc.

8
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998 Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

CBMC

SLAM,
MAGIC,
BLAST, …

Model Checking since 1981

© 2016 Carnegie Mellon University

Temporal Logic Model
Checking

10
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

10

Temporal Logic Model Checking

Yes/No +

Counter-example

SW/HW

Artifact

Correctness

properties

Temporal

logic
Finite

Model

Model

Extraction
Translation

Model

Checker

Correct?

Abstraction

11
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Models: Kripke Structures

Conventional state machines
• K = (V, S, s0, I , R)
• V is a (finite) set of atomic
propositions
• S is a (finite) set of states
• s0 ∈ S is a start state
• I: S → 2V is a labelling function that maps

each state to the set of propositional
variables that hold in it
– That is, I(S) is a set of interpretations

specifying which propositions are true
in each state

• R ⊆ S × S is a transition relation

req req,
busy

busy

s0

s2

s1

s3

12
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Propositional Variables

Fixed set of atomic propositions, e.g, {p, q, r}

Atomic descriptions of a system
“Printer is busy”

“There are currently no requested jobs for the printer”

“Conveyer belt is stopped”

Do not involve time!

13
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Modal Logic

Extends propositional logic with modalities to qualify propositions
• “it is raining” – rain
• “it will rain tomorrow” –☐rain
– it is raining in all possible futures

• “it might rain tomorrow” – ⃟rain
– it is raining in some possible futures

Modal logic formulas are interpreted over a collection of possible worlds
connected by an accessibility relation

Temporal logic is a modal logic that adds temporal modalities: next,
always, eventually, and until

14
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Computation Tree Logic (CTL)

CTL: Branching-time propositional temporal logic
Model - a tree of computation paths

S1 S2

S3

S2

S1 S3

S1 S3S2

S2

S1

S1 S3 S1 S3

Tree of computationKripke Structure

15
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

CTL: Computation Tree Logic

Propositional temporal logic with explicit quantification over possible
futures
Syntax:

True and False are CTL formulas;
propositional variables are CTL formulas;

If ϕ and ψ are CTL formulae, then so are: ¬ ϕ , ϕ ∧ ψ , ϕ ∨ ψ

EX ϕ : ϕ holds in some next state

EF ϕ : along some path, ϕ holds in a future state

E[ϕ U ψ] : along some path, ϕ holds until ψ holds

EG ϕ : along some path, ϕ holds in every state

• Universal quantification: AX ϕ , AF ϕ , A[ϕ U ψ], AG ϕ

16
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Examples: EX and AX

ϕ

EX ϕ (exists next)

ϕ

AX ϕ (all next)

ϕ

17
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Examples: EG and AG

ϕ

ϕ

ϕ

ϕ

EG ϕ (exists global)

ϕ

ϕ

ϕ ϕϕ

ϕϕ ϕ ϕ ϕ

AG ϕ (all global)

ϕ

18
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Examples: EF and AF

ϕ

EF ϕ (exists future)

ϕ

ϕ ϕ

AF ϕ (all future)

ϕ

19
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Examples: EU and AU

ϕ

ϕ

ψ

E[ϕ U ψ] (exists until)

ϕ

ϕ

ϕ ψ

ψ

A[ϕ U ψ] (all until)

ψ

20
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

CTL Examples

Properties that hold:
• (AX busy)(s0)
• (EG busy)(s3)
• A (req U busy) (s0)
• E (¬req U busy) (s1)
• AG (req ⇒ AF busy) (s0)

Properties that fail:
• (AX (req ∨ busy))(s3)

req req,
busy

busy

s0

s2

s1

s3

21
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Some Statements To Express

An elevator can remain idle on the third floor with its doors closed
• EF (state=idle ∧ floor=3 ∧ doors=closed)

When a request occurs, it will eventually be acknowledged
• AG (request ⇒ AF acknowledge)

A process is enabled infinitely often on every computation path
• AG AF enabled

A process will eventually be permanently deadlocked
• AF AG deadlock

Action s precedes p after q
• A[¬q U (q ∧ A[¬p U s])]

• Note: hard to do correctly. Use property patterns

22
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Semantics of CTL

K,s ⊨ ϕ – means that formula ϕ is true in state s. K is often omitted
since we always talk about the same Kripke structure
• E.g., s ⊨ p ∧¬q
π = π0 π1 … is a path
π0 is the current state (root)
πi+1 is a successor state of πi. Then,
AX ϕ = ∀π ⋅ π1 ⊨ ϕ EX ϕ = ∃π ⋅ π1 ⊨ ϕ
AG ϕ = ∀π ⋅ ∀i ⋅ πi ⊨ ϕ EG ϕ = ∃π ⋅ ∀i ⋅ πi ⊨ ϕ
AF ϕ = ∀π ⋅ ∃i ⋅ πi ⊨ ϕ EF ϕ = ∃π ⋅ ∃i ⋅ πi ⊨ ϕ
A[ϕ U ψ] = ∀π ⋅ ∃i ⋅ πi ⊨ ψ ∧ ∀ j ⋅ 0 ≤ j < i ⇒ πj ⊨ ϕ
E[ϕ U ψ] = ∃π ⋅ ∃i ⋅ πi ⊨ ψ ∧ ∀ j ⋅ 0 ≤ j < i ⇒ πj ⊨ ϕ

23
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Linear Temporal Logic (LTL)

For reasoning about complete traces through the system

Allows to make statements about a trace

S1 S2

S3

S2 S1S1 S2 S1

S2 S1S1 S2 S3

S2 S3S1 S3 S3

S2 S3S1 S1 S2

S2 S3S1 S3 S1

24
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

LTL Syntax

If ϕ is an atomic propositional formula, it is a formula in LTL
If ϕ and ψ are LTL formulas, so are ϕ∧ ψ, ϕ∨ ψ, ¬ ϕ, ϕ U ψ (until),
X ϕ (next), Fϕ (eventually), G ϕ (always)
Interpretation: over computations π: ω ⇒ 2V which assigns truth values
to the elements of V at each time instant
π ⊨ X ϕ iff π 1 ⊨ ϕ
π ⊨ G ϕ iff ∀i ⋅ π i ⊨ ϕ
π ⊨ Fϕ iff ∃i ⋅ π i ⊨ ϕ
π ⊨ ϕ U ψ iff ∃i ⋅ π i ⊨ ψ ∧ ∀ j ⋅ 0 ≤ j < i ⇒ π j ⊨ ϕ
Here, π i is the i ’th state on a path

25
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Expressing Properties in LTL

Good for safety (G ¬) and liveness (F) properties
Express:
• When a request occurs, it will eventually be acknowledged
– G (request ⇒ F acknowledge)

• Each path contains infinitely many q’s
– G F q

• At most a finite number of states in each path satisfy ¬q (or property q
eventually stabilizes)
– F G q

• Action s precedes p after q
– [¬q U (q ∧ [¬p U s])]
– Note: hard to do correctly.

26
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Safety and Liveness

Safety: Something “bad” will never happen
• AG ¬bad
• e.g., mutual exclusion: no two processes are in their critical section at once
• Safety = if false then there is a finite counterexample
• Safety = reachability

Liveness: Something “good” will always happen
• AG AF good
• e.g., every request is eventually serviced
• Liveness = if false then there is an infinite counterexample
• Liveness = termination

Every universal temporal logic formula can be decomposed into a
conjunction of safety and liveness

27
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

State Explosion

How fast do Kripke structures grow?
• Composing linear number of structures yields exponential growth!

How to deal with this problem?
• Symbolic model checking with efficient data structures (BDDs, SAT).
– Do not need to represent and manipulate the entire model

• Abstraction
– Abstract away variables in the model which are not relevant to the formula

being checked
– Partial order reduction (for asynchronous systems)
– Several interleavings of component traces may be equivalent as far as

satisfaction of the formula to be checked is concerned
• Composition
– Break the verification problem down into several simpler verification

problems

27

28
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Representing Models Symbolically

A system state represents an interpretation (truth assignment) for a set
of propositional variables V
• Formulas represent sets of states that satisfy it
– False = ∅, True = S
– req – set of states in which req is
– true – {s0, s1}
– busy – set of states in which busy is
– true – {s1, s3}
– req∨ busy = {s0, s1 , s3}

• State transitions are described by relations over two sets of variables: V
(source state) and V’ (destination state)
– Transition (s2, s3) is ¬req∧ ¬ busy ∧ ¬req’∧ busy’
– Relation R is described by disjunction of formulas for individual transitions

28

req req,
busy

busy

s0

s2

s1

s3

29
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Pros and Cons of Model-Checking

Often cannot express full requirements
• Instead check several smaller simpler properties

Few systems can be checked directly
• Must generally abstract parts of the system and model the environment

Works better for certain types of problems
• Very useful for control-centered concurrent systems
– Avionics software
– Hardware
– Communication protocols

• Not very good at data-centered systems
– User interfaces, databases

30
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Pros and Cons of Model Checking (Cont’d)

Largely automatic and fast

Better suited for debugging
• … rather than assurance

Testing vs model-checking
• Usually, find more problems by

exploring all behaviours of a downscaled system
than by

testing some behaviours of the full system

© 2016 Carnegie Mellon University

SAT and SMT

32
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Boolean Satisfiability

Let V be a set of variables
A literal is either a variable v in V or its negation ~v
A clause is a disjunction of literals
• e.g., (v1 || ~v2 || v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction
of clauses
• e.g., (v1 || ~v2) && (v3 || v2)

An assignment s of Boolean values to variables satisfies a clause c if it
evaluates at least one literal in c to true
An assignment s satisfies a formula C in CNF if it satisfies every clause
in C
Boolean Satisfiability Problem (SAT):
• determine whether a given CNF C is satisfiable

33
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

CNF Examples

CNF 1
• ~b
• ~a || ~b || ~c
• a
• sat: s(a) = True; s(b) = False; s(c) = False

CNF 2
• ~b
• ~a || b || ~c
• a
• ~a || c
• unsat

34
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Algorithms for SAT

SAT is NP-complete

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
• conflict-driven clause learning
• extends DPLL with
– smart data structures, backjumping, clause learning, heuristics, restarts…

• scales to millions of variables
• N. Een and N. Sörensson, “An Extensible SAT-solver”, in SAT 2013.

35
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

DPLL by Example

From http://homepage.cs.uiowa.edu/~tinelli/classes/196/Fall09/notes/dpll.pdf

DPLL Example by Prof. Cesare Tinelli

36
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

S. A. Seshia 1

Some Experience with SAT Solving
Sanjit A. Seshia

Speed-up of 2012 solver over other solvers

1

10

100

1,000

Solver

Sp
ee

d-
up

 (l
og

 s
ca

le
)

Figure 4: SAT Solvers Performance
%labelfigure

20

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

37
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

SMT: Satisfiability Modulo Theory

Satisfiability of Boolean formulas over atoms in a theory
• e.g., (x < 0) && (x >= 0)

Extends syntax of Boolean formulas with functions and predicates
• +, -, div, select, store, bvadd, etc.

Existing solvers support many theories useful for program analysis
• Equality and Uninterpreted Functions: f(x)
• Real/Integer Linear Arithmetic: x + 2*y <= 3
• Unbounded Arrays: a[i], a[i := v]
• Bitvectors (a.k.a. machine integers): x >> 3, x/3
• Floating point: 3.0 * x
• …

38
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

SMT-LIB: http://smt-lib.org

International initiative for facilitating research and development in SMT
Provides rigorous definition of syntax and semantics for theories
SMT-LIB syntax
• based on s-expressions (LISP-like)
• common syntax for interpreted functions of different theories
– e.g. (and (= x y) (<= (* 2 x) z))

• commands to interact with the solver
– (declare-fun …) declares a constant/function symbol
– (assert p) conjoins formula p to the curent context
– (check-sat) checks satisfiability of the current context
– (get-model) prints current model (if the context is satisfiable)

• see examples at http://rise4fun.com/z3

39
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

SMT Example

http://rise4fun.com/z3

40
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

SAT/SMT Revolution

Solve any computational problem by effective reduction to SAT/SMT
• iterate as necessary

Problem

encode

decode

SAT/SMT
Solver

© 2016 Carnegie Mellon University

Software Model Checking

42
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

42

Software Model Checking

Yes/No

Answer

Program

(e.g., C)

Correctness

property
Model of

the program

Model
Extraction

Model
Checker

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

EF (pc = 5)

43
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

43

In Our Programming Language…

All variables are global
Functions are in-lined
int is integer
• i.e., no overflow

Special statements:

skip do nothing
assume(e) if e then skip else abort
x,y=e1,e2 x, y are assigned e1,e2 in parallel
x=nondet() x gets an arbitrary value
goto L1,L2 non-deterministically go to L1 or L2

44
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

44

From Programs to Kripke Structures

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

Program

pc x y …

3 1 3 …

State

pc x y …

2 1 2 …

Step

Property: EF (pc = 5)

45
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

45

Programs as Control Flow Graphs

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

Program Labeled CFG

Semantics S

1:

2:

3:4:

5:

6:

x,y=2,2

y<=2
y>2

x==2

x!=2

y=y-1

46
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Modeling in Software Model Checking

Software Model Checker works directly on the source code of a program
• but it is a whole-program-analysis technique
• requires the user to provide the model of the environment with which the

program interacts
– e.g., physical sensors, operating system, external libraries, specifications,

etc.

Programing languages already provide convenient primitives to describe
behavior
• programming languages are extended to modeling and specification

languages by adding three new features
– non-determinism: like random values, but without a probability distribution
– assumptions: constraints on “random” values
– assertions: an indication of a failure

47
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
• assert(e) – aborts an execution when e is false, no-op otherwise

Non-determinism
• nondet_int() – returns a non-deterministic integer value

Assumptions
• assume(e) – “ignores” execution when e is false, no-op otherwise

void assert (bool b) { if (!b) error(); }

int nondet_int () { int x; return x; }

void assume (bool e) { while (!e) ; }

48
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Non-determinism vs. Randomness

A deterministic function always returns the same result on the same
input
• e.g., F(5) = 10

A non-deterministic function may return different values on the same
input
• e.g., G(5) in [0, 10] “G(5) returns a non-deterministic value between 0 and 10”

A random function may choose a different value with a probability
distribution
• e.g., H(5) = (3 with prob. 0.3, 4 with prob. 0.2, and 5 with prob. 0.5)

Non-deterministic choice cannot be implemented!
• used to model the worst possible adversary/enviroment

49
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Modeling with Non-determinism

int x, y;

void main (void)
{
x = nondet_int ();

assume (x > 10);
assume (x <= 100);
y = x + 1;

assert (y > x);
assert (y < 200);

}

50
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Using nondet for modeling

Library spec:
• “foo is given via grab_foo(), and is busy until returned via return_foo()”

Model Checking stub:

int nondet_int ();

int is_foo_taken = 0;

int grab_foo () {

if (!is_foo_taken)

is_foo_taken = nondet_int ();

return is_foo_taken; }

void return_foo ()

{ is_foo_taken = 0; }

51
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Dangers of unrestricted assumptions

Assumptions can lead to vacuous correctness claims!!!

if (x > 0) {

assume (x < 0);

assert (0); }Is this program correct?

Assume must either be checked with assert or used as an idiom:

x = nondet_int ();

y = nondet_int ();

assume (x < y);

52
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Software Model Checking Workflow

1. Identify module to be analyzed
– e.g., function, component, device driver, library, etc.

2. Instrument with property assertions
– e.g., buffer overflow, proper API usage, proper state change, etc.
– might require significant changes in the program to insert necessary

monitors
3. Model environment of the module under analysis
– provide stubs for functions that are called but are not analyzed

4. Write verification harness that exercises module under analysis
– similar to unit-test, but can use symbolic values
– tests many executions at a time

5. Run Model Checker

6. Repeat as needed

53
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

http://seahorn.github.io

54
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

SeaHorn Verification Framework

Automated C program verifier for
• buffer- and integer-overflow, API usage rules, and user-specified assertions

Integrates with industrial-strength LLVM compiler framework
Based on our research in software model checking and abstract
interpretation
Developed jointly by the SEI, CMU CyLab, and NASA Ames

55
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

SeaHorn Usage

> sea pf FILE.c
Outputs sat for unsafe (has counterexample); unsat for safe
Additional options
• --cex=trace.xml outputs a counter-example in SV-COMP’15 format
• --show-invars displays computed invariants
• --track={reg,ptr,mem} track registers, pointers, memory content
• --step={large,small} verification condition step-semantics
– small == basic block, large == loop-free control flow block

• --inline inline all functions in the front-end passes
Additional commands
• sea smt – generates CHC in extension of SMT-LIB2 format
• sea clp -- generates CHC in CLP format (under development)
• sea lfe-smt – generates CHC in SMT-LIB2 format using legacy front-end

56
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Verification Pipeline

clang | pp | ms |opt | horn

front-end

compile pre-process

mixed
semantics

optimize

VC gen &
solve

57
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Current Application

Verification of resource usage rules in Linux device drivers
• e.g., locks are acquired and released, buffers are initialized, etc.
• specifications and verification environment provided by the Open-Source

Linux Device Verification (LDV) project

NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
• conformance of auto-generated code with Simulink models
• absence of buffer overflows

58
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Types of Software Model Checking

Bounded Model Checking (BMC)
• look for bugs (bad executions) up to a fixed bound
• usually bound depth of loops and depth of recursive calls
• reduce the problem to SAT/SMT

Predicate Abstraction with CounterExample Guided Abstraction
Refinement (CEGAR)
• Construct finite-state abstraction of a program
• Analyze using finite-state Model Checking techniques
• Automatically improve / refine abstraction until the analysis is conclusive

Interpolation-based Model Checking (IMC)
• Iteratively apply BMC with increasing bound
• Generalize from bounded-safety proofs
• reduce the problem to many SAT/SMT queries and generalize from SAT/SMT

reasoning

© 2016 Carnegie Mellon University

Bounded Model Checking

60
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find
whether there exists an execution that violates the claim.

Program

Claim
Analysis
Engine

SAT
Solver

UNSAT

(no counterexample found)

SAT

(counterexample exists)

CNF

61
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Programs and Properties

Arbitrary ANSI-C programs
• With bitvector arithmetic, dynamic memory, pointers, …

Simple Safety Properties
• Array bound checks (i.e., buffer overflow)
• Division by zero
• Pointer checks (i.e., NULL pointer dereference)
• Arithmetic overflow
• User supplied assertions (i.e., assert (i > j))

62
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Why use a SAT Solver?

SAT Solvers are very efficient

Analysis is completely automated

Analysis as good as the underlying SAT solver

Allows support for many features of a programming language
• bitwise operations, pointer arithmetic, dynamic memory, type casts

63
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

A (very) simple example (1)

int x;

int y=8,z=0,w=0;

if (x)

z = y – 1;

else

w = y + 1;

assert (z == 7 ||

w == 9)

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 7,

w != 9

Program Constraints

UNSAT

no counterexample

assertion always holds!

64
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

A (very) simple example (2)

int x;

int y=8,z=0,w=0;

if (x)

z = y – 1;

else

w = y + 1;

assert (z == 5 ||

w == 9)

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 5,

w != 9

Program Constraints

SAT

counterexample found!

y = 8, x = 1, w = 0, z = 7

65
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

What about loops?!

SAT Solver can only explore finite length executions!
Loops must be bounded (i.e., the analysis is unsound)

Program

Claim
Analysis
Engine

SAT
Solver

UNSAT
(no counterexample of

bound n is found)

SAT
(counterexample exists)

CNF

Bound (n)

66
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

CBMC: C Bounded Model Checker

Started at CMU by Daniel Kroening and Ed Clarke

Available at: http://www.cprover.org/cbmc
• On Ubuntu: apt-get install cbmc

Supported platforms: Windows, Linux, OSX

Has a command line, Eclipse CDT, and Visual Studio interfaces

Scales to programs with over 30K LOC

Found previously unknown bugs in MS Windows device drivers

67
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

How does it work

Transform a programs into a set of equations
1. Simplify control flow
2. Unwind all of the loops
3. Convert into Single Static Assignment (SSA)
4. Convert into equations
5. Bit-blast
6. Solve with a SAT Solver
7. Convert SAT assignment into a counterexample

68
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

CBMC: Bounded Model Checker for C
A tool by D. Kroening/Oxford and Ed Clarke/CMU

Parser Static Analysis

CNF-genSAT solver

CEX-gen CBMC

C Program

SAFE

UNSAFE + CEX

SAT

UNSAT CNF

goto-
program

equations

69
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Control Flow Simplifications

l All side effect are removed
• e.g., j=i++ becomes j=i;i=i+1

• Control Flow is made explicit
• continue, break replaced by goto

• All loops are simplified into one form
• for, do while replaced by while

70
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Loop Unwinding

• All loops are unwound
• can use different unwinding bounds for different loops

• to check whether unwinding is sufficient special
“unwinding assertion” claims are added

• If a program satisfies all of its claims and all
unwinding assertions then it is correct!

• Same for backward goto jumps and recursive
functions

71
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
while(cond) {

Body;
}
Remainder;

}

72
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
if(cond) {

Body;
while(cond) {

Body;
}

}
Remainder;

}

73
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
if(cond) {

Body;
if(cond) {

Body;
while(cond) {

Body;
}

}
}
Remainder;

}

74
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Unwinding assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer
than bound permits

void f(...) {
...
if(cond) {

Body;
if(cond) {

Body;
if(cond) {

Body;
while(cond) {

Body;
}

}
}

}
Remainder;

}

75
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Unwinding assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer
than bound permits

Sound results!

void f(...) {
...
if(cond) {

Body;
if(cond) {

Body;
if(cond) {

Body;
assert(!cond);

}
}

}
}
Remainder;

}

Unwinding
assertion

76
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Example: Sufficient Loop Unwinding

void f(...) {
j = 1
if(j <= 2) {

j = j + 1;
if(j <= 2) {

j = j + 1;
if(j <= 2) {

j = j + 1;
assert(!(j <= 2));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 2)

j = j + 1;
Remainder;

}

unwind = 3

77
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Example: Insufficient Loop Unwinding

void f(...) {
j = 1
if(j <= 10) {

j = j + 1;
if(j <= 10) {

j = j + 1;
if(j <= 10) {

j = j + 1;
assert(!(j <= 10));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 10)

j = j + 1;
Remainder;

}

unwind = 3

78
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

x = a;

y = x + 1;

z = y – 1;

Program Constraints

x = a &&

y = x + 1 &&

z = y – 1 &&

79
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times,
use a new variable for the RHS of each assignment

Program SSA Program

80
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

What about conditionals?

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v0)

x0 = y0;

else

x1 = z0;

w1 = x??;

What should ‘x’
be?

81
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

What about conditionals?

For each join point, add new variables with selectors

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v0)

x0 = y0;

else

x1 = z0;

x2 = v0 ? x0 : x1;

w1 = x2

82
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Adding Unbounded Arrays

Arrays are updated “whole array” at a time

A[1] = 5;

A[2] = 10;

A[k] = 20;

A1=λ i : i == 1 ? 5 : A0[i]

A2=λ i : i == 2 ? 10 : A1[i]

A3=λ i : i == k ? 20 : A2[i]

Examples: A2[2] == 10 A2[1]==5 A2[3] == A0[3]

A3[2] == (k==2 ? 20 : 10)

Uses only as much space as there are uses of the array!

83
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Example

84
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Pointers

While unwinding, record right hand side of assignments to pointers
This results in very precise points-to information
• Separate for each pointer
• Separate for each instance of each program location

Dereferencing operations are expanded into
case-split on pointer object (not: offset)
• Generate assertions on offset and on type

Pointer data type assumed to be part of bit-vector logic
• Consists of pair <object, offset>

85
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

BMC: Summary

An effective way to look for bugs
• reduce analysis to SAT/SMT
• creating effective and precise encoding is very hard

Mature tools available from several academic groups
• CBMC: http://www.cprover.org/cbmc/
• LLBMC: http://llbmc.org/

Starting point for many other approaches
• deductive verification: user provides inductive invariants for loops
• Interpolation-based Model Checking (later in the lecture)
• (dynamic) symbolic execution

© 2016 Carnegie Mellon University

Predicate Abstraction and
CounterExample Guided
Abstraction-Refinement

87
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Model Checking Software by Abstraction

Programs are not finite state
• integer variables
• recursion
• unbounded data structures
• dynamic memory allocation
• dynamic thread creation
• pointers
• …

87

Program

Model Checker

Ü Build a finite abstraction
Ä … small enough to analyze
Ä … rich enough to give conclusive

results

Abstraction

88
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

88

Software Model Checking and Abstraction

Program
P

Boolean
Program

BP

Kripke
Structure

K

Abstract
Kripke

K’

Semantics

Abstraction Abstract
Semantics

Soundness of Abstraction:

BP abstracts P implies that K’ approximates K

89
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

CounterExample Guided Abstraction Refinement
(CEGAR)

Software Model
Checking, SLAM

Project, Microsoft, Ball
& Rajamani

Counterexample-
guided Abstraction

Refinement for
Symbolic Model

Checking, Clarke et al.,
CMU

Localization
Reduction, Kurshan,

Bell Labs
Predicate

Abstraction Model Checking

Predicate
Refinement

Counterexample
Valid?

Abstract
Model

Candidate
Counter-
example

Better
Predicates

Program

Initial
Predicates

No

No

Yes

Yes

System
OK

Problem
Found

SMT Solver

90
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

90

The Running Example

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

EF (pc = 5)

Program Property
Expected

Answer

False

91
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

91

An Example Abstraction

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = ch(b,f);
4: if (*)
5: error();
6:

Program Abstraction

(with y<=2)

92
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

92

Boolean (Predicate) Programs (BP)

Variables correspond to predicates
Usual control flow statements
while, if-then-else, goto

Expressions
usual Boolean expressions, plus

*

ch(a,b)

Parallel Assignment
p1 = ch(a1,b1), p2 = ch(a2,b2), ...

b1 = ch(b1,¬b1), b2 = ch(b1⋁b2, f), b3=ch(f,f)

unknown

if a then
true

else
if b then

false
else *

93
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

93

Detour: Pre- and Post-Conditions

A Hoare triple {P} C {Q} is a logical statement that holds
when

For any state s that satisfies P, if executing statement C on s
terminates with a state s’, then s’ satisfies Q.

{P} C {Q}
Statement

Pre-condition

(boolean formula)

Post-condition

(boolean formula)

94
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Detour: Weakest Liberal Pre-Condition

The weakest liberal precondition of a statement C with
respect to a post-condition Q (written WLP(C,Q)) is a
formula P such that

1. {P} C {Q}

2. for all other P’ such that {P’} C {Q},
P’ ⇒ P (P is weaker then P’).

95
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Detour: Weakest Liberal Preconditions

95

{P} C {Q}
Statement

Pre-condition

(boolean formula)

Post-condition

(boolean formula)

{3>y} x = 3 {x>y}

{x>0} x = 2+y {y>0}

{*x>3 ⋁ x = &y} y=5 {*x>3}

{false} y=5 {y<0}

✘

✔

✔

✔

96
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

96

Calculating Weakest Preconditions

Assignment (easy)
• WLP (x=e, Q) = Q[x/e]
– Intuition: after an assignment, x gets the value of e, thus Q[x/e] is

required to hold before x=e is executed

Examples:
WLP (x:=0, x=y) = (x=y)[x/0] = (0==y)
WLP (x:=0, x=y+1) = (x=y+1)[x/0] = (0 == y+1)
WLP (y:=y-1,y<=2) = (y<=2)[y/y-1] = (y-1 <= 2)
WLP(y:=y-1,x=2) = (x=2)[y/y-1] = (x == 2)

97
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

97

Boolean Program Abstraction

Update p = ch(a, b) is an approximation of a concrete statement S
iff {a}S{p} and {b}S{¬p} are valid
• i.e., y = y – 1 is approximated by
– (x == 2) = ch(x ==2, x!=2), and
– (y <= 2) = ch(y<=2,false)

Parallel assignment approximates a concrete statement S iff all of its
updates approximate S
• i.e., y = y – 1 is approximated by

(x == 2) = ch(x ==2, x!=2),

(y <= 2) = ch(y<=2,false)

A Boolean program approximates a concrete program iff all of its
statements approximate corresponding concrete statements

98
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

98

Computing An Abstract Update
// S a statement under abstraction

// P a list of predicates used for abstraction

// t a target predicate for the update

absUpdate (Statement S, List<Predicates> P, Predicate q) {

resT, resF = false, false;

// foreach monomial (full conjunction of literals) in P

foreach m : monomials(P) {

if (SMT_IS_VALID(“m ⇒ WLP(S,q)”) resT = resT ⋁ m;

if (SMT_IS_VALID(“m ⇒ WLP(S,¬q)”) resF = resF ⋁ m;

}

return “q = ch(resT, resF)”

}

99
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

99

absUpdate (y=y-1, P={y<=2}, q=(y<=2))

y = y - 1;

(y<=2) = ch (y<=2,f)

P is {y <= 2}
q is (y <= 2)

SMT Queries:
(y<=2) ⇒ (y–1) <= 2
¬(y<=2)⇒ (y–1) <= 2
(y<=2) ⇒ (y–1) > 2
¬(y<=2)⇒ (y–1) > 2

absUpdate

✔

✘

✘

✘

WLP(y=y-1,y<=2) is (y-1) <= 2

WLP(y=y-1,¬(y<=2)) is (y–1) > 2

100
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

100

The result of abstraction

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = ch(b,f);
4: if (*)
5: error();
6:

Program Abstraction

(with y<=2)

But what is the semantics of Boolean programs?

101
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

101

BP Semantics: Overview

Over-Approximation
• treat “unknown” as non-deterministic
• good for establishing correctness of universal properties

Under-Approximation
• treat “unknown” as abort
• good for establishing failure of universal properties

Exact Approximation
• Treat “unknown” as a special unknown value
• good for verification and refutation
• good for universal, existential, and mixed properties

102
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

102

BP Semantics: Over-Approximation

1: ;
2: if (nondet) {
3: if (*)
4: error();
5: if (nondet)
6: error();
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Over-

Approximation

Unknown is treated as non-deterministic

103
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

103

BP Semantics: Under-Approximation

1: ;
2: if (nondet) {
3: if (*)
4: ERROR;
5: if (nondet)
6: ERROR;
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Under-

Approximation

Unknown is treated as abort

104
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

104

BP Semantics: Exact Approximation

1: ;
2: if (nondet) {
3: if (*)
4: ERROR;
5: if (nondet)
6: ERROR;
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Exact

Belnap KS

t

f

⊥ ⊤

“unknown”

“non-deterministic”

Unknown is treated as unknown

105
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

105

Summary: The Three Semantics

b1 = ch(b1,f);
b2 = ch(b2,¬b2)

b1

b2

b2

t

f

⊥ ⊤

Abstract

Over-Approx Belnap (Exact) Under-Approx

y = y - 1;

Concrete
b1 is (y <= 2)
b2 is (x == 2)

b1

b2

b2

b1?

b2

b1

b2?

b1

b2

b2

b1?

b2

b1

b2?

106
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Summary: Program Abstraction

Abstract a program P by a Boolean program BP
Pick an abstract semantics for this BP:
• Over-approximating
• Under-approximating
• Belnap (Exact)

Yield relationship between K and K’:
• Over-approximation
• Under-approximation
• Belnap abstraction

106

Program
P

Boolean
Program

BP

Kripke
Structure

K

Abstract
Kripke

K’
Semantics

Abstraction Abstract

Semantics

107
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

CounterExample Guided Abstraction Refinement
(CEGAR)

Software Model
Checking, SLAM

Project, Microsoft, Ball
& Rajamani

Counterexample-
guided Abstraction

Refinement for
Symbolic Model

Checking, Clarke et al.,
CMU

Localization
Reduction, Kurshan,

Bell Labs
Predicate

Abstraction Model Checking

Predicate
Refinement

Counterexample
Valid?

Abstract
Model

Candidate
Counter-
example

Better
Predicates

Program

Initial
Predicates

No

No

Yes

Yes

System
OK

Problem
Found

SMT Solver

108
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

1: ;

2: while (*)
3: ;
4: if (*)
5: error();
6:

1:

2:

3:4:

5:

6:

Need This!

Program Abstraction Over-
Approximation

Abstract Translate Check Validate

CEGAR steps

Repeat

109
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: error();
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = ch(b,f);
4: if (*)
5: error();
6:

Program Abstraction
(with y<=2)

Over-
Approximation

1:

2:b=T

3:b=T4:b=F

5:b=F

6:b=F

2:b=F

UNREACHABLE

Abstract Translate Check NO ERROR

CEGAR steps

110
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

110

Using Cex for Refinement

s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Counterexample

s0

s1

s2

ERROR

s4
t

f

⊥ ⊤

111
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

111

can stop here

cause
Using Proofs for Refinement

EF (ERROR) (s0) = ⊥
∃n EFn (ERROR)(s0) = ⊥

EF4 (ERROR)(s0) = ⊥
s0→s1 EF3(ERROR)(s1) = ⊥

s1→s2 EF2(ERROR)(s2) = t
s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Why?

Refine
HERE

t

f

⊥ ⊤

112
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

112

Finding Refinement Predicates

Recall
• each abstract state is a conjunction of predicates
– i.e., y<=2⋀x==2 y>2 ⋀ x!=2 etc.

• each abstract transition corresponds to a program statement

Result from
a partial proof

Unknown transition
s1→s2

MC needs to know
validity of

{s1} C {s2}

C is the statement
corresponding to

the transition

113
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

113

Refinement via Weakest Liberal Precondition

If s1→s2 corresponds to a conditional statement
• refine by adding the condition as a new predicate

If s1→s2 corresponds to a statement C
• Find a predicate p in s2 with uncertain value

– i.e., {s1}C{p} is not valid
• refine by adding WLP(C,p)

114
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

114

An Example

{y>2⋀x==2} y = y-1 {y>2⋀x==2}

s1 → s2 is unknown

WLP(y = y–1, y>2) = y>3

{y>2⋀x==2} y = y-1 {y>2} ✘

new predicate

{y>2⋀x==2} y = y-1 {x==2} ✔

pc=2

y>2

x==2

pc=3

y>2

x==2

115
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

115

Summary: Predicate Abstraction and CEGAR

Predicate abstraction with CEGAR is an effective technique for
analyzing behavioral properties of software systems

Combines static analysis and traditional model-checking

Abstraction is essential for scalability
• Boolean programs are used as an intermediate step
• Different abstract semantics lead to different abs.
– over-, under-, Belnap

Automatic abstraction refinement finds the “right” abstraction
incrementally

© 2016 Carnegie Mellon University

Interpolation-based Model
Checking

117
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Programs, Safety, Cexs, Invariants

A transition system P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN) 6) ?

Init) Inv

Inv(X) ^ Tr(X,X 0)) Inv(X 0)

Inv) ¬Bad

118
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Verification by Successive Under-Approximation

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?
No No No

BMC BMC BMC

bound 1 bound 2 bound 3

119
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

INIT

Reachability Analysis

119

Bad

Is Bad reachable?

R1
R2

…Rn

120
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Interpolating Model Checking

Key Idea
• turn SAT/SMT proofs of bounded safety to inductive traces
• repeat forever until a counterexample or inductive invariant are found

Introduced by McMillan in 2003
• Kenneth L. McMillan: Interpolation and SAT-Based Model Checking. CAV2003: 1-

13
• based on pairwise Craig interpolation

Extended to sequences and DAGs
• Yakir Vizel, Orna Grumberg: Interpolation-sequence based model checking.

FMCAD 2009: 1-8
– uses interpolation sequence

• Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136
– IMPACT: interpolation sequence on each program path

• Aws Albarghouthi, Arie Gurfinkel, Marsha Chechik: From Under-Approximations
to Over-Approximations and Back. TACAS 2012: 157-172
– UFO: interpolation sequence on the DAG of program paths

121
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

IMC: Interpolating Model Checking

N=1

BMCN

SeqItp

trace F = [F0, …, FN]

Is F closed

N:=N+1

CEX

SAFE

SAT

UNSAT

YesNo

122
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Bounded Model Checking

INIT

R1 R2

……

INIT(V0)

Rk

∧Tr(V0,V1)∧…∧Tr(Vk-1,Vk)∧Bad(Vk)

123
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Inductive Trace

An inductive trace of a transition system P = (V, Init, Tr, Bad) is a
sequence of formulas [F0, …, FN] such that
• Init → F0

• 8 0 · i < N , Fi(v) Æ Tr (v, u) → Fi+1 (u), or, in Hoare Logic {Fi} Tr {Fi+1}

A trace is safe iff 8 0 · i · N , Fi → ¬Bad

A trace is monotone iff 8 0 · i < N , Fi → Fi+1

A trace is closed iff 9 1 · i · N, Fi → (F0 Ç … Ç Fi-1)

A transition system P is SAFE iff it admits a safe closed trace

124
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

INIT

Inductive Trace in Pictures

124

Bad

F1
F2

…FN

125
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A) ¬B, then
there exists a FO formula I, denoted ITP(A, B), such that

A) I I) ¬B
atoms(I) 2 atoms(A) Å atoms(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a
resolution proof of unsatisfiability of A Æ B

In Model Cheching, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

126
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

A

Craig Interpolant

126

B

I

127
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Craig Interpolant Examples

Boolean logic
• A is {!b, (!a || b || c), a} B is !a || !c
• Itp is a && c

EUF (equality with uninterpreted functions)
• A is {f(a) = b, p(f(a))} B is {b=c, !p(c)}
• Itp is p(b)

Linear Arithmetic
• A is {z+x+y > 10, z < 5} B is {x < -5, y < -3}
• Itp is x+y>5

128
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Craig Interpolant as a Circuit

Let F = A(x, z) Æ B(z, y) be UNSAT, where x and y are distinct
• Note that for any assignment v to z either
– A(x, v) is UNSAT, or
– B(v, y) is UNSAT

An interpolant is a circuit I(z) such that for every assignment v to z
• I(v) = A only if A(x, v) is UNSAT
• I(v) = B only if B(v, y) is UNSAT

A proof system S has a feasible interpolation if for every refutation ¼ of F
in S, F has an interpolant polynomial in the size of ¼
• propositional resolution has feasible interpolation
• extended resolution does not have feasible interpolation

129
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]
• I 2 ITP (A, B) then ¬I 2 ITP (B, A)
• if A is syntactically convex (a monomial), then I is convex
• if B is syntactically convex, then I is co-convex (a clause)
• if A and B are syntactically convex, then I is a half-space

A

I = interpolant

130
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

))))))

Interpolation Sequence

Given a sequence of formulas A = {Ai}i=0
n, an interpolation

sequence ItpSeq(A) = {I1, …, In-1} is a sequence of
formulas such that
• Ik is an ITP (A0 Æ … Æ Ak-1, Ak Æ … Æ An), and
• 8 k<n . Ik Æ Ak+1) Ik+1

A0 A1 A2 A3 A4 A5 A6

I0 I1 I2 I3 I4 I5

Can compute by pairwise interpolation applied to different cuts of a
fixed resolution proof (very robust property of interpolation)

131
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

From Interpolants to Traces

A Sequence Interpolant of a BMC instance is an inductive trace

(Init(v0))0 Æ (Tr (v0,v1))1 Æ … Æ (Tr (vN-1, vN))N Æ Bad(vN)

F0(v0) F1(v1) FN(vN)

A trace computed by a sequence interpolant is
• safe
• NOT necessarily monotone
• NOT necessarily closed

BMCN

trace

132
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

INIT

Inductive Trace in Pictures

132

Bad

F1
F2

…FN

133
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

ImcMkSafe

IMC: Interpolating Model Checking

N=1

BMCN

SeqItp

trace F = [F0, …, FN]

Is F closed

N:=N+1

CEX

SAFE

SAT

UNSAT

YesNo

134
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

IMC: Strength and Weaknesses

Strength
• elegant
• global bounded safety proof
• many different interpolation algorithms available
• easy to extend to SMT theories

Weaknesses
• the naïve version does not converge easily
– interpolants are weaker towards the end of the sequence

• not incremental
– no information is reused between BMC queries

• size of interpolants
• hard to guide

© 2016 Carnegie Mellon University

Trust in Formal Methods

136
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Idealized Development w/ Formal Methods

No expensive testing!
•Verification is exhaustive

Simpler certification!
• Just check formal arguments

Design Develop Verify (with FM) Certify Deploy

Can we trust formal methods tools? What can go wrong?

137
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Trusting Automated Verification Tools

How should automatic verifiers be qualified for certification?

What is the basis for automatic program analysis (or other automatic
formal methods) to replace testing?

Verify the verifier
• (too) expensive
• verifiers are often very complex tools
• difficult to continuously adapt tools to project-specific needs

Proof-producing (or certifying) verifier
• Only the proof is important – not the tool that produced it
• Only the proof-checker needs to be verified/qualified
• Single proof-checker can be re-used in many projects

138
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Active research area
• proof carrying code, certifying model checking, model carrying code etc.
• Few tools available. Some preliminary commercial application in the telecom domain.
• Static context. Good for ensuring absence of problems.
• Low automation. Applies to source or binary. High confidence.

Evidence Producing Analysis

X witnesses that P satisfies Q. X can be objectively and independently verified.
Therefore, EPA is outside the Trusted Computing Base (TCB).

Program P

Property Q

Proof X
EPA

do not trust “easy” to
verify

Not that simple in practice !!!

139
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

An In-Depth Look…

Low level property

Program = (Text, Semantics)

Verifier

Proof Checker

Front-End
Environment model

VC

No + Counterexample

Yes + Proof

Good Bad

Compiler

Executable

Real Env Hardware
Good

Bad
?=?

Hard to
verify

Hard to
get right

Diff sem
used by
diff tools

Hard to
get right

140
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Five Hazards (Gaps) of Automated Verification

Soundness Gap
• Intentional and unintentional unsoundness in the verification engine
• e.g., rational instead of bitvector arithmetic, simplified memory model, etc.

Semantic Gap
• Compiler and verifier use different interpretation of the programming

language
Specification Gap
• Expressing high-level specifications by low-level verifiable properties

Property Gap
• Formalizing low-level properties in temporal logic and/or assertions

Environment Gap
• Too coarse / unsound / unfaithful model of the environment

141
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Mitigating The Soundness Gap

Proof-producing verifier makes the soundness gap explicit
• the soundness of the proof can be established by a “simple” checker
• all assumptions are stated explicitly

Open questions:
• how to generate proofs for explicit Model Checking
– e.g., SPIN, Java PathFinder

• how to generate partial proofs for non-exhaustive methods
– e.g., KLEE, Sage

• how to deal with “intentional” unsoundness
– e.g., rational arithmetic instead of bitvectors, memory models, …

142
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Vacuity: Mitigating Property Gap

Model Checking Perspective: Never trust a True answer from a Model
Checker

When a property is violated, a counterexample is a certificate that can
be examined by the user for validity

When a property is satisfied, there is no feedback!

It is very easy to formally state something very trivial in a very complex
way

143
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

MODULE main

VAR
send : {s0,s1,s2};
recv : {r0,r1,r2};

ack : boolean;
req : boolean;

ASSIGN
init(ack):=FALSE;
init(req):=FALSE;

init(send):= s0;
init(recv):= r0;

next (send) :=
case

send=s0:{s0,s1};
send=s1:s2;
send=s2&ack:s0;
TRUE:send;

esac;

next (recv) :=
case

recv=r0&req:r1;
recv=r1:r2;
recv=r2:r0;
TRUE: recv;

esac;

next (ack) :=
case

recv=r2:TRUE;
TRUE: ack;

esac;

next (req) :=
case

send=s1:FALSE;
TRUE: req;

esac;

SPEC AG (req -> AF ack)

144
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Five Hazards (Gaps) of Automated Verification

Soundness Gap
• Intentional and unintentional unsoundness in the verification engine
• e.g., rational instead of bitvector arithmetic, simplified memory model, etc.

Semantic Gap
• Compiler and verifier use different interpretation of the programming

language
Specification Gap
• Expressing high-level specifications by low-level verifiable properties

Property Gap
• Formalizing low-level properties in temporal logic and/or assertions

Environment Gap
• Too coarse / unsound / unfaithful model of the environment

145
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Verification Competitions

Multitude of events where solvers and analysis engines compete
SAT-RACE
• competitive event for SAT solvers
• http://baldur.iti.kit.edu/sat-race-2015/

SMT-COMP
• competitive event for SMT solvers
• http://www.smtcomp.org

SV-COMP
• Software Verification Competition
– open to all, but most tools are based on Model Checking

• http://sv-comp.sosy-lab.org/2016/
CASC
• competitive event for Automated Theorem Proving
• http://www.cs.miami.edu/~tptp/CASC/

146
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

References

Software Model Checking and Program Analysis
• Vijay D'Silva, Daniel Kroening, Georg Weissenbacher: A Survey of

Automated Techniques for Formal Software Verification. IEEE Trans. on CAD
of Integrated Circuits and Systems 27(7): 1165-1178 (2008)

• Ranjit Jhala, Rupak Majumdar: Software model checking. ACM Comput.
Surv. 41(4) (2009)

Symbolic Execution
• Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Pasareanu,

Koushik Sen, Nikolai Tillmann, Willem Visser: Symbolic execution for
software testing in practice: preliminary assessment. ICSE 2011: 1066-1071

SMT and Decision Procedures
• Daniel Kroening, Ofer Strichman: Decision Procedures - An Algorithmic Point

of View. Texts in Theoretical Computer Science. An EATCS Series, Springer
2008, ISBN 978-3-540-74104-6, pp. 1-304

• The SMT-LIB v2 Language and Tools: A Tutorial, by David R. Cokk

© 2016 Carnegie Mellon University

Extra Slides

148
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Hoare Triples

A Hoare triple {Pre} P {Post} is valid iff every terminating execution of P
that starts in a state that satisfies Pre ends in a state that satisfies Post
Inductive Loop Invariant

Function Application

Recursion

Pre) Inv {InvÆC} Body {Inv} InvÆ¬C) Post

{Pre} while C do Body {Post}

(PreÆp=a)) P {P} BodyF {Q} (QÆp,r=a,b))Post

{Pre} b = F(a) {Post}

{Pre} b = F(a) {Post} ` {Pre} BodyF {Post}

{Pre} b = F(a) {Post}

149
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Weakest Liberal Pre-Condition

Validity of Hoare triples is reduced to FOL validity by applying a
predicate transformer

Dijkstra’s weakest liberal pre-condition calculus [Dijkstra’75]

wlp (P, Post)

weakest pre-condition ensuring that executing P ends in Post

{Pre} P {Post} is valid , Pre) wlp (P, Post)

150
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

A Simple Programming Language

Prog ::= def Main(x) { bodyM }, …, def P (x) { bodyP }

body ::= stmt (; stmt)*

stmt ::= x = E | assert (E) | assume (E) |
while E do S | y = P(E) |
L:stmt | goto L (optional)

E := expression over program variables

151
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Horn Clauses by Weakest Liberal Precondition

Prog ::= def Main(x) { bodyM }, …, def P (x) { bodyP }

wlp (x=E, Q) = let x=E in Q
wlp (assert(E) , Q) = E Æ Q
wlp (assume(E), Q) = E → Q
wlp (while E do S, Q) = I(w) Æ

8w . ((I(w) Æ E) → wlp (S, I(w))) Æ ((I(w) Æ ¬E) → Q))
wlp (y = P(E), Q) = ppre(E) Æ (8 r. p(E, r) → Q[r/y])

ToHorn (def P(x) {S}) = wlp (x0=x;assume(ppre(x)); S, p(x0, ret))
ToHorn (Prog) = wlp (Main(), true) Æ 8{P 2 Prog} . ToHorn (P)

152
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Example of a WLP Horn Encoding

{y ¸ 0} P {x = xold+yold} is true iff the query C3 is satisfiable

{Pre: y¸ 0}
xo = x;
yo = y;
while y > 0 do
x = x+1;
y = y−1;

{Post: x=xo+yo}

C1: I(x,y,x,y) Ã y>=0.
C2: I(x+1,y-1,xo,yo) Ã I(x,y,xo,yo), y>0.
C3: false Ã I(x,y,xo,yo), y·0, x≠xo+yo

ToHorn

153
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Single Static Assignment

SSA == every value has a unique assignment (a definition)
A procedure is in SSA form if every variable has exactly one definition

SSA form is used by many compilers
• explicit def-use chains
• simplifies optimizations and improves analyses

PHI-function are necessary to maintain unique definitions in branching
control flow

x = PHI (v0:bb0, …, vn:bbn)) (phi-assignment)

“x gets vi if previously executed block was bbi”

154
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Single Static Assignment: An Example
0: goto 1
1: x_0 = PHI(0:0, x_3:5);

y_0 = PHI(y:0, y_1:5);
if (x_0 < N) goto 2 else goto 6

2: if (y_0 > 0) goto 3 else goto 4

3: x_1 = x_0 + y_0; goto 5

4: x_2 = x_0 – y_0; goto 5

5: x_3 = PHI(x_1:3, x_2:4);
y_1 = -1 * y_0;
goto 1

6:

int x, y, n;

x = 0;
while (x < N) {
if (y > 0)

x = x + y;
else

x = x – y;
y = -1 * y;

}

val:bb

