Automated Program Analysis with Software Model Checking

Arie Gurfinkel
Software Engineering Institute
Carnegie Mellon University

February, 2016
Static Program Analysis

Reasoning statically about behavior of a program without executing it

- compile-time analysis
- exhaustive, considers all possible executions under all possible environments and inputs

The algorithmic discovery of properties of program by inspection of the source text

Manna and Pnueli, “Algorithmic Verification”

Also known as static analysis, program verification, formal methods, etc.
Turing, 1936: “undecidable”
Undecidability

The halting problem
• does a program P terminates on input I
• proved undecidable by Alan Turing in 1936
• https://en.wikipedia.org/wiki/Halting_problem

Rice’s Theorem
• for any non-trivial property of partial functions, no general and effective method can decide whether an algorithm computes a partial function with that property
• in practice, this means that there is no machine that can always decide whether the language of a given Turing machine has a particular nontrivial property
• https://en.wikipedia.org/wiki/Rice%27s_theorem
Living with Undecidability

“Algorithms” that occasionally diverge

Limit programs that can be analyzed
 • finite-state, loop-free

Partial (unsound) verification
 • analyze only some executions up-to a fixed number of steps

Incomplete verification / Abstraction
 • analyze a superset of program executions

Programmer Assistance
 • annotations, pre-, post-conditions, inductive invariants
(Temporal Logic) Model Checking

Automatic verification technique for finite state concurrent systems.

- Developed independently by Clarke and Emerson and by Queille and Sifakis in early 1980’s.
- ACM Turing Award 2007

Specifications are written in propositional temporal logic. (Pnueli 77)

- Computation Tree Logic (CTL), Linear Temporal Logic (LTL), …

Verification procedure is an intelligent exhaustive search of the state space of the design

- Statespace explosion
Model Checking since 1981

1981 Clarke / Emerson: CTL Model Checking
 Sifakis / Quielle
 \[10^5\]

1982 EMC: Explicit Model Checker
 Clarke, Emerson, Sistla
 \[10^{100}\]

1990 Symbolic Model Checking
 Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
 McMillan
 \[10^{1000}\]

1998 Bounded Model Checking using SAT
 Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
 Clarke, Grumberg, Jha, Lu, Veith

1990s: Formal Hardware Verification in Industry:
 Intel, IBM, Motorola, etc.
Model Checking since 1981

1981 Clarke / Emerson: CTL Model Checking
 Sifakis / Quielle

1982 EMC: Explicit Model Checker
 Clarke, Emerson, Sistla

1990 Symbolic Model Checking
 Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
 McMillan

1998 Bounded Model Checking using SAT
 Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
 Clarke, Grumberg, Jha, Lu, Veith

CBMC
SLAM, MAGIC, BLAST, …
Temporal Logic Model Checking
Temporal Logic Model Checking

- SW/HW Artifact
 - Model Extraction
 - Abstraction
 - Finite Model
 - Correctness properties
 - Translation
 - Temporal logic
 - Model Checker
 - Correct?
 - Yes/No + Counter-example
Models: Kripke Structures

Conventional state machines

• \(K = (V, S, s_0, I, R) \)
• \(V \) is a (finite) set of atomic propositions
• \(S \) is a (finite) set of states
• \(s_0 \in S \) is a start state
• \(I: S \rightarrow 2^V \) is a labelling function that maps each state to the set of propositional variables that hold in it
 – That is, \(I(S) \) is a set of interpretations specifying which propositions are true in each state
• \(R \subseteq S \times S \) is a transition relation
Propositional Variables

Fixed set of atomic propositions, e.g., \(\{p, q, r\} \)

Atomic descriptions of a system

“Printer is busy”

“There are currently no requested jobs for the printer”

“Conveyer belt is stopped”

Do not involve time!
Modal Logic

Extends *propositional logic* with modalities to qualify propositions

- “it is raining” – \(\text{rain} \)
- “it will rain tomorrow” – \(\Box \text{rain} \)
 - it is raining in all possible futures
- “it might rain tomorrow” – \(\Diamond \text{rain} \)
 - it is raining in some possible futures

Modal logic formulas are interpreted over a collection of *possible worlds* connected by an *accessibility relation*

Temporal logic is a modal logic that adds temporal modalities: next, always, eventually, and until
Computation Tree Logic (CTL)

CTL: Branching-time propositional temporal logic
Model - a tree of computation paths

Kripke Structure

Tree of computation
CTL: Computation Tree Logic

Propositional temporal logic with explicit quantification over possible futures

Syntax:

- *True* and *False* are CTL formulas;
- propositional variables are CTL formulas;
- If φ and ψ are CTL formulae, then so are: $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$

- **EX** φ: φ holds in some next state
- **EF** φ: along some path, φ holds in a future state
- **E[\varphi U \psi]**: along some path, φ holds until ψ holds
- **EG** φ: along some path, φ holds in every state

- Universal quantification: **AX** φ, **AF** φ, **A[\varphi U \psi]**, **AG** $\varphi
Examples: EX and AX

EX \(\varphi \) (exists next)

AX \(\varphi \) (all next)
Examples: EG and AG

EG φ (exists global)

AG φ (all global)
Examples: EF and AF

EF φ (exists future)

AF φ (all future)
Examples: EU and AU

E[φ U ψ] (exists until)

A[φ U ψ] (all until)
CTL Examples

Properties that hold:
- $(AX \text{ busy})(s_0)$
- $(EG \text{ busy})(s_3)$
- $A (\text{req } U \text{ busy}) (s_0)$
- $E (\neg \text{req } U \text{ busy}) (s_1)$
- $AG (\text{req } \Rightarrow AF \text{ busy}) (s_0)$

Properties that fail:
- $(AX (\text{req } \lor \text{ busy}))(s_3)$
Some Statements To Express

An elevator can remain idle on the third floor with its doors closed

- $\text{EF (state=idle } \land \text{ floor}=3 \land \text{ doors=closed)}$

When a request occurs, it will eventually be acknowledged

A process is enabled infinitely often on every computation path

- AG AF enabled

A process will eventually be permanently deadlocked

- AF AG deadlock

Action s precedes p after q

- $\text{A[} \neg q U (q \land A[} \neg p U s\])\]$

 Note: hard to do correctly. Use property patterns
Semantics of CTL

\(K,s \models \varphi \) — means that formula \(\varphi \) is true in state \(s \). \(K \) is often omitted since we always talk about the same Kripke structure

- E.g., \(s \models p \land \neg q \)

\(\pi = \pi^0 \pi^1 \ldots \) is a path

\(\pi^0 \) is the current state (root)

\(\pi^{i+1} \) is a successor state of \(\pi^i \). Then,

\[
\begin{align*}
AX \varphi &= \forall \pi \cdot \pi^i \models \varphi & \quad & \text{EX} \varphi &= \exists \pi \cdot \pi^i \models \varphi \\
AG \varphi &= \forall \pi \cdot \forall i \cdot \pi^i \models \varphi & \quad & \text{EG} \varphi &= \exists \pi \cdot \forall i \cdot \pi^i \models \varphi \\
AF \varphi &= \forall \pi \cdot \exists i \cdot \pi^i \models \varphi & \quad & \text{EF} \varphi &= \exists \pi \cdot \exists i \cdot \pi^i \models \varphi \\
A[\varphi U \psi] &= \forall \pi \cdot \exists i \cdot \pi^i \models \psi \land \forall j \cdot 0 \leq j < i \Rightarrow \pi^j \models \varphi \\
E[\varphi U \psi] &= \exists \pi \cdot \exists i \cdot \pi^i \models \psi \land \forall j \cdot 0 \leq j < i \Rightarrow \pi^j \models \varphi
\end{align*}
\]
Linear Temporal Logic (LTL)

For reasoning about complete traces through the system

Allows to make statements about a trace
LTL Syntax

If φ is an atomic propositional formula, it is a formula in LTL

If φ and ψ are LTL formulas, so are $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$, $\varphi U \psi$ (until), $X \varphi$ (next), $F \varphi$ (eventually), $G \varphi$ (always)

Interpretation: over computations $\pi: \omega \rightarrow 2^V$ which assigns truth values to the elements of V at each time instant

$\pi \models X \varphi$ iff $\pi_1 \models \varphi$

$\pi \models G \varphi$ iff $\forall i \cdot \pi_i \models \varphi$

$\pi \models F \varphi$ iff $\exists i \cdot \pi_i \models \varphi$

$\pi \models \varphi U \psi$ iff $\exists i \cdot \pi_i \models \psi \land \forall j \cdot 0 \leq j < i \Rightarrow \pi_j \models \varphi$

Here, π_i is the i’th state on a path
Expressing Properties in LTL

Good for safety (G ¬) and liveness (F) properties

Express:

- When a request occurs, it will eventually be acknowledged
- Each path contains infinitely many q’s
- At most a finite number of states in each path satisfy ¬q (or property q eventually stabilizes)
- Action s precedes p after q

Note: Hard to do correctly.
Safety and Liveness

Safety: Something “bad” will never happen
- $\text{AG } \neg \text{bad}$
- e.g., mutual exclusion: no two processes are in their critical section at once
- Safety = if false then there is a finite counterexample
- Safety = reachability

Liveness: Something “good” will always happen
- AG AF good
- e.g., every request is eventually serviced
- Liveness = if false then there is an infinite counterexample
- Liveness = termination

Every universal temporal logic formula can be decomposed into a conjunction of safety and liveness
State Explosion

How fast do Kripke structures grow?

- Composing linear number of structures yields exponential growth!

How to deal with this problem?

- Symbolic model checking with efficient data structures (BDDs, SAT).
 - Do not need to represent and manipulate the entire model
- Abstraction
 - Abstract away variables in the model which are not relevant to the formula being checked
 - Partial order reduction (for asynchronous systems)
 - Several interleavings of component traces may be equivalent as far as satisfaction of the formula to be checked is concerned
- Composition
 - Break the verification problem down into several simpler verification problems
Representing Models Symbolically

A system state represents an interpretation (truth assignment) for a set of propositional variables V

- Formulas represent sets of states that satisfy it
 - False = \emptyset, True = S
 - req – set of states in which req is
 - true – $\{s0, s1\}$
 - busy – set of states in which busy is
 - true – $\{s1, s3\}$
 - req \lor busy = $\{s0, s1, s3\}$

- State transitions are described by relations over two sets of variables: V (source state) and V' (destination state)
 - Transition $(s2, s3)$ is \negreq \land \negbusy \land \negreq'$ \land busy'
 - Relation R is described by disjunction of formulas for individual transitions
Pros and Cons of Model-Checking

Often cannot express full requirements
 • Instead check several smaller simpler properties
Few systems can be checked directly
 • Must generally abstract parts of the system and model the environment
Works better for certain types of problems
 • Very useful for control-centered concurrent systems
 – Avionics software
 – Hardware
 – Communication protocols
 • Not very good at data-centered systems
 – User interfaces, databases
Pros and Cons of Model Checking (Cont’d)

Largely automatic and fast

Better suited for debugging
 • … rather than assurance

Testing vs model-checking
 • Usually, find more problems by
 exploring all behaviours of a downscaled system
 than by
 testing some behaviours of the full system
SAT and SMT
Boolean Satisfiability

Let V be a set of variables

A *literal* is either a variable v in V or its negation $\sim v$

A *clause* is a disjunction of literals

- e.g., $(v_1 \lor \sim v_2 \lor v_3)$

A Boolean formula in *Conjunctive Normal Form* (CNF) is a conjunction of clauses

- e.g., $(v_1 \lor \sim v_2) \land (v_3 \lor v_2)$

An *assignment* s of Boolean values to variables *satisfies* a clause c if it evaluates at least one literal in c to true

An assignment s *satisfies* a formula C in CNF if it satisfies every clause in C

Boolean Satisfiability Problem (SAT):

- determine whether a given CNF C is satisfiable
CNF Examples

CNF 1
- \sim b
- \sim a \lor \sim b \lor \sim c
- a
- sat: s(a) = True; s(b) = False; s(c) = False

CNF 2
- \sim b
- \sim a \lor b \lor \sim c
- a
- \sim a \lor c
- unsat
Algorithms for SAT

SAT is NP-complete

DPLL (Davis-Putnam-Logemann-Loveland, ‘60)
- smart enumeration of all possible SAT assignments
- worst-case EXPTIME
- alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
- conflict-driven clause learning
- extends DPLL with
 - smart data structures, backjumping, clause learning, heuristics, restarts…
- scales to millions of variables
DPLL by Example

DPLL Example by Prof. Cesare Tinelli

From http://homepage.cs.uiowa.edu/~tinelli/classes/196/Fall09/notes/dpll.pdf
Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers

SMT: Satisfiability Modulo Theory

Satisfiability of Boolean formulas over atoms in a theory

- e.g., \((x < 0) \&\& (x \geq 0)\)

Extends syntax of Boolean formulas with functions and predicates

- \(+, -, \text{div}, \text{select}, \text{store}, \text{bvadd}, \text{etc.}\)

Existing solvers support many theories useful for program analysis

- Equality and Uninterpreted Functions: \(f(x)\)
- Real/Integer Linear Arithmetic: \(x + 2y \leq 3\)
- Unbounded Arrays: \(a[i], a[i := v]\)
- Bitvectors (a.k.a. machine integers): \(x \gg 3, x/3\)
- Floating point: \(3.0 \times x\)
- …
SMT-LIB: http://smt-lib.org

International initiative for facilitating research and development in SMT
Provides rigorous definition of syntax and semantics for theories

SMT-LIB syntax

• based on s-expressions (LISP-like)
• common syntax for interpreted functions of different theories
 – e.g. (and (= x y) (<= (* 2 x) z))
• commands to interact with the solver
 – (declare-fun …) declares a constant/function symbol
 – (assert p) conjoins formula p to the current context
 – (check-sat) checks satisfiability of the current context
 – (get-model) prints current model (if the context is satisfiable)

• see examples at http://rise4fun.com/z3
Is this formula satisfiable?

1 ; This example illustrates basic arithmetic and
2 ; uninterpreted functions
3
4 (declare-fun x () Int)
5 (declare-fun y () Int)
6 (declare-fun z () Int)
7 (assert (>= (* 2 x) (+ y z)))
8 (declare-fun f (Int) Int)
9 (declare-fun g (Int Int) Int)
10 (assert (< (f x) (g x x)))
11 (assert (> (f y) (g x x)))
12 (check-sat)
13 (get-model)
14 (push)
15 (assert (= x y))
16 (check-sat)
17 (pop)
18 (exit)
19

http://rise4fun.com/z3
SAT/SMT Revolution

Solve any computational problem by effective reduction to SAT/SMT

• iterate as necessary
Software Model Checking

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y - 1;
4: if (x == 2)
5: error();
6: EF (pc = 5)

Program (e.g., C)

Model Extraction

Model of the program

Model Checker

Correctness property

Yes/No Answer
In Our Programming Language…

All variables are global
Functions are in-lined

`int` is integer
• i.e., no overflow

Special statements:

`skip`	do nothing
`assume(e)`	if `e` then `skip` else `abort`
`x,y=e1,e2`	`x, y` are assigned `e1,e2` in parallel
`x=nondet()`	`x` gets an arbitrary value
`goto L1,L2`	non-deterministically go to `L1` or `L2`
From Programs to Kripke Structures

Program

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y - 1;
4: if (x == 2)
5: error();
6:

State

<table>
<thead>
<tr>
<th>pc</th>
<th>x</th>
<th>y</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>...</td>
</tr>
</tbody>
</table>

Step

<table>
<thead>
<tr>
<th>pc</th>
<th>x</th>
<th>y</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>...</td>
</tr>
</tbody>
</table>

Property: EF (pc = 5)
Programs as Control Flow Graphs

Program

```
1: int x = 2;
   int y = 2;
2: while (y <= 2)
3:   y = y - 1;
4: if (x == 2)
5:   error();
6:  
```

Semantics S

Labeled CFG

```
1: x, y=2, 2
2: y>2
   y<=2
3: y=y-1
4: x==2
5: x!=2
6: 
```
Modeling in Software Model Checking

Software Model Checker works directly on the source code of a program
• but it is a whole-program-analysis technique
• requires the user to provide the model of the environment with which the program interacts
 – e.g., physical sensors, operating system, external libraries, specifications, etc.

Programming languages already provide convenient primitives to describe behavior
• programming languages are extended to modeling and specification languages by adding three new features
 – non-determinism: like random values, but without a probability distribution
 – assumptions: constraints on “random” values
 – assertions: an indication of a failure
From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
- `assert(e)` – aborts an execution when `e` is false, no-op otherwise

```c
void assert (bool b) { if (!b) error(); }
```

Non-determinism
- `nondet_int()` – returns a non-deterministic integer value

```c
int nondet_int () { int x; return x; }
```

Assumptions
- `assume(e)` – “ignores” execution when `e` is false, no-op otherwise

```c
void assume (bool e) { while (!e); }
```
Non-determinism vs. Randomness

A **deterministic** function always returns the same result on the same input

- e.g., \(F(5) = 10 \)

A **non-deterministic** function may return different values on the same input

- e.g., \(G(5) \) in [0, 10] “\(G(5) \) returns a non-deterministic value between 0 and 10”

A **random** function may choose a different value with a probability distribution

- e.g., \(H(5) = (3 \text{ with prob. } 0.3, 4 \text{ with prob. } 0.2, \text{ and } 5 \text{ with prob. } 0.5) \)

Non-deterministic choice cannot be implemented!

- used to model the worst possible adversary/environment
Modeling with Non-determinism

```c
int x, y;

void main (void)
{
    x = nondet_int ();
    assume (x > 10);
    assume (x <= 100);
    y = x + 1;
    assert (y > x);
    assert (y < 200);
}
```
Using nondet for modeling

Library spec:
• “foo is given via grab_foo(), and is busy until returned via return_foo()”

Model Checking stub:

```c
int nondet_int ();
int is_foo_taken = 0;
int grab_foo () {
    if (!is_foo_taken)
        is_foo_taken = nondet_int ();
    return is_foo_taken; }
```

```c
void return_foo ()
{ is_foo_taken = 0; }
```
Dangers of unrestricted assumptions

Assumptions can lead to vacuous correctness claims!!!

Is this program correct?

```c
if (x > 0) {
    assume (x < 0);
    assert (0); }
```

Assume must either be checked with `assert` or used as an idiom:

```c
x = nondet_int ();
y = nondet_int ();
assume (x < y);
```
Software Model Checking Workflow

1. Identify module to be analyzed
 - e.g., function, component, device driver, library, etc.
2. Instrument with property assertions
 - e.g., buffer overflow, proper API usage, proper state change, etc.
 - might require significant changes in the program to insert necessary monitors
3. Model environment of the module under analysis
 - provide stubs for functions that are called but are not analyzed
4. Write verification harness that exercises module under analysis
 - similar to unit-test, but can use symbolic values
 - tests many executions at a time
5. Run Model Checker
6. Repeat as needed
SeaHorn

A fully automated verification framework for LLVM-based languages.

http://seahorn.github.io
Automated C program verifier for

- buffer- and integer-overflow, API usage rules, and user-specified assertions

Integrates with industrial-strength LLVM compiler framework

Based on our research in software model checking and abstract interpretation

Developed jointly by the SEI, CMU CyLab, and NASA Ames

SeaHorn Verification Framework
SeaHorn Usage

```bash
> sea pf FILE.c
```
Outputs sat for unsafe (has counterexample); unsat for safe

Additional options

- `--cex=trace.xml` outputs a counter-example in SV-COMP’15 format
- `--show-invars` displays computed invariants
- `--track={reg,ptr,mem}` track registers, pointers, memory content
- `--step={large,small}` verification condition step-semantics
 - `small` == basic block, `large` == loop-free control flow block
- `--inline` inline all functions in the front-end passes

Additional commands

- `sea smt` — generates CHC in extension of SMT-LIB2 format
- `sea clp` — generates CHC in CLP format (under development)
- `sea lfe-smt` — generates CHC in SMT-LIB2 format using legacy front-end
Verification Pipeline

front-end

clang | pp | ms | opt | horn

- compile
- pre-process
- optimize
- mixed semantics
- VC gen & solve
Current Application

Verification of resource usage rules in Linux device drivers
- e.g., locks are acquired and released, buffers are initialized, etc.
- specifications and verification environment provided by the Open-Source Linux Device Verification (LDV) project

NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
- conformance of auto-generated code with Simulink models
- absence of buffer overflows
Types of Software Model Checking

Bounded Model Checking (BMC)
- look for bugs (bad executions) up to a fixed bound
- usually bound depth of loops and depth of recursive calls
- reduce the problem to SAT/SMT

Predicate Abstraction with CounterExample Guided Abstraction Refinement (CEGAR)
- Construct finite-state abstraction of a program
- Analyze using finite-state Model Checking techniques
- Automatically improve / refine abstraction until the analysis is conclusive

Interpolation-based Model Checking (IMC)
- Iteratively apply BMC with increasing bound
- Generalize from bounded-safety proofs
- reduce the problem to many SAT/SMT queries and generalize from SAT/SMT reasoning
Bounded Model Checking
Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find whether there exists an execution that violates the claim.

Program → Analysis Engine → CNF → SAT Solver

- **SAT:** (counterexample exists)
- **UNSAT:** (no counterexample found)
Programs and Properties

Arbitrary ANSI-C programs
- With bitvector arithmetic, dynamic memory, pointers, …

Simple Safety Properties
- Array bound checks (i.e., buffer overflow)
- Division by zero
- Pointer checks (i.e., NULL pointer dereference)
- Arithmetic overflow
- User supplied assertions (i.e., `assert (i > j)`)
Why use a SAT Solver?

SAT Solvers are very efficient

Analysis is completely automated

Analysis as good as the underlying SAT solver

Allows support for many features of a programming language
 • bitwise operations, pointer arithmetic, dynamic memory, type casts
A (very) simple example (1)

Program

```c
int x;
int y=8,z=0,w=0;
if (x)
    z = y - 1;
else
    w = y + 1;
assert (z == 7 ||
        w == 9)
```

Constraints

```c
y = 8,
z = x ? y - 1 : 0,
w = x ? 0 : y + 1,
z != 7,
w != 9
```

UNSAT

no counterexample

assertion always holds!
A (very) simple example (2)

Program

```c
int x;
int y=8,z=0,w=0;
if (x)
    z = y - 1;
else
    w = y + 1;
assert (z == 5 ||
    w == 9)
```

Constraints

```
y = 8,
z = x ? y - 1 : 0,
w = x ? y + 1,    
z != 5,
w != 9
```

SAT
counterexample found!

| y = 8, x = 1, w = 0, z = 7 |
What about loops?!

SAT Solver can only explore finite length executions!
Loops must be bounded (i.e., the analysis is unsound)
CBMC: C Bounded Model Checker

Started at CMU by Daniel Kroening and Ed Clarke

Available at: http://www.cprover.org/cbmc
 • On Ubuntu: apt-get install cbmc

Supported platforms: Windows, Linux, OSX

Has a command line, Eclipse CDT, and Visual Studio interfaces

Scales to programs with over 30K LOC

Found previously unknown bugs in MS Windows device drivers
How does it work

Transform a programs into a set of equations
1. Simplify control flow
2. Unwind all of the loops
3. Convert into Single Static Assignment (SSA)
4. Convert into equations
5. Bit-blast
6. Solve with a SAT Solver
7. Convert SAT assignment into a counterexample
CBMC: Bounded Model Checker for C
A tool by D. Kroening/Oxford and Ed Clarke/CMU

C Program -> Parser -> Static Analysis

SAFE -> UNSAT -> SAT solver

SAT solver -> CNF-gen

CNF-gen -> equations

UNSAFE + CEX -> CEX-gen -> SAT

goto-program

CBMC
Control Flow Simplifications

- All side effect are removed
 - e.g., \(j = i++ \) becomes \(j = i; i = i + 1 \)

- Control Flow is made explicit
 - \texttt{continue}, \texttt{break} replaced by \texttt{goto}

- All loops are simplified into one form
 - \texttt{for}, \texttt{do while} replaced by \texttt{while}
Loop Unwinding

- All loops are unwound
 - can use different unwinding bounds for different loops
 - to check whether unwinding is sufficient special “unwinding assertion” claims are added

- If a program satisfies all of its claims and all unwinding assertions then it is correct!

- Same for backward goto jumps and recursive functions
Loop Unwinding

void f(...) {
 ...
 while(cond) {
 Body;
 }
 Remainder;
}
Loop Unwinding

void f(...) {
 ...
 if(cond) {
 Body;
 while(cond) {
 Body;
 }
 }
 Remainder;
}
Loop Unwinding

void f(...) {
 ...
 if(cond) {
 Body;
 if(cond) {
 Body;
 while(cond) {
 Body;
 }
 }
 }
 Remainder;
}
Unwinding assertion

while() loops are unwound iteratively

Break / continue replaced by goto

Assertion inserted after last iteration: violated if program runs longer than bound permits

```c
void f(...) {
    ...
    if(cond) {
        Body;
        if(cond) {
            Body;
            if(cond) {
                Body;
                while(cond) {
                    Body;
                }
            }
        }
    }
    }
    Remainder;
}
```
Unwinding assertion

while() loops are unwound iteratively

Break / continue replaced by goto

Assertion inserted after last iteration: violated if program runs longer than bound permits

Sound results!

```
void f(...) {
  ...
  if(cond) {
    Body;
    if(cond) {
      Body;
      if(cond) {
        Body;
        assert(!cond);
      }
    }
  }
  Remainder;
}
```
Example: Sufficient Loop Unwinding

```c
void f(...) {
    j = 1
    while (j <= 2) {
        j = j + 1;
        if (j <= 2) {
            j = j + 1;
            if (j <= 2) {
                j = j + 1;
                assert(!(j <= 2));
            }
        }
    }
    Remainder;
}
```

unwind = 3
Example: Insufficient Loop Unwinding

```c
void f(...) {
    j = 1
    while (j <= 10)
        j = j + 1;
    Remainder;
}
```

```c
void f(...) {
    j = 1
    if(j <= 10) {
        j = j + 1;
        if(j <= 10) {
            j = j + 1;
            if(j <= 10) {
                j = j + 1;
                assert(! (j <= 10));
            }
        }
    }
    Remainder;
}
```

unwind = 3
Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

Program

\[x = a; \]
\[y = x + 1; \]
\[z = y - 1; \]

Constraints

\[x = a \land \]
\[y = x + 1 \land \]
\[z = y - 1 \land \]
Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times, use a new variable for the RHS of each assignment.

Program

\[
\begin{align*}
\text{x} &= \text{x} + \text{y}; \\
\text{x} &= \text{x} \times 2; \\
\text{a}[\text{i}] &= 100;
\end{align*}
\]

SSA Program

\[
\begin{align*}
\text{x}_1 &= \text{x}_0 + \text{y}_0; \\
\text{x}_2 &= \text{x}_1 \times 2; \\
\text{a}_1[\text{i}_0] &= 100;
\end{align*}
\]
What about conditionals?

Program

```c
if (v)
    x = y;
else
    x = z;
w = x;
```

SSA Program

```c
if (v_0)
    x_0 = y_0;
else
    x_1 = z_0;
w_1 = x??;
```

What should ‘x’ be?
What about conditionals?

For each join point, add new variables with selectors

Program

```plaintext
if (v)
  x = y;
else
  x = z;
w = x;
```

SSA Program

```plaintext
if (v_0)
  x_0 = y_0;
else
  x_1 = z_0;
x_2 = v_0 ? x_0 : x_1;
w_1 = x_2
```
Adding Unbounded Arrays

\[v_\alpha[a] = e \quad \rho \quad v_\alpha = \lambda i : \begin{cases} \rho(e) & : i = \rho(a) \\ v_{\alpha-1}[i] & : \text{otherwise} \end{cases} \]

Arrays are updated “whole array” at a time

\[\begin{align*}
A[1] &= 5; & A_1 &= \lambda i : i == 1 \ ? 5 : A_0[i] \\
A[k] &= 20; & A_3 &= \lambda i : i == k \ ? 20 : A_2[i]
\end{align*} \]

Examples:

\[\begin{align*}
\end{align*} \]

Uses only as much space as there are uses of the array!
Example

```c
int main() {
    int x, y;
    y=8;
    if(x) y--; else y++;
    assert (y==7 || y==9);
}
```

```c
int main() {
    int x, y;
    y1=8;
    if(x0) y2=y1-1; else y3=y1+1;
    y4= x0 ? y2 : y3;
    assert (y4==7 || y4==9);
}
```

```
( y1 = 8
∧ y2 = y1 - 1
∧ y3 = y1 + 1
∧ y4 = x0 ? y2 : y3 )
⇒ (y4 = 7 ∨ y4 = 9)
```
Pointers

While unwinding, record right hand side of assignments to pointers
This results in very precise points-to information

- Separate for each pointer
- Separate for each instance of each program location

Dereferencing operations are expanded into case-split on pointer object (not: offset)

- Generate assertions on offset and on type

Pointer data type assumed to be part of bit-vector logic

- Consists of pair <object, offset>
BMC: Summary

An effective way to look for bugs
• reduce analysis to SAT/SMT
• creating effective and precise encoding is very hard

Mature tools available from several academic groups
• CBMC: http://www.cprover.org/cbmc/
• LLBMC: http://llbmc.org/

Starting point for many other approaches
• deductive verification: user provides inductive invariants for loops
• Interpolation-based Model Checking (later in the lecture)
• (dynamic) symbolic execution
Predicate Abstraction and CounterExample Guided Abstraction-Refinement
Programs are not finite state
- integer variables
- recursion
- unbounded data structures
- dynamic memory allocation
- dynamic thread creation
- pointers
- ...

重中 Build a finite abstraction
- ... small enough to analyze
- ... rich enough to give conclusive results
Soundness of Abstraction:

\[BP \text{ abstracts } P \text{ implies that } K' \text{ approximates } K \]
CounterExample Guided Abstraction Refinement (CEGAR)
The Running Example

<table>
<thead>
<tr>
<th>Program</th>
<th>Property</th>
<th>Expected Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: int x = 2;</td>
<td>EF (pc = 5)</td>
<td>False</td>
</tr>
<tr>
<td>int y = 2;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: while (y <= 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3: y = y - 1;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4: if (x == 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5: error();</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An Example Abstraction

Program

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y - 1;
4: if (x == 2)
5: error();
6:

Abstraction (with y <= 2)

bool b is (y <= 2)
1: b = T;
2: while (b)
3: b = ch(b, f);
4: if (*)
5: error();
6:
Boolean (Predicate) Programs (BP)

Variables correspond to predicates
Usual control flow statements
while, if-then-else, goto

Expressions
usual Boolean expressions, plus
*
ch(a, b)

Parallel Assignment
p_1 = ch(a_1, b_1), p_2 = ch(a_2, b_2), ...
b_1 = ch(b_1, ¬b_1), b_2 = ch(b_1 ∨ b_2, f), b_3=ch(f, f)
Detour: Pre- and Post-Conditions

A *Hoare triple* \(\{P\} \ C \ \{Q\} \) is a logical statement that holds when

For any state \(s \) that satisfies \(P \), if executing statement \(C \) on \(s \) terminates with a state \(s' \), then \(s' \) satisfies \(Q \).
Detour: Weakest Liberal Pre-Condition

The *weakest liberal precondition of a statement* C *with respect to a post-condition* Q (written $WLP(C,Q)$) is a formula P such that

1. $\{P\} C \{Q\}$
2. for all other P' such that $\{P'\} C \{Q\}$, $P' \Rightarrow P$ (P is weaker than P').
Detour: Weakest Liberal Preconditions

\[
\begin{align*}
\{3>y\} & \ x = 3 \ {x>y} \quad \checkmark \\
\{x>0\} & \ x = 2+y \ {y>0} \quad \times \\
\{*x>3 \lor x = \&y\} & \ y=5 \ {*x>3} \quad \checkmark \\
\{\text{false}\} & \ y=5 \ {y<0} \quad \checkmark
\end{align*}
\]
Calculating Weakest Preconditions

Assignment (easy)

• WLP \((x=e, Q) = Q[x/e]\)

 – Intuition: after an assignment, \(x\) gets the value of \(e\), thus \(Q[x/e]\) is required to hold before \(x=e\) is executed

Examples:

WLP \((x:=0, x=y) = (x=y)[x/0] = (0==y)\)
WLP \((x:=0, x=y+1) = (x=y+1)[x/0] = (0 == y+1)\)
WLP \((y:=y-1,y<=2) = (y<=2)[y/y-1] = (y-1 <= 2)\)
WLP \((y:=y-1,x=2) = (x=2)[y/y-1] = (x == 2)\)
Boolean Program Abstraction

Update $p = \text{ch}(a, b)$ is an approximation of a concrete statement S iff $\{a\}S\{p\}$ and $\{b\}S\{\neg p\}$ are valid

• i.e., $y = y - 1$ is approximated by
 - $(x == 2) = \text{ch}(x ==2, x!=2)$, and
 - $(y <= 2) = \text{ch}(y<=2,\text{false})$.

Parallel assignment approximates a concrete statement S iff all of its updates approximate S

• i.e., $y = y - 1$ is approximated by
 - $(x == 2) = \text{ch}(x ==2, x!=2)$,
 - $(y <= 2) = \text{ch}(y<=2,\text{false})$.

A Boolean program approximates a concrete program iff all of its statements approximate corresponding concrete statements.
Computing An Abstract Update

// S a statement under abstraction
// P a list of predicates used for abstraction
// t a target predicate for the update

absUpdate (Statement S, List<Predicates> P, Predicate q) {
 resT, resF = false, false;

 // foreach monomial (full conjunction of literals) in P
 foreach m : monomials(P) {
 if (SMT_IS_VALID("m ⇒ WLP(S,q)")) resT = resT V m;
 if (SMT_IS_VALID("m ⇒ WLP(S,¬q)")) resF = resF V m;
 }

 return "q = ch(resT, resF)"
}
absUpdate (y=y-1, P={y<=2}, q=(y<=2))

\[y = y - 1; \]

P is \{y <= 2\}
q is (y <= 2)

WLP(y=y-1,y<=2) is (y-1) <= 2
WLP(y=y-1,\neg(y<=2)) is (y-1) > 2

SMT Queries:
\[(y<=2) \Rightarrow (y-1) <= 2 \]
\[\neg(y<=2) \Rightarrow (y-1) <= 2 \]
\[(y<=2) \Rightarrow (y-1) > 2 \]
\[\neg(y<=2) \Rightarrow (y-1) > 2 \]
The result of abstraction

Program

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y - 1;
4: if (x == 2)
5: error();
6:

Abstraction
(with y<=2)

bool b is (y <= 2)
1: b = T;
2: while (b)
3: b = ch(b,f);
4: if (*)
5: error();
6:

But what is the semantics of Boolean programs?
BP Semantics: Overview

Over-Approximation

• treat “unknown” as non-deterministic
• good for establishing correctness of universal properties

Under-Approximation

• treat “unknown” as abort
• good for establishing failure of universal properties

Exact Approximation

• Treat “unknown” as a special unknown value
• good for verification and refutation
• good for universal, existential, and mixed properties
BP Semantics: Over-Approximation

Abstraction

```
1: ;
2: if (nondet) {
3:   if (*)
4:     error();
5:   if (nondet)
6:     error();
7: }
```

Unknown is treated as non-deterministic
BP Semantics: Under-Approximation

Abstraction

1: ;
2: if (nondet) {
3: if (*)
4: ERROR;
5: if (nondet)
6: ERROR;
7: }

Unknown is treated as abort
BP Semantics: Exact Approximation

Abstraction

```
1: ;
2: if (nondet) {
3:   if (*)
4:     ERROR;
5:   if (nondet)
6:     ERROR;
7: }
```

Exact Belnap KS

"non-deterministic"

"unknown"

Unknown is treated as unknown
Summary: The Three Semantics

Concrete

\[y = y - 1; \]

Abstract

\[b_1 \text{ is } (y \leq 2) \]
\[b_2 \text{ is } (x = 2) \]

\[b_1 = \text{ch}(b_1, f); \]
\[b_2 = \text{ch}(b_2, \neg b_2) \]
Summary: Program Abstraction

Abstract a program P by a Boolean program BP

Pick an abstract semantics for this BP:

- Over-approximating
- Under-approximating
- Belnap (Exact)

Yield relationship between K and K':

- Over-approximation
- Under-approximation
- Belnap abstraction
CounterExample Guided Abstraction Refinement (CEGAR)

Program

Predicate Abstraction

Abstract Model

Model Checking

Yes

System OK

No

Candidate Counterexample

SMT Solver

Counterexample Valid?

No

Yes

Problem Found

Better Predicates

Initial Predicates

Predicate Refinement

Initial Predicates

Better Predicates

Predicate Abstraction

Abstract Model

Model Checking

Yes

System OK

No

Candidate Counterexample

SMT Solver

Counterexample Valid?

No

Yes

Problem Found

Localization Reduction, Kurshan, Bell Labs

Counterexample-guided Abstraction Refinement for Symbolic Model Checking, Clarke et al., CMU

Software Model Checking, SLAM Project, Microsoft, Ball & Rajamani

Predicate Abstraction

Predicate Refinement

Initial Predicates

Better Predicates

Program
Example: Is ERROR Unreachable?

Program:

1: int x = 2;
2: int y = 2;
3: while (y <= 2)
4: y = y - 1;
5: if (x == 2)
6: error();

Abstraction:

1: ;
2: while (*)
3: ;
4: if (*)
5: error();
6: ;

Over-approximation:

1:
2:
3:
4:
5:
6:

CEGAR steps

Abstract → Translate → Check → Validate → Repeat

Need This!
Example: Is ERROR Unreachable?

Program

1: int x = 2;
 int y = 2;
2: while (y <= 2)
 3: y = y - 1;
4: if (x == 2)
5: error();
6:

Abstraction (with \(y \leq 2 \))

bool b is (y \leq 2)
1: b = T;
2: while (b)
 3: b = ch(b, f);
4: if (*)
5: error();
6:

Over-Approximation

CEGAR steps

Abstract Translate Check NO ERROR

UNREACHABLE
Using Cex for Refinement

Is ERROR Reachable?

MC

ERROR

Counterexample

MC

ERROR

Software Model Checking
© 2016 Carnegie Mellon University
Using Proofs for Refinement

\[
\begin{align*}
EF_2(\text{ERROR})(s_2) &= t \\
EF_3(\text{ERROR})(s_1) &= \bot \\
EF_4(\text{ERROR})(s_0) &= \bot \\
\exists n \ EF_n(\text{ERROR})(s_0) &= \bot \\
EF(\text{ERROR})(s_0) &= \bot
\end{align*}
\]

Is \text{ERROR} Reachable?
MC

Why?

\text{ERROR}

Refine HERE

cause

can stop here

\text{ERROR} Reachable?
Finding Refinement Predicates

Recall

- each abstract state is a conjunction of predicates
 - i.e., \(y \leq 2 \land x = 2 \land y > 2 \land x \neq 2 \) etc.
- each abstract transition corresponds to a program statement

Result from a partial proof

\[
\text{Unknown transition } s_1 \rightarrow s_2
\]

\(\{s_1\} C \{s_2\}\)

MC needs to know validity of

C is the statement corresponding to the transition
Refinement via Weakest Liberal Precondition

If $s_1 \rightarrow s_2$ corresponds to a conditional statement

- refine by adding the condition as a new predicate

If $s_1 \rightarrow s_2$ corresponds to a statement C

- Find a predicate p in s_2 with uncertain value
 - i.e., $\{s_1\}C\{p\}$ is not valid
- refine by adding $\text{WLP}(C,p)$
An Example

\(s_1 \rightarrow s_2 \) is unknown

\[
\begin{align*}
\text{pc}=2 & \quad \text{pc}=3 \\
y>2 & \quad y>2 \\
x==2 & \quad x==2
\end{align*}
\]

\(\{y>2 \land x==2\} \ y = y-1 \ \{y>2 \land x==2\} \)

\(\{y>2 \land x==2\} \ y = y-1 \ \{x==2\} \)

new predicate

\(\text{WLP}(y = y-1, \ y>2) = y>3 \)
Summary: Predicate Abstraction and CEGAR

Predicate abstraction with CEGAR is an effective technique for analyzing behavioral properties of software systems.

Combines static analysis and traditional model-checking.

Abstraction is essential for scalability:
- Boolean programs are used as an intermediate step.
- Different abstract semantics lead to different abs.: over-, under-, Belnap.

Automatic abstraction refinement finds the “right” abstraction incrementally.
Interpolation-based Model Checking
A transition system $P = (V, \text{Init}, \text{Tr}, \text{Bad})$

P is UNSAFE if and only if there exists a number N s.t.
\[
\text{Init}(X_0) \land \left(\bigwedge_{i=0}^{N-1} \text{Tr}(X_i, X_{i+1}) \right) \land \text{Bad}(X_N) \not\Rightarrow \bot
\]

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.
\[
\begin{align*}
\text{Init} & \Rightarrow \text{Inv} \\
\text{Inv}(X) \land \text{Tr}(X, X') & \Rightarrow \text{Inv}(X') \\
\text{Inv} & \Rightarrow \neg \text{Bad}
\end{align*}
\]
Verification by Successive Under-Approximation

bound 1

bound 2

bound 3

BMC

bounded proof

bounded proof

bounded proof

Inductive?

No

No

No
Reachability Analysis

Is Bad reachable?

INIT

Bad

R_1

R_2

..., R_n
Interpolating Model Checking

Key Idea

- turn SAT/SMT proofs of bounded safety to inductive traces
- repeat forever until a counterexample or inductive invariant are found

Introduced by McMillan in 2003

- based on pairwise Craig interpolation

Extended to sequences and DAGs

- Yakir Vizel, Orna Grumberg: Interpolation-sequence based model checking. FMCAD 2009: 1-8
 - uses interpolation sequence
 - IMPACT: interpolation sequence on each program path
 - UFO: interpolation sequence on the DAG of program paths
IMC: Interpolating Model Checking

\[\text{trace } F = [F_0, \ldots, F_N] \]

Is \(F \) closed

Yes \rightarrow \text{SAFE}

No \rightarrow \text{N:=N+1}

\[\text{BMC}_N \]

\[\text{SAT} \rightarrow \text{CEX} \]

\[\text{UNSAT} \rightarrow \text{BMC}_N \]

Software Model Checking
© 2016 Carnegie Mellon University
Bounded Model Checking

\[
\text{INIT}(V^0) \land \text{Tr}(V^0, V^1) \land \ldots \land \text{Tr}(V^{k-1}, V^k) \land \text{Bad}(V^k)
\]
Inductive Trace

An *inductive trace* of a transition system $P = (V, \text{Init}, \text{Tr}, \text{Bad})$ is a sequence of formulas $[F_0, \ldots, F_N]$ such that

- $\text{Init} \rightarrow F_0$
- $\forall 0 \leq i < N, \ F_i(v) \land \text{Tr}(v, u) \rightarrow F_{i+1}(u)$, or, in Hoare Logic $\{F_i\} \text{Tr} \{F_{i+1}\}$

A trace is *safe* iff $\forall 0 \leq i \leq N, \ F_i \rightarrow \neg \text{Bad}$

A trace is *monotone* iff $\forall 0 \leq i < N, \ F_i \rightarrow F_{i+1}$

A trace is *closed* iff $\exists 1 \leq i \leq N, \ F_i \rightarrow (F_0 \lor \ldots \lor F_{i-1})$

A transition system P is SAFE iff it admits a safe closed trace
Inductive Trace in Pictures

INIT

\(\ldots F_N \)

\(F_1 \)

\(F_2 \)

Bad
Craig Interpolation Theorem

Theorem (Craig 1957)

Let A and B be two First Order (FO) formulae such that $A \Rightarrow \neg B$, then there exists a FO formula I, denoted $\text{ITP}(A, B)$, such that

$$A \Rightarrow I \quad I \Rightarrow \neg B$$

$$\text{atoms}(I) \in \text{atoms}(A) \cap \text{atoms}(B)$$

A Craig interpolant $\text{ITP}(A, B)$ can be effectively constructed from a resolution proof of unsatisfiability of $A \land B$

In Model Checking, Craig Interpolation Theorem is used to safely over-approximate the set of (finitely) reachable states
Craig Interpolant

A

I

B
Craig Interpolant Examples

Boolean logic
• A is {!b, (!a || b || c), a} B is !a || !c
• Itp is a && c

EUF (equality with uninterpreted functions)
• A is {f(a) = b, p(f(a))} B is {b=c, !p(c)}
• Itp is p(b)

Linear Arithmetic
• A is {z+x+y > 10, z < 5} B is {x < -5, y < -3}
• Itp is x+y>5
Craig Interpolant as a Circuit

Let $F = A(x, z) \land B(z, y)$ be UNSAT, where x and y are distinct

- Note that for any assignment v to z either
 - $A(x, v)$ is UNSAT, or
 - $B(v, y)$ is UNSAT

An interpolant is a circuit $I(z)$ such that for every assignment v to z

- $I(v) = A$ only if $A(x, v)$ is UNSAT
- $I(v) = B$ only if $B(v, y)$ is UNSAT

A proof system S has a feasible interpolation if for every refutation π of F in S, F has an interpolant polynomial in the size of π

- propositional resolution has feasible interpolation
- extended resolution does not have feasible interpolation
Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]

- \(I \in \text{ITP} (A, B) \) then \(\neg I \in \text{ITP} (B, A) \)
- if \(A \) is syntactically convex (a monomial), then \(I \) is convex
- if \(B \) is syntactically convex, then \(I \) is co-convex (a clause)
- if \(A \) and \(B \) are syntactically convex, then \(I \) is a half-space

\(I = \text{interpolant} \)
Interpolation Sequence

Given a sequence of formulas \(A = \{A_i\}_{i=0}^n \), an interpolation sequence \(\text{ItpSeq}(A) = \{I_1, \ldots, I_{n-1}\} \) is a sequence of formulas such that

- \(I_k \) is an ITP \((A_0 \land \ldots \land A_{k-1}, A_k \land \ldots \land A_n)\), and
- \(\forall k<n . I_k \land A_{k+1} \Rightarrow I_{k+1} \)

Can compute by pairwise interpolation applied to different cuts of a fixed resolution proof (very robust property of interpolation)
From Interpolants to Traces

A Sequence Interpolant of a BMC instance is an inductive trace

\[(\text{Init}(v_0))_0 \land (\text{Tr}(v_0,v_1))_1 \land ... \land (\text{Tr}(v_{N-1}, v_N))_N \land \text{Bad}(v_N) \]

\[F_0(v_0) \land F_1(v_1) \land ... \land F_N(v_N)\]

A trace computed by a sequence interpolant is

- safe
- NOT necessarily monotone
- NOT necessarily closed
Inductive Trace in Pictures

INIT

\[F_1 \]

\[F_2 \]

\[\ldots F_N \]

Bad
IMC: Interpolating Model Checking

\[
\text{trace } F = [F_0, \ldots, F_N]
\]

Is \(F\) closed

Yes \Rightarrow \text{SAFE}

No \Rightarrow \text{BMC}_N \rightarrow \text{SeqItp} \rightarrow \text{ImcMkSafe} \rightarrow \text{CEX} \rightarrow \text{SAT} \rightarrow \text{SAT}

N:=N+1 \Rightarrow \text{BMC}_N \rightarrow \text{SeqItp} \rightarrow \text{ImcMkSafe} \rightarrow \text{CEX} \rightarrow \text{SAT} \rightarrow \text{SAT}

© 2016 Carnegie Mellon University

Software Model Checking

Software Engineering Institute | Carnegie Mellon University
IMC: Strength and Weaknesses

Strength

• elegant
• global bounded safety proof
• many different interpolation algorithms available
• easy to extend to SMT theories

Weaknesses

• the naïve version does not converge easily
 – interpolants are weaker towards the end of the sequence
• not incremental
 – no information is reused between BMC queries
• size of interpolants
• hard to guide
Trust in Formal Methods
Idealized Development w/ Formal Methods

- Design
- Develop
- Verify (with FM)
- Certify
- Deploy

No expensive testing!
- Verification is exhaustive

Simpler certification!
- Just check formal arguments

Can we trust formal methods tools? What can go wrong?
Trusting Automated Verification Tools

How should automatic verifiers be qualified for certification?

What is the basis for automatic program analysis (or other automatic formal methods) to replace testing?

Verify the verifier

• (too) expensive
• verifiers are often very complex tools
• difficult to continuously adapt tools to project-specific needs

Proof-producing (or certifying) verifier

• Only the proof is important – not the tool that produced it
• Only the proof-checker needs to be verified/qualified
• Single proof-checker can be re-used in many projects
Evidence Producing Analysis

Program P \rightarrow \text{EPA} \rightarrow \text{Proof X} \rightarrow \text{do not trust}

Property Q

\text{X witnesses that P satisfies Q. X can be objectively and independently verified. Therefore, EPA is outside the Trusted Computing Base (TCB).}

Active research area

- proof carrying code, certifying model checking, model carrying code etc.
- Few tools available. Some preliminary commercial application in the telecom domain.
- Static context. Good for ensuring absence of problems.
- Low automation. Applies to source or binary. High confidence.

Not that simple in practice !!!
An In-Depth Look…

Environment model
Low level property

Program = (Text, Semantics)

Diff sem used by diff tools

Compiler

Executable

Hardware

Real Env

Front-End

VC

Verifier

Proof Checker

No + Counterexample

Yes + Proof

Good

Bad

Hard to verify

Hard to get right
Five Hazards (Gaps) of Automated Verification

Soundness Gap
• Intentional and unintentional unsoundness in the verification engine
 e.g., rational instead of bitvector arithmetic, simplified memory model, etc.

Semantic Gap
• Compiler and verifier use different interpretation of the programming language

Specification Gap
• Expressing high-level specifications by low-level verifiable properties

Property Gap
• Formalizing low-level properties in temporal logic and/or assertions

Environment Gap
• Too coarse / unsound / unfaithful model of the environment
Mitigating The Soundness Gap

Proof-producing verifier makes the soundness gap explicit

- the soundness of the proof can be established by a “simple” checker
- all assumptions are stated explicitly

Open questions:

- how to generate proofs for explicit Model Checking
 - e.g., SPIN, Java PathFinder
- how to generate partial proofs for non-exhaustive methods
 - e.g., KLEE, Sage
- how to deal with “intentional” unsoundness
 - e.g., rational arithmetic instead of bitvectors, memory models, …
Vacuity: Mitigating Property Gap

Model Checking Perspective: Never trust a *True* answer from a Model Checker

When a property is violated, a counterexample is a certificate that can be examined by the user for validity

When a property is satisfied, there is no feedback!

It is very easy to formally state something very trivial in a very complex way
MODULE main
VAR
 send : {s0,s1,s2};
 recv : {r0,r1,r2};
 ack : boolean;
 req : boolean;
ASSIGN
 init(ack):=FALSE;
 init(req):=FALSE;
 init(send):=s0;
 init(recv):=r0;
next (send) :=
 case
 send=s0:{s0,s1};
 send=s1:s2;
 send=s2&ack:s0;
 TRUE:send;
 esac;

next (recv) :=
 case
 recv=r0&req:r1;
 recv=r1:r2;
 recv=r2:r0;
 TRUE:recv;
 esac;

next (ack) :=
 case
 recv=r2:TRUE;
 TRUE:ack;
 esac;

next (req) :=
 case
 send=s1:FALSE;
 TRUE:req;
 esac;

SPEC AG (req -> AF ack)
Five Hazards (Gaps) of Automated Verification

Soundness Gap
- Intentional and unintentional unsoundness in the verification engine
 - e.g., rational instead of bitvector arithmetic, simplified memory model, etc.

Semantic Gap
- Compiler and verifier use different interpretation of the programming language

Specification Gap
- Expressing high-level specifications by low-level verifiable properties

Property Gap
- Formalizing low-level properties in temporal logic and/or assertions

Environment Gap
- Too coarse / unsound / unfaithful model of the environment
Verification Competitions

Multitude of events where solvers and analysis engines compete

SAT-RACE
- competitive event for SAT solvers
- http://baldur.iti.kit.edu/sat-race-2015/

SMT-COMP
- competitive event for SMT solvers
- http://www.smtcomp.org

SV-COMP
- Software Verification Competition
 - open to all, but most tools are based on Model Checking
- http://sv-comp.sosy-lab.org/2016/

CASC
- competitive event for Automated Theorem Proving
- http://www.cs.miami.edu/~tptp/CASC/
References

Software Model Checking and Program Analysis

Symbolic Execution

SMT and Decision Procedures

• The SMT-LIB v2 Language and Tools: A Tutorial, by David R. Cokk
Hoare Triples

A Hoare triple \{Pre\} P \{Post\} is valid iff every terminating execution of \(P \) that starts in a state that satisfies \(Pre \) ends in a state that satisfies \(Post \)

Inductive Loop Invariant

\[
\begin{align*}
\text{Pre} & \Rightarrow \text{Inv} & \{\text{Inv} \wedge C\} \text{ Body } \{\text{Inv}\} & \text{Inv} \wedge \neg C \Rightarrow \text{Post} \\
\{\text{Pre}\} \textbf{while} C \textbf{ do} & \text{ Body } \{\text{Post}\}
\end{align*}
\]

Function Application

\[
\begin{align*}
(\text{Pre} \wedge p=a) & \Rightarrow \text{P} & \{\text{P}\} \text{ Body}_F \{\text{Q}\} & (Q \wedge p,r=a,b) \Rightarrow \text{Post} \\
\{\text{Pre}\} b = F(a) & \{\text{Post}\}
\end{align*}
\]

Recursion

\[
\begin{align*}
\{\text{Pre}\} b = F(a) & \{\text{Post}\} \vdash \{\text{Pre}\} \text{ Body}_F \{\text{Post}\} \\
\{\text{Pre}\} b = F(a) & \{\text{Post}\}
\end{align*}
\]
Weakest Liberal Pre-Condition

Validity of Hoare triples is reduced to FOL validity by applying a predicate transformer

Dijkstra’s weakest liberal pre-condition calculus [Dijkstra’75]

\[\text{wlp} (P, \text{Post}) \]

weakest pre-condition ensuring that executing P ends in Post

\[\{\text{Pre}\} P \{\text{Post}\} \text{ is valid} \iff \text{Pre } \Rightarrow \text{wlp} (P, \text{Post}) \]
A Simple Programming Language

Prog ::= def Main(x) { body_M }, ..., def P(x) { body_P }

body ::= stmt (; stmt)*

stmt ::= x = E | assert (E) | assume (E) | while E do S | y = P(E) | L:stmt | goto L (optional)

E ::= expression over program variables
Horn Clauses by Weakest Liberal Precondition

\[\text{Prog} ::= \text{def Main}(x) \{ \text{body}_M \}, \ldots, \text{def P}(x) \{ \text{body}_P \}\]

\[\text{wlp} (x=E, Q) = \text{let } x=E \text{ in } Q\]
\[\text{wlp} (\text{assert}(E), Q) = E \land Q\]
\[\text{wlp} (\text{assume}(E), Q) = E \rightarrow Q\]
\[\text{wlp} (\text{while } E \text{ do } S, Q) = \text{I}(w) \land\]
\[\forall w . ((\text{I}(w) \land E) \rightarrow \text{wlp} (S, \text{I}(w))) \land ((\text{I}(w) \land \neg E) \rightarrow Q)\]
\[\text{wlp} (y = P(E), Q) = p_{\text{pre}}(E) \land (\forall r. p(E, r) \rightarrow Q[r/y])\]

\[\text{ToHorn} (\text{def } P(x) \{ S \}) = \text{wlp} (x_0=x; \text{assume}(p_{\text{pre}}(x)); S, p(x_0, \text{ret}))\]
\[\text{ToHorn} (\text{Prog}) = \text{wlp} (\text{Main}(), \text{true}) \land \forall \{P \in \text{Prog}\}. \text{ToHorn} (P)\]
Example of a WLP Horn Encoding

\{\text{Pre: } y \geq 0\}
\begin{align*}
x_0 &= x; \\
y_0 &= y; \\
\text{while } y > 0 \text{ do} & \\
&\quad x = x + 1; \\
&\quad y = y - 1; \\
\{\text{Post: } x = x_0 + y_0\}
\end{align*}

ToHorn

C1: \text{I}(x, y, x, y) \leftarrow y \geq 0.
C2: \text{I}(x+1, y-1, x_0, y_0) \leftarrow \text{I}(x, y, x_0, y_0), \ y > 0.
C3: \text{false} \leftarrow \text{I}(x, y, x_0, y_0), \ y \leq 0, \ x \neq x_0 + y_0

\{y \geq 0\} \text{ P } \{x = x_{\text{old}} + y_{\text{old}}\} \text{ is \textbf{true} iff the query } C_3 \text{ is \textbf{satisfiable}
Single Static Assignment

SSA == every value has a unique assignment (a \textit{definition})
A procedure is in SSA form if every variable has exactly one definition

SSA form is used by many compilers
\begin{itemize}
 \item explicit def-use chains
 \item simplifies optimizations and improves analyses
\end{itemize}

PHI-function are necessary to maintain unique definitions in branching control flow

\[x = \text{PHI} \left(v_0:bb_0, \ldots, v_n:bb_n \right) \]

(\text{phi-assignment})

\textquote{x gets } v_i \text{ if previously executed block was } bb_i \text{”}
Single Static Assignment: An Example

```
int x, y, n;

x = 0;
while (x < N) {
    if (y > 0)
        x = x + y;
    else
        x = x - y;
    y = -1 * y;
}
```

```
0: goto 1
1: x_0 = PHI(0:0, x_3:5);
y_0 = PHI(y:0, y_1:5);
if (x_0 < N) goto 2 else goto 6
2: if (y_0 > 0) goto 3 else goto 4
3: x_1 = x_0 + y_0; goto 5
4: x_2 = x_0 - y_0; goto 5
5: x_3 = PHI(x_1:3, x_2:4);
y_1 = -1 * y_0;
goto 1
6: val:bb
```