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Static Program Analysis

Reasoning statically about behavior of a program without executing it
• compile-time analysis
• exhaustive, considers all possible executions under all possible environments 

and inputs

The algorithmic discovery of properties of program by inspection of the 
source text

Manna and Pnueli, “Algorithmic Verification”

Also known as static analysis, program verification, formal methods, etc.

Automated

Analysis

Correct

Incorrect

Program

Specification
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Turing, 1936:  “undecidable”
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Undecidability

The halting problem
• does a program P terminates on input I
• proved undecidable by Alan Turing in 1936
• https://en.wikipedia.org/wiki/Halting_problem

Rice’s Theorem
• for any non-trivial property of partial functions, no general and effective 

method can decide whether an algorithm computes a partial function with that 
property

• in practice, this means that there is no machine that can always decide 
whether the language of a given Turing machine has a particular nontrivial 
property

• https://en.wikipedia.org/wiki/Rice%27s_theorem
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Living with Undecidability

“Algorithms” that occasionally diverge

Limit programs that can be analyzed
• finite-state, loop-free

Partial (unsound) verification
• analyze only some executions up-to a fixed number of steps

Incomplete verification / Abstraction
• analyze a superset of program executions 

Programmer Assistance
• annotations, pre-, post-conditions, inductive invariants



6
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

(Temporal Logic) Model Checking

Automatic verification technique  for finite state 
concurrent systems.

• Developed independently by Clarke and 
Emerson and by Queille and Sifakis in early 
1980’s.

• ACM Turing Award 2007

Specifications are written in propositional 
temporal logic. (Pnueli 77)

• Computation Tree Logic (CTL), Linear Temporal 
Logic (LTL), …

Verification procedure is an intelligent exhaustive 
search of the state space of the design

• Statespace explosion



7
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Model Checking since 1981

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998  Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

105

10100

101000

1990s: Formal Hardware 
Verification in Industry:
Intel, IBM, Motorola, etc.
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1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998  Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

CBMC

SLAM,
MAGIC,
BLAST, …

Model Checking since 1981
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Temporal Logic Model 
Checking
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Temporal Logic Model Checking

Yes/No +

Counter-example

SW/HW 

Artifact

Correctness

properties

Temporal

logic
Finite

Model

Model 

Extraction
Translation

Model

Checker 

Correct?

Abstraction
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Models: Kripke Structures

Conventional state machines
• K = (V, S, s0, I , R)
• V is a (finite) set of atomic 
propositions
• S is a (finite) set of states
• s0 ∈ S is a start state
• I: S → 2V is a labelling function that maps 

each state to the set of propositional 
variables that hold in it 
– That is, I(S) is a set of interpretations 

specifying which propositions are true 
in each state

• R ⊆ S × S is a transition relation 

req req,
busy

busy

s0

s2

s1

s3



12
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Propositional Variables

Fixed set of atomic propositions, e.g, {p, q, r}

Atomic descriptions of a system
“Printer is busy”

“There are currently no requested jobs for the printer”

“Conveyer belt is stopped”

Do not involve time!
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Modal Logic

Extends propositional logic with modalities to qualify propositions
• “it is raining” – rain
• “it will rain tomorrow” –☐rain
– it is raining in all possible futures

• “it might rain tomorrow” – ⃟rain
– it is raining in some possible futures

Modal logic formulas are interpreted over a collection of possible worlds
connected by an accessibility relation

Temporal logic is a modal logic that adds temporal modalities: next, 
always, eventually, and until



14
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Computation Tree Logic (CTL)

CTL: Branching-time propositional temporal logic
Model - a tree of computation paths

S1 S2

S3

S2

S1 S3

S1 S3S2

S2

S1

S1 S3 S1 S3

Tree of computationKripke Structure
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CTL:  Computation Tree Logic

Propositional temporal logic with explicit quantification over possible 
futures
Syntax:

True and False are CTL formulas;
propositional variables are CTL formulas;

If ϕ and ψ are CTL formulae, then so are: ¬ ϕ , ϕ ∧ ψ , ϕ ∨ ψ

EX ϕ :          ϕ holds in some next state

EF ϕ :           along some path, ϕ holds in a future state

E[ϕ U ψ] :    along some path, ϕ holds until ψ holds

EG ϕ :          along some path, ϕ holds in every state

• Universal quantification: AX ϕ , AF ϕ , A[ϕ U ψ], AG ϕ
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Examples: EX and AX

ϕ

EX ϕ (exists next)

ϕ

AX ϕ (all next)

ϕ
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Examples: EG and AG

ϕ

ϕ

ϕ

ϕ

EG ϕ (exists global)

ϕ

ϕ

ϕ ϕϕ

ϕϕ ϕ ϕ ϕ

AG ϕ (all global)

ϕ
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Examples: EF and AF

ϕ

EF ϕ (exists future)

ϕ

ϕ ϕ

AF ϕ (all future)

ϕ
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Examples: EU and AU

ϕ

ϕ

ψ

E[ϕ U ψ] (exists until)

ϕ

ϕ

ϕ ψ

ψ

A[ϕ U ψ] (all until)

ψ
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CTL Examples

Properties that hold:
• (AX busy)(s0)
• (EG busy)(s3)
• A (req U busy) (s0) 
• E (¬req U busy) (s1) 
• AG (req ⇒ AF busy) (s0) 

Properties that fail:
• (AX (req ∨ busy))(s3)

req req,
busy

busy

s0

s2

s1

s3



21
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Some Statements To Express

An elevator can remain idle on the third floor with its doors closed 
• EF (state=idle ∧ floor=3 ∧ doors=closed)

When a request occurs, it will eventually be acknowledged
• AG (request ⇒ AF acknowledge)

A process is enabled infinitely often on every computation path
• AG AF enabled

A process will eventually be permanently deadlocked
• AF AG deadlock

Action s precedes p after q
• A[¬q U (q ∧ A[¬p U s])]

• Note:  hard to do correctly.  Use property patterns
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Semantics of CTL

K,s ⊨ ϕ – means that formula ϕ is true in state s.  K is often omitted 
since we always talk about the same Kripke structure
• E.g., s ⊨ p ∧¬q
π = π0 π1 … is a path
π0 is the current state (root)
πi+1 is a successor state of πi.  Then,
AX ϕ = ∀π ⋅ π1 ⊨ ϕ EX ϕ = ∃π ⋅ π1  ⊨ ϕ
AG ϕ = ∀π ⋅ ∀i ⋅ πi ⊨ ϕ EG ϕ = ∃π ⋅ ∀i ⋅ πi ⊨ ϕ
AF ϕ = ∀π ⋅ ∃i ⋅ πi ⊨ ϕ EF ϕ = ∃π ⋅ ∃i ⋅ πi ⊨ ϕ
A[ϕ U ψ] = ∀π ⋅ ∃i ⋅ πi ⊨ ψ ∧ ∀ j ⋅ 0 ≤ j  < i ⇒ πj ⊨ ϕ
E[ϕ U ψ] = ∃π ⋅ ∃i ⋅ πi ⊨ ψ ∧ ∀ j ⋅ 0 ≤ j  < i ⇒ πj ⊨ ϕ
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Linear Temporal Logic (LTL)

For reasoning about complete traces through the system

Allows to make statements about a trace

S1 S2

S3

S2 S1S1 S2 S1

S2 S1S1 S2 S3

S2 S3S1 S3 S3

S2 S3S1 S1 S2

S2 S3S1 S3 S1
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LTL Syntax

If ϕ is an atomic propositional formula, it is a formula in LTL
If ϕ and ψ are LTL formulas, so are ϕ∧ ψ, ϕ∨ ψ,     ¬ ϕ, ϕ U ψ (until), 
X ϕ (next), Fϕ (eventually), G ϕ (always)
Interpretation: over computations π: ω ⇒ 2V which assigns truth values 
to the elements of V at each time instant
π ⊨ X ϕ iff π 1 ⊨ ϕ
π ⊨ G ϕ iff ∀i ⋅ π i ⊨ ϕ
π ⊨ Fϕ iff ∃i ⋅ π i ⊨ ϕ
π ⊨ ϕ U ψ iff ∃i ⋅ π i ⊨ ψ ∧ ∀ j ⋅ 0 ≤ j  < i ⇒ π j ⊨ ϕ
Here, π i is the i ’th state on a path
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Expressing Properties in LTL

Good for safety (G ¬) and liveness (F) properties
Express:
• When a request occurs, it will eventually be acknowledged
– G (request ⇒ F acknowledge)

• Each path contains infinitely many q’s
– G F q

• At most a finite number of states in each path satisfy ¬q (or property q
eventually stabilizes)
– F G q

• Action s precedes p after q
– [¬q U (q ∧ [¬p U s])]
– Note:  hard to do correctly.  
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Safety and Liveness

Safety: Something “bad” will never happen
• AG ¬bad
• e.g., mutual exclusion: no two processes are in their critical section at once
• Safety = if false then there is a finite counterexample
• Safety = reachability

Liveness: Something “good” will always happen
• AG AF good
• e.g., every request is eventually serviced
• Liveness = if false then there is an infinite counterexample
• Liveness = termination 

Every universal temporal logic formula can be decomposed into a 
conjunction of safety and liveness
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State Explosion

How fast do Kripke structures grow? 
• Composing linear number of structures yields exponential growth!

How to deal with this problem?
• Symbolic model checking with efficient data structures (BDDs, SAT). 
– Do not need to represent and manipulate the entire model

• Abstraction 
– Abstract away variables in the model which are not relevant to the formula 

being checked 
– Partial order reduction (for asynchronous systems)
– Several interleavings of component traces may be equivalent as far as 

satisfaction of the formula to be checked is concerned
• Composition
– Break the verification problem down into several simpler verification 

problems

27
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Representing Models Symbolically

A system state represents an interpretation (truth assignment) for a set 
of propositional variables V
• Formulas represent sets of states that satisfy it
– False = ∅, True = S
– req – set of states in which req is
– true – {s0, s1}
– busy – set of states in which busy is
– true – {s1, s3}
– req∨ busy = {s0, s1 , s3}

• State transitions are described by relations over two sets of variables:  V 
(source state) and V’ (destination state)
– Transition (s2, s3) is ¬req∧ ¬ busy ∧ ¬req’∧ busy’
– Relation R is described by disjunction of formulas for individual transitions

28

req req,
busy

busy

s0

s2

s1

s3
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Pros and Cons of Model-Checking

Often cannot express full requirements
• Instead check several smaller simpler properties

Few systems can be checked directly
• Must generally abstract parts of the system and model the environment

Works better for certain types of problems
• Very useful for control-centered concurrent systems
– Avionics software
– Hardware
– Communication protocols

• Not very good at data-centered systems
– User interfaces, databases
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Pros and Cons of Model Checking (Cont’d)

Largely automatic and fast

Better suited for debugging 
• … rather than assurance

Testing vs model-checking
• Usually, find more problems by 

exploring all behaviours of a downscaled system 
than by 

testing some behaviours of the full system
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SAT and SMT 
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Boolean Satisfiability

Let V be a set of variables
A literal is either a variable v in V or its negation  ~v
A clause is a disjunction of literals
• e.g., (v1 || ~v2 || v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction 
of clauses
• e.g., (v1 || ~v2) && (v3 || v2)

An assignment s of Boolean values to variables satisfies a clause c if it 
evaluates at least one literal in c to true
An assignment s satisfies a formula C in CNF if it satisfies every clause 
in C
Boolean Satisfiability Problem (SAT):  
• determine whether a given CNF C is satisfiable
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CNF Examples

CNF 1
• ~b
• ~a || ~b || ~c
• a
• sat: s(a) = True;  s(b) = False; s(c) = False

CNF 2
• ~b
• ~a || b || ~c
• a
• ~a || c
• unsat
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Algorithms for SAT

SAT is NP-complete

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
• conflict-driven clause learning
• extends DPLL with
– smart data structures, backjumping, clause learning, heuristics, restarts…

• scales to millions of variables
• N. Een and N. Sörensson, “An Extensible SAT-solver”, in SAT 2013.
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DPLL by Example

From http://homepage.cs.uiowa.edu/~tinelli/classes/196/Fall09/notes/dpll.pdf

DPLL Example by Prof. Cesare Tinelli
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S. A. Seshia 1 

Some Experience with SAT Solving 
Sanjit A. Seshia 

Speed-up of 2012 solver over other solvers 
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Figure 4: SAT Solvers Performance
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from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf  
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SMT: Satisfiability Modulo Theory

Satisfiability of Boolean formulas over atoms in a theory
• e.g., (x < 0) && (x >= 0)

Extends syntax of Boolean formulas with functions and predicates
• +, -, div, select, store, bvadd, etc.

Existing solvers support many theories useful for program analysis
• Equality and Uninterpreted Functions: f(x)
• Real/Integer Linear Arithmetic: x + 2*y <= 3
• Unbounded Arrays: a[i], a[i := v]
• Bitvectors (a.k.a. machine integers): x >> 3, x/3
• Floating point: 3.0 * x
• …
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SMT-LIB: http://smt-lib.org

International initiative for facilitating research and development in SMT
Provides rigorous definition of syntax and semantics for theories
SMT-LIB syntax
• based on s-expressions (LISP-like)
• common syntax for interpreted functions of different theories
– e.g. (and (= x y) (<= (* 2 x) z))

• commands to interact with the solver
– (declare-fun …) declares a constant/function symbol
– (assert p) conjoins formula p to the curent context
– (check-sat) checks satisfiability of the current context
– (get-model) prints current model (if the context is satisfiable)

• see examples at http://rise4fun.com/z3
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SMT Example

http://rise4fun.com/z3
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SAT/SMT Revolution

Solve any computational problem by effective reduction to SAT/SMT
• iterate as necessary

Problem

encode

decode

SAT/SMT
Solver
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Software Model Checking
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Software  Model Checking

Yes/No 

Answer

Program

(e.g., C)

Correctness

property
Model of

the program

Model 
Extraction

Model 
Checker 

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     error();
6:

EF (pc = 5)
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In Our Programming Language…

All variables are global
Functions are in-lined
int is integer 
• i.e., no overflow

Special statements:

skip do nothing
assume(e) if e then skip else abort
x,y=e1,e2 x, y are assigned e1,e2 in parallel
x=nondet() x gets an arbitrary value
goto L1,L2 non-deterministically go to L1 or L2
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From Programs to Kripke Structures

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     error();
6:

Program

pc x y …

3 1 3 …

State

pc x y …

2 1 2 …

Step

Property: EF (pc = 5)
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Programs as Control Flow Graphs

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     error();
6:

Program Labeled CFG

Semantics S

1:

2:

3:4:

5:

6:

x,y=2,2

y<=2
y>2

x==2

x!=2

y=y-1
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Modeling in Software Model Checking

Software Model Checker works directly on the source code of a program
• but it is a whole-program-analysis technique
• requires the user to provide the model of the environment with which the 

program interacts
– e.g., physical sensors, operating system, external libraries, specifications, 

etc.

Programing languages already provide convenient primitives to describe 
behavior
• programming languages are extended to modeling and specification 

languages by adding three new features
– non-determinism: like random values, but without a probability distribution
– assumptions: constraints on “random” values
– assertions: an indication of a failure
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From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
• assert(e) – aborts an execution when e is false, no-op otherwise

Non-determinism
• nondet_int() – returns a non-deterministic integer value

Assumptions
• assume(e) – “ignores” execution when e is false, no-op otherwise

void assert (bool b) { if (!b)  error(); }

int nondet_int () { int x; return x; }

void assume (bool e) { while (!e) ;  }
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Non-determinism vs. Randomness

A deterministic function always returns the same result on the same 
input
• e.g., F(5) = 10

A non-deterministic function may return different values on the same 
input
• e.g., G(5) in [0, 10] “G(5) returns a non-deterministic value between 0 and 10”

A random function may choose a different value with a probability 
distribution
• e.g., H(5) = (3 with prob. 0.3, 4 with prob. 0.2, and 5 with prob. 0.5)

Non-deterministic choice cannot be implemented! 
• used to model the worst possible adversary/enviroment
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Modeling with Non-determinism

int x, y;

void main (void)
{
x = nondet_int ();

assume (x > 10);
assume (x <= 100);
y = x + 1;

assert (y > x);
assert (y < 200);

}
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Using nondet for modeling

Library spec:
• “foo is given via grab_foo(), and is busy until returned via return_foo()”

Model Checking stub:

int nondet_int ();

int is_foo_taken = 0;

int grab_foo () {

if (!is_foo_taken)

is_foo_taken = nondet_int ();

return is_foo_taken; }

void return_foo ()

{ is_foo_taken = 0; }
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Dangers of unrestricted assumptions

Assumptions can lead to vacuous correctness claims!!!

if (x > 0) {

assume (x < 0);

assert (0); }Is this program correct?

Assume must either be checked with assert or used as an idiom:

x = nondet_int ();

y = nondet_int ();

assume (x < y);
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Software Model Checking Workflow

1. Identify module to be analyzed 
– e.g., function, component, device driver, library, etc.

2. Instrument with property assertions
– e.g., buffer overflow, proper API usage, proper state change, etc.
– might require significant changes in the program to insert necessary 

monitors
3. Model environment of the module under analysis
– provide stubs for functions that are called but are not analyzed

4. Write verification harness that exercises module under analysis
– similar to unit-test, but can use symbolic values
– tests many executions at a time

5. Run Model Checker

6. Repeat as needed
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http://seahorn.github.io
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SeaHorn Verification Framework

Automated C program verifier for
• buffer- and integer-overflow, API usage rules, and user-specified assertions

Integrates with industrial-strength LLVM compiler framework
Based on our research in software model checking and abstract 
interpretation 
Developed jointly by the SEI, CMU CyLab, and NASA Ames
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SeaHorn Usage

> sea pf FILE.c
Outputs sat for unsafe (has counterexample); unsat for safe 
Additional options
• --cex=trace.xml outputs a counter-example in SV-COMP’15 format
• --show-invars displays computed invariants
• --track={reg,ptr,mem} track registers, pointers, memory content
• --step={large,small} verification condition step-semantics
– small == basic block, large == loop-free control flow block

• --inline inline all functions in the front-end passes
Additional commands
• sea smt – generates CHC in extension of SMT-LIB2 format
• sea clp -- generates CHC in CLP format (under development)
• sea lfe-smt – generates CHC in SMT-LIB2 format using legacy front-end
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Verification Pipeline

clang | pp | ms |opt | horn

front-end

compile pre-process

mixed 
semantics

optimize

VC gen & 
solve
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Current Application

Verification of resource usage rules in Linux device drivers
• e.g., locks are acquired and released, buffers are initialized, etc.
• specifications and verification environment provided by the Open-Source 

Linux Device Verification (LDV) project

NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)
• conformance of auto-generated code with Simulink models
• absence of buffer overflows
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Types of Software Model Checking

Bounded Model Checking (BMC)
• look for bugs (bad executions) up to a fixed bound
• usually bound depth of loops and depth of recursive calls
• reduce the problem to SAT/SMT

Predicate Abstraction with CounterExample Guided Abstraction 
Refinement (CEGAR)
• Construct finite-state abstraction of a program
• Analyze using finite-state Model Checking techniques
• Automatically improve / refine abstraction until the analysis is conclusive

Interpolation-based Model Checking (IMC)
• Iteratively apply BMC with increasing bound
• Generalize from bounded-safety proofs 
• reduce the problem to many SAT/SMT queries and generalize from SAT/SMT 

reasoning
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Bounded Model Checking
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Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find 
whether there exists an execution that violates the claim. 

Program

Claim
Analysis
Engine

SAT
Solver

UNSAT

(no counterexample found)

SAT

(counterexample exists)

CNF
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Programs and Properties

Arbitrary ANSI-C programs
• With bitvector arithmetic, dynamic memory, pointers, …

Simple Safety Properties
• Array bound checks (i.e., buffer overflow)
• Division by zero
• Pointer checks (i.e., NULL pointer dereference)
• Arithmetic overflow
• User supplied assertions (i.e., assert (i > j) )
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Why use a SAT Solver?

SAT Solvers are very efficient

Analysis is completely automated

Analysis as good as the underlying SAT solver

Allows support for many features of a programming language
• bitwise operations, pointer arithmetic, dynamic memory, type casts
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A (very) simple example (1)

int x;

int y=8,z=0,w=0;

if (x) 

z = y – 1;

else

w = y + 1;

assert (z == 7 ||

w == 9)

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 7,

w != 9

Program Constraints

UNSAT

no counterexample

assertion always holds!
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A (very) simple example (2)

int x;

int y=8,z=0,w=0;

if (x) 

z = y – 1;

else

w = y + 1;

assert (z == 5 ||

w == 9)

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 5,

w != 9

Program Constraints

SAT

counterexample found!

y = 8, x = 1, w = 0, z = 7
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What about loops?!

SAT Solver can only explore finite length executions!
Loops must be bounded (i.e., the analysis is unsound)

Program

Claim
Analysis
Engine

SAT
Solver

UNSAT
(no counterexample of

bound n is found)

SAT
(counterexample exists)

CNF

Bound (n)
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CBMC: C Bounded Model Checker

Started at CMU by Daniel Kroening and Ed Clarke

Available at: http://www.cprover.org/cbmc
• On Ubuntu: apt-get install cbmc

Supported platforms: Windows, Linux, OSX

Has a command line, Eclipse CDT, and Visual Studio interfaces

Scales to programs with over 30K LOC

Found previously unknown bugs in MS Windows device drivers
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How does it work

Transform a programs into a set of equations
1. Simplify control flow 
2. Unwind all of the loops
3. Convert into Single Static Assignment (SSA)
4. Convert into equations
5. Bit-blast
6. Solve with a SAT Solver
7. Convert SAT assignment into a counterexample
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CBMC: Bounded Model Checker for C
A tool by D. Kroening/Oxford and Ed Clarke/CMU

Parser Static Analysis

CNF-genSAT solver

CEX-gen CBMC

C Program

SAFE

UNSAFE + CEX

SAT

UNSAT CNF

goto-
program

equations
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Control Flow Simplifications

l All side effect are removed
• e.g., j=i++ becomes j=i;i=i+1

• Control Flow is made explicit
• continue, break replaced by goto

• All loops are simplified into one form
• for, do while replaced by while
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Loop Unwinding

• All loops are unwound
• can use different unwinding bounds for different loops

• to check whether unwinding is sufficient special 
“unwinding assertion” claims are added

• If a program satisfies all of its claims and all 
unwinding assertions then it is correct!

• Same for backward goto jumps and recursive 
functions
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Loop Unwinding 

while() loops are unwound 
iteratively

Break / continue replaced by 
goto

void f(...) {
...
while(cond) {

Body;
}
Remainder;

}
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Loop Unwinding

while() loops are unwound 
iteratively

Break / continue replaced by 
goto

void f(...) {
...
if(cond) {

Body;
while(cond) {

Body;
}

}
Remainder;

}
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Loop Unwinding

while() loops are unwound 
iteratively

Break / continue replaced by 
goto

void f(...) {
...
if(cond) {

Body;
if(cond) {

Body;
while(cond) {

Body;
}

}
}
Remainder;

}
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Unwinding assertion

while() loops are unwound 
iteratively

Break / continue replaced by 
goto

Assertion inserted after last 
iteration: violated if 
program runs longer 
than bound permits

void f(...) {
...
if(cond) {

Body;
if(cond) {

Body;
if(cond) {

Body;
while(cond) {

Body;
}

}
}

}
Remainder;

}
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Unwinding assertion

while() loops are unwound 
iteratively

Break / continue replaced by 
goto

Assertion inserted after last 
iteration: violated if 
program runs longer 
than bound permits

Sound results!

void f(...) {
...
if(cond) {

Body;
if(cond) {

Body;
if(cond) {

Body;
assert(!cond);

}
}

}
}
Remainder;

}

Unwinding
assertion



76
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

Example: Sufficient Loop Unwinding

void f(...) {
j = 1
if(j <= 2) {

j = j + 1;
if(j <= 2) {

j = j + 1;
if(j <= 2) {

j = j + 1;
assert(!(j <= 2));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 2)

j = j + 1;
Remainder;

}

unwind = 3
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Example: Insufficient Loop Unwinding

void f(...) {
j = 1
if(j <= 10) {

j = j + 1;
if(j <= 10) {

j = j + 1;
if(j <= 10) {

j = j + 1;
assert(!(j <= 10));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 10)

j = j + 1;
Remainder;

}

unwind = 3
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Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

x = a;

y = x + 1;

z = y – 1;

Program Constraints

x = a &&

y = x + 1 &&

z = y – 1 &&
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Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times, 
use a new variable for the RHS of each assignment

Program SSA Program
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What about conditionals?

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v0)

x0 = y0;

else

x1 = z0;

w1 = x??;

What should ‘x’ 
be?
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What about conditionals?

For each join point, add new variables with selectors

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v0)

x0 = y0;

else

x1 = z0;

x2 = v0 ? x0 : x1;

w1 = x2
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Adding Unbounded Arrays

Arrays are updated “whole array” at a time

A[1] = 5;

A[2] = 10;

A[k] = 20;

A1=λ i : i == 1 ? 5 : A0[i]

A2=λ i : i == 2 ? 10 : A1[i]

A3=λ i : i == k ? 20 : A2[i]

Examples: A2[2] == 10 A2[1]==5 A2[3] == A0[3]

A3[2] == (k==2 ? 20 : 10)

Uses only as much space as there are uses of the array!
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Example
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Pointers

While unwinding, record right hand side of assignments to pointers
This results in very precise points-to information
• Separate for each pointer
• Separate for each instance of each program location

Dereferencing operations are expanded into
case-split on pointer object (not: offset)
• Generate assertions on offset and on type

Pointer data type assumed to be part of bit-vector logic
• Consists of pair <object, offset>
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BMC: Summary

An effective way to look for bugs
• reduce analysis to SAT/SMT
• creating effective and precise encoding is very hard

Mature tools available from several academic groups
• CBMC: http://www.cprover.org/cbmc/
• LLBMC: http://llbmc.org/

Starting point for many other approaches
• deductive verification: user provides inductive invariants for loops
• Interpolation-based Model Checking (later in the lecture)
• (dynamic) symbolic execution
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Predicate Abstraction and 
CounterExample Guided 
Abstraction-Refinement
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Model Checking Software by Abstraction

Programs are not finite state
• integer variables
• recursion 
• unbounded data structures
• dynamic memory allocation 
• dynamic thread creation 
• pointers 
• … 

87

Program

Model Checker

Ü Build a finite abstraction 
Ä … small enough to analyze
Ä … rich enough to give conclusive 

results

Abstraction
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88

Software Model Checking and Abstraction

Program
P 

Boolean 
Program

BP 

Kripke
Structure

K

Abstract
Kripke

K’

Semantics

Abstraction Abstract
Semantics

Soundness of Abstraction:

BP abstracts P implies that K’ approximates K



89
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

CounterExample Guided Abstraction Refinement 
(CEGAR)

Software Model 
Checking, SLAM 

Project, Microsoft, Ball 
& Rajamani

Counterexample-
guided Abstraction 

Refinement for 
Symbolic Model 

Checking, Clarke et al., 
CMU

Localization 
Reduction, Kurshan, 

Bell Labs
Predicate 

Abstraction Model Checking

Predicate 
Refinement

Counterexample 
Valid?

Abstract 
Model

Candidate 
Counter-
example

Better 
Predicates

Program

Initial 
Predicates

No

No

Yes

Yes

System 
OK

Problem 
Found

SMT Solver
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The Running Example

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     error();
6:

EF (pc = 5)

Program Property
Expected

Answer

False
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An Example Abstraction

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     error();
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3:   b = ch(b,f);
4: if (*)
5:     error();
6:

Program Abstraction

(with y<=2)
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92

Boolean (Predicate) Programs (BP)

Variables correspond to predicates
Usual control flow statements
while, if-then-else, goto

Expressions
usual Boolean expressions, plus

*

ch(a,b)

Parallel Assignment
p1 = ch(a1,b1),   p2 = ch(a2,b2),    ...

b1 = ch(b1,¬b1),  b2 = ch(b1⋁b2, f), b3=ch(f,f)

unknown

if a then 
true 

else 
if b then 

false 
else *
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Detour: Pre- and Post-Conditions

A Hoare triple {P} C {Q} is a logical statement that holds 
when

For any state s that satisfies P, if executing statement C on s
terminates with a state s’, then s’ satisfies Q.

{P} C {Q}
Statement

Pre-condition

(boolean formula)

Post-condition

(boolean formula)
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Detour: Weakest Liberal Pre-Condition

The weakest liberal precondition of a statement C with 
respect to a post-condition Q (written WLP(C,Q)) is a 
formula P such that 

1. {P} C {Q} 

2. for all other P’ such that {P’} C {Q}, 
P’ ⇒ P (P is weaker then P’).
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Detour: Weakest Liberal Preconditions

95

{P} C {Q}
Statement

Pre-condition

(boolean formula)

Post-condition

(boolean formula)

{3>y} x = 3 {x>y}

{x>0} x = 2+y {y>0}

{*x>3 ⋁ x = &y} y=5 {*x>3}

{false} y=5 {y<0}

✘

✔

✔

✔
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Calculating Weakest Preconditions

Assignment (easy)
• WLP (x=e, Q) = Q[x/e]
– Intuition: after an assignment, x gets the value of e, thus     Q[x/e] is 

required to hold before x=e is executed

Examples:
WLP (x:=0, x=y)      = (x=y)[x/0]      = (0==y)
WLP (x:=0, x=y+1) = (x=y+1)[x/0] = (0 == y+1)
WLP (y:=y-1,y<=2)    = (y<=2)[y/y-1]  = (y-1 <= 2)
WLP(y:=y-1,x=2)     = (x=2)[y/y-1]  = (x == 2)
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Boolean Program Abstraction

Update p = ch(a, b) is an approximation of a concrete statement S
iff {a}S{p} and {b}S{¬p} are valid
• i.e., y = y – 1 is approximated by
– (x == 2) = ch(x ==2, x!=2), and
– (y <= 2) = ch(y<=2,false)

Parallel assignment approximates a concrete statement S iff all of its 
updates approximate S
• i.e., y = y – 1 is approximated by

(x == 2) = ch(x ==2, x!=2), 

(y <= 2) = ch(y<=2,false)

A Boolean program approximates a concrete program iff all of its 
statements approximate corresponding concrete statements
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Computing An Abstract Update
// S a statement under abstraction

// P a list of predicates used for abstraction

// t a target predicate for the update

absUpdate (Statement S, List<Predicates> P, Predicate q) {

resT, resF = false, false;

// foreach monomial (full conjunction of literals) in P

foreach m : monomials(P) {

if (SMT_IS_VALID(“m ⇒ WLP(S,q)”) resT = resT ⋁ m;

if (SMT_IS_VALID(“m ⇒ WLP(S,¬q)”) resF = resF ⋁ m;

}

return “q = ch(resT, resF)”

}
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absUpdate (y=y-1, P={y<=2}, q=(y<=2))

y = y - 1; 

(y<=2) = ch (y<=2,f) 

P is  {y <= 2}
q is  (y <= 2)

SMT Queries:
(y<=2) ⇒ (y–1) <= 2
¬(y<=2)⇒ (y–1) <= 2
(y<=2) ⇒ (y–1) >  2
¬(y<=2)⇒ (y–1) >  2

absUpdate

✔

✘

✘

✘

WLP(y=y-1,y<=2)    is (y-1) <= 2

WLP(y=y-1,¬(y<=2)) is (y–1) > 2
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The result of abstraction

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     error();
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3:   b = ch(b,f);
4: if (*)
5:     error();
6:

Program Abstraction

(with y<=2)

But what is the semantics of Boolean programs?
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BP Semantics: Overview

Over-Approximation
• treat “unknown” as non-deterministic
• good for establishing correctness of universal properties

Under-Approximation
• treat “unknown” as abort
• good for establishing failure of universal properties

Exact Approximation
• Treat “unknown” as a special unknown value
• good for verification and refutation
• good for universal, existential, and mixed properties
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BP Semantics: Over-Approximation

1: ;
2: if (nondet) {
3:  if (*)
4:     error();
5:  if (nondet)
6:    error();
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Over-

Approximation

Unknown is treated as non-deterministic
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103

BP Semantics: Under-Approximation

1: ;
2: if (nondet) {
3:  if (*)
4:     ERROR;
5:  if (nondet)
6:    ERROR;
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Under-

Approximation

Unknown is treated as abort
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BP Semantics: Exact Approximation

1: ;
2: if (nondet) {
3:  if (*)
4:     ERROR;
5:  if (nondet)
6:    ERROR;
7: }

Abstraction

1:

2:

3:

5:

4:

7:

6:

Exact

Belnap KS

t

f

⊥ ⊤

“unknown”

“non-deterministic”

Unknown is treated as unknown
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105

Summary: The Three Semantics

b1 = ch(b1,f);
b2 = ch(b2,¬b2)

b1

b2

b2

t

f

⊥ ⊤

Abstract

Over-Approx Belnap (Exact) Under-Approx

y = y - 1; 

Concrete
b1 is (y <= 2)
b2 is (x == 2)

b1

b2

b2

b1?

b2

b1

b2?

b1

b2

b2

b1? 

b2

b1

b2?
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Summary: Program Abstraction

Abstract a program P by a Boolean program BP
Pick an abstract semantics for this BP:
• Over-approximating 
• Under-approximating
• Belnap (Exact)

Yield relationship between K and K’:
• Over-approximation 
• Under-approximation 
• Belnap abstraction

106

Program
P 

Boolean 
Program

BP 

Kripke
Structure

K 

Abstract
Kripke

K’
Semantics

Abstraction Abstract

Semantics
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CounterExample Guided Abstraction Refinement 
(CEGAR)

Software Model 
Checking, SLAM 

Project, Microsoft, Ball 
& Rajamani

Counterexample-
guided Abstraction 

Refinement for 
Symbolic Model 

Checking, Clarke et al., 
CMU

Localization 
Reduction, Kurshan, 

Bell Labs
Predicate 

Abstraction Model Checking

Predicate 
Refinement

Counterexample 
Valid?

Abstract 
Model

Candidate 
Counter-
example

Better 
Predicates

Program

Initial 
Predicates

No

No

Yes

Yes

System 
OK

Problem 
Found

SMT Solver
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Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:     y = y – 1;
4: if (x == 2)
5:     error();
6:

1: ;

2: while (*)
3:     ;
4: if (*)
5:     error();
6:

1:

2:

3:4:

5:

6:

Need This!

Program Abstraction Over-
Approximation

Abstract Translate Check Validate

CEGAR steps

Repeat
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Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     error();
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3:   b = ch(b,f);
4: if (*)
5:     error();
6:

Program Abstraction
(with y<=2)

Over-
Approximation

1:

2:b=T

3:b=T4:b=F

5:b=F

6:b=F

2:b=F

UNREACHABLE

Abstract Translate Check NO ERROR

CEGAR steps
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Using Cex for Refinement

s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Counterexample

s0

s1

s2

ERROR

s4
t

f

⊥ ⊤
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can stop here

cause
Using Proofs for Refinement

EF (ERROR) (s0) = ⊥
∃n EFn (ERROR)(s0) = ⊥

EF4 (ERROR)(s0) = ⊥
s0→s1 EF3(ERROR)(s1) = ⊥

s1→s2 EF2(ERROR)(s2) = t
s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Why?

Refine
HERE

t

f

⊥ ⊤
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Finding Refinement Predicates

Recall
• each abstract state is a conjunction of predicates
– i.e.,  y<=2⋀x==2     y>2 ⋀ x!=2    etc.

• each abstract transition corresponds to a program statement

Result from 
a partial proof

Unknown transition
s1→s2

MC needs to know
validity of 

{s1} C {s2}

C is the statement
corresponding to 

the transition
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Refinement via Weakest Liberal Precondition

If s1→s2 corresponds to a conditional statement
• refine by adding the condition as a new predicate

If s1→s2 corresponds to a statement C
• Find a predicate p in s2 with uncertain value

– i.e., {s1}C{p} is not valid
• refine by adding WLP(C,p)
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An Example

{y>2⋀x==2} y = y-1 {y>2⋀x==2}

s1 → s2 is unknown

WLP(y = y–1, y>2) = y>3

{y>2⋀x==2} y = y-1 {y>2} ✘

new predicate

{y>2⋀x==2} y = y-1 {x==2} ✔

pc=2

y>2

x==2

pc=3

y>2

x==2
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Summary: Predicate Abstraction and CEGAR

Predicate abstraction with CEGAR is an effective technique for 
analyzing behavioral properties of software systems

Combines static analysis and traditional model-checking

Abstraction is essential for scalability
• Boolean programs are used as an intermediate step
• Different abstract semantics lead to different abs.
– over-, under-, Belnap

Automatic abstraction refinement finds the “right” abstraction 
incrementally
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Interpolation-based Model 
Checking
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Programs, Safety, Cexs, Invariants

A transition system P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^
 

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN ) 6) ?

Init ) Inv

Inv(X) ^ Tr(X,X 0) ) Inv(X 0)

Inv ) ¬Bad
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Verification by Successive Under-Approximation

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?
No No No

BMC BMC BMC

bound 1 bound 2 bound 3
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INIT

Reachability Analysis

119

Bad

Is Bad reachable?

R1
R2

…Rn
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Interpolating Model Checking

Key Idea
• turn SAT/SMT proofs of bounded safety to inductive traces
• repeat forever until a counterexample or inductive invariant are found

Introduced by McMillan in 2003
• Kenneth L. McMillan: Interpolation and SAT-Based Model Checking. CAV2003: 1-

13
• based on pairwise Craig interpolation 

Extended to sequences and DAGs
• Yakir Vizel, Orna Grumberg: Interpolation-sequence based model checking. 

FMCAD 2009: 1-8
– uses interpolation sequence

• Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136
– IMPACT: interpolation sequence on each program path

• Aws Albarghouthi, Arie Gurfinkel, Marsha Chechik: From Under-Approximations 
to Over-Approximations and Back. TACAS 2012: 157-172
– UFO: interpolation sequence on the DAG of program paths
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IMC: Interpolating Model Checking

N=1

BMCN

SeqItp

trace F = [F0, …, FN]

Is F closed

N:=N+1

CEX

SAFE

SAT

UNSAT

YesNo
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Bounded Model Checking

INIT

R1 R2

……

INIT(V0)

Rk

∧Tr(V0,V1)∧…∧Tr(Vk-1,Vk)∧Bad(Vk)
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Inductive Trace

An inductive trace of a transition system P = (V, Init, Tr, Bad)  is a 
sequence of formulas [F0, …, FN] such that
• Init → F0

• 8 0 · i < N , Fi(v) Æ Tr (v, u) → Fi+1 (u),  or, in Hoare Logic {Fi} Tr {Fi+1} 

A trace is safe iff 8 0 · i · N , Fi → ¬Bad

A trace is monotone iff 8 0 · i < N , Fi → Fi+1

A trace is closed iff 9 1 · i · N, Fi → (F0 Ç … Ç Fi-1)

A transition system P is SAFE iff it admits a safe closed trace
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INIT

Inductive Trace in Pictures
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Bad

F1
F2

…FN
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Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A ) ¬B, then 
there exists a FO formula I, denoted ITP(A, B), such that

A ) I        I ) ¬B    
atoms(I) 2 atoms(A) Å atoms(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a 
resolution proof of unsatisfiability of A Æ B

In Model Cheching, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states
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A

Craig Interpolant

126

B

I
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Craig Interpolant Examples

Boolean logic
• A is {!b, (!a || b || c), a}             B is !a || !c
• Itp is a && c

EUF (equality with uninterpreted functions)
• A is {f(a) = b, p(f(a))}                B is {b=c,  !p(c)}
• Itp is p(b)

Linear Arithmetic
• A is {z+x+y > 10, z < 5}            B is {x < -5, y < -3}
• Itp is x+y>5
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Craig Interpolant as a Circuit

Let F = A(x, z) Æ B(z, y) be UNSAT, where x and y are distinct
• Note that for any assignment v to z either
– A(x, v) is UNSAT, or
– B(v, y) is UNSAT

An interpolant is a circuit I(z) such that for every assignment v to z
• I(v) = A only if A(x, v) is UNSAT
• I(v) = B only if B(v, y) is UNSAT

A proof system S has a feasible interpolation if for every refutation ¼ of F 
in S, F has an interpolant polynomial in the size of ¼
• propositional resolution has feasible interpolation
• extended resolution does not have feasible interpolation
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Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]
• I 2 ITP (A, B)  then ¬I 2 ITP (B, A)
• if A is syntactically convex (a monomial), then I is convex
• if B is syntactically convex, then I is co-convex (a clause)
• if A and B are syntactically convex, then I is a half-space

A

I = interpolant
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) ) ) )))

Interpolation Sequence

Given a sequence of formulas A = {Ai}i=0
n, an interpolation 

sequence ItpSeq(A) = {I1, …, In-1} is a sequence of 
formulas such that
• Ik is an ITP (A0 Æ … Æ Ak-1,     Ak Æ … Æ An), and
• 8 k<n . Ik Æ Ak+1) Ik+1

A0 A1 A2 A3 A4 A5 A6

I0 I1 I2 I3 I4 I5

Can compute by pairwise interpolation applied to different cuts of a 
fixed resolution proof (very robust property of interpolation)



131
Software Model Checking
Gurfinkel, Feb. 2016
© 2016 Carnegie Mellon University

From Interpolants to Traces

A Sequence Interpolant of a BMC instance is an inductive trace

( Init(v0) )0 Æ ( Tr (v0,v1) )1 Æ … Æ ( Tr (vN-1, vN) )N Æ Bad(vN)

F0(v0)                 F1(v1)                                 FN(vN)

A trace computed by a sequence interpolant is 
• safe
• NOT necessarily monotone
• NOT necessarily closed

BMCN

trace
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INIT

Inductive Trace in Pictures
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Bad

F1
F2

…FN
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ImcMkSafe

IMC: Interpolating Model Checking

N=1

BMCN

SeqItp

trace F = [F0, …, FN]

Is F closed

N:=N+1

CEX

SAFE

SAT

UNSAT

YesNo
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IMC: Strength and Weaknesses

Strength
• elegant
• global bounded safety proof
• many different interpolation algorithms available
• easy to extend to SMT theories

Weaknesses
• the naïve version does not converge easily
– interpolants are weaker towards the end of the sequence

• not incremental
– no information is reused between BMC queries

• size of interpolants
• hard to guide
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Trust in Formal Methods
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Idealized Development w/ Formal Methods

No expensive testing!
•Verification is exhaustive

Simpler certification!
• Just check formal arguments

Design Develop Verify (with FM) Certify Deploy

Can we trust formal methods tools? What can go wrong?
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Trusting Automated Verification Tools

How should automatic verifiers be qualified for certification?

What is the basis for automatic program analysis (or other automatic 
formal methods) to replace testing? 

Verify the verifier
• (too) expensive
• verifiers are often very complex tools
• difficult to continuously adapt tools to project-specific needs

Proof-producing (or certifying) verifier
• Only the proof is important – not the tool that produced it
• Only the proof-checker needs to be verified/qualified
• Single proof-checker can be re-used in many projects
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Active research area
• proof carrying code, certifying model checking, model carrying code etc.
• Few tools available. Some preliminary commercial application in the telecom domain.
• Static context. Good for ensuring absence of problems.
• Low automation. Applies to source or binary. High confidence.

Evidence Producing Analysis

X witnesses that P satisfies Q. X can be objectively and independently verified. 
Therefore, EPA is outside the Trusted Computing Base (TCB).

Program P

Property Q

Proof X
EPA

do not trust “easy” to 
verify

Not that simple in practice !!!
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An In-Depth Look…

Low level property

Program = (Text, Semantics)

Verifier

Proof Checker

Front-End
Environment model

VC

No + Counterexample

Yes + Proof

Good Bad

Compiler

Executable

Real Env Hardware
Good

Bad
?=?

Hard to 
verify

Hard to 
get right

Diff sem
used by 
diff tools

Hard to 
get right
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Five Hazards (Gaps) of Automated Verification

Soundness Gap
• Intentional and unintentional unsoundness in the verification engine 
• e.g., rational instead of bitvector arithmetic, simplified memory model, etc.

Semantic Gap
• Compiler and verifier use different interpretation of the programming 

language
Specification Gap
• Expressing high-level specifications by low-level verifiable properties

Property Gap
• Formalizing low-level properties in temporal logic and/or assertions

Environment Gap
• Too coarse / unsound / unfaithful model of the environment
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Mitigating The Soundness Gap

Proof-producing verifier makes the soundness gap explicit
• the soundness of the proof can be established by a “simple” checker
• all assumptions are stated explicitly

Open questions:
• how to generate proofs for explicit Model Checking 
– e.g., SPIN, Java PathFinder

• how to generate partial proofs for non-exhaustive methods 
– e.g., KLEE, Sage

• how to deal with “intentional” unsoundness 
– e.g., rational arithmetic instead of bitvectors, memory models, …
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Vacuity: Mitigating Property Gap

Model Checking Perspective: Never trust a True answer from a Model 
Checker

When a property is violated, a counterexample is a certificate that can 
be examined by the user for validity

When a property is satisfied, there is no feedback!

It is very easy to formally state something very trivial in a very complex 
way
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MODULE main

VAR
send : {s0,s1,s2};
recv : {r0,r1,r2};

ack : boolean;
req : boolean;

ASSIGN
init(ack):=FALSE;
init(req):=FALSE;

init(send):= s0;
init(recv):= r0;

next (send) := 
case

send=s0:{s0,s1};
send=s1:s2;
send=s2&ack:s0;
TRUE:send;

esac;

next (recv) := 
case

recv=r0&req:r1;
recv=r1:r2;
recv=r2:r0;
TRUE: recv;

esac;

next (ack) :=
case

recv=r2:TRUE;
TRUE: ack;

esac;

next (req) := 
case

send=s1:FALSE;
TRUE: req;

esac;

SPEC AG (req -> AF ack)
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Five Hazards (Gaps) of Automated Verification

Soundness Gap
• Intentional and unintentional unsoundness in the verification engine 
• e.g., rational instead of bitvector arithmetic, simplified memory model, etc.

Semantic Gap
• Compiler and verifier use different interpretation of the programming 

language
Specification Gap
• Expressing high-level specifications by low-level verifiable properties

Property Gap
• Formalizing low-level properties in temporal logic and/or assertions

Environment Gap
• Too coarse / unsound / unfaithful model of the environment
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Verification Competitions

Multitude of events where solvers and analysis engines compete
SAT-RACE
• competitive event for SAT solvers
• http://baldur.iti.kit.edu/sat-race-2015/

SMT-COMP
• competitive event for SMT solvers
• http://www.smtcomp.org

SV-COMP
• Software Verification Competition
– open to all, but most tools are based on Model Checking

• http://sv-comp.sosy-lab.org/2016/
CASC
• competitive event for Automated Theorem Proving
• http://www.cs.miami.edu/~tptp/CASC/
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Hoare Triples

A Hoare triple {Pre} P {Post} is valid iff every terminating execution of P
that starts in a state that satisfies Pre ends in a state that satisfies Post
Inductive Loop Invariant

Function Application

Recursion

Pre ) Inv {InvÆC} Body {Inv}            InvÆ¬C ) Post

{Pre} while C do Body {Post}

(PreÆp=a) ) P                {P} BodyF {Q}          (QÆp,r=a,b) )Post

{Pre} b = F(a) {Post}

{Pre} b = F(a) {Post}  ` {Pre} BodyF {Post}

{Pre} b = F(a) {Post}
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Weakest Liberal Pre-Condition

Validity of Hoare triples is reduced to FOL validity by applying a 
predicate transformer

Dijkstra’s weakest liberal pre-condition calculus [Dijkstra’75]

wlp (P, Post)

weakest pre-condition ensuring that executing P ends in Post 

{Pre} P {Post} is valid ,       Pre ) wlp (P, Post)
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A Simple Programming Language

Prog ::= def Main(x) { bodyM }, …, def P (x) { bodyP }

body  ::= stmt (; stmt)*

stmt ::= x = E | assert (E) | assume (E) | 
while E do S | y = P(E) |
L:stmt | goto L             (optional)

E     := expression over program variables
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Horn Clauses by Weakest Liberal Precondition

Prog ::= def Main(x) { bodyM }, …, def P (x) { bodyP }

wlp (x=E, Q) = let x=E in Q
wlp (assert(E) , Q) = E Æ Q
wlp (assume(E), Q) = E → Q
wlp (while E do S, Q) = I(w) Æ

8w . ((I(w) Æ E) → wlp (S, I(w))) Æ ((I(w) Æ ¬E) → Q))
wlp (y = P(E), Q) = ppre(E) Æ (8 r. p(E, r) → Q[r/y])

ToHorn (def P(x) {S}) = wlp (x0=x;assume(ppre(x)); S, p(x0, ret))
ToHorn (Prog) = wlp (Main(), true) Æ 8{P 2 Prog} . ToHorn (P) 
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Example of a WLP Horn Encoding

{y ¸ 0} P {x = xold+yold} is true iff the query C3 is satisfiable

{Pre: y¸ 0}
xo = x;
yo = y; 
while y > 0 do
x = x+1;
y = y−1;

{Post: x=xo+yo}

C1: I(x,y,x,y) Ã y>=0.
C2: I(x+1,y-1,xo,yo) Ã I(x,y,xo,yo), y>0.
C3: false Ã I(x,y,xo,yo), y·0, x≠xo+yo

ToHorn
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Single Static Assignment

SSA == every value has a unique assignment (a definition)
A procedure is in SSA form if every variable has exactly one definition

SSA form is used by many compilers
• explicit def-use chains
• simplifies optimizations and improves analyses 

PHI-function are necessary to maintain unique definitions in branching 
control flow

x = PHI ( v0:bb0, …, vn:bbn) )                      (phi-assignment)

“x gets vi if previously executed block was bbi”
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Single Static Assignment: An Example
0: goto 1
1: x_0 = PHI(0:0, x_3:5);

y_0 = PHI(y:0, y_1:5);
if (x_0 < N) goto 2 else goto 6

2: if (y_0 > 0) goto 3 else goto 4

3: x_1 = x_0 + y_0; goto 5

4: x_2 = x_0 – y_0; goto 5

5: x_3 = PHI(x_1:3, x_2:4);
y_1 = -1 * y_0;
goto 1

6:

int x, y, n;

x = 0;
while (x < N) {
if (y > 0) 

x = x + y;
else

x = x – y;
y = -1 * y;

}

val:bb


