The Curse of Interpolation

Arie Gurfinkel

ANDREI-60
May 21, 2019

UNIVERSITY OF

WATERLOO

SPACER: The Final Frontier

joint work with Nikolaj Bjorner, Anvesh Komuraveli,
Sharon Shoham, Yakir Vizel, Hari Govind, Yu-Ting
(Jeff) Chen, ...

% WATERLOO

Safety Property Verification of
Programs / Transitions Systems /
Push-down Systems

Satisfiability of Constrained
Horn Logic (CHC) fragment of
First Order Logic

Reduce Model Checking to
FOL Satisfiability

IIIIIIIIIIII

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

YV - (o Ap1[X1 A ApplXa]) = h|X]

where

e T is a background theory (e.g., Linear Arithmetic, Arrays,
Bit-Vectors, or combinations of the above)

e \/ are variables, and X, are terms over V

¢ Is a constraint in the background theory T°

° D4, ..., Py, h are n-ary predicates

e pi[X] is an application of a predicate to first-order terms

IIIIIIIIIIII

>

CHC Satisfiability

A T-model of a set of a CHCs [] is an extension of the model M of T
with a first-order interpretation of each predicate p, that makes all
clauses in II true in M

A set of clauses is satisfiable if and only if it has a model
» This is the usual FOL satisfiability

A T-solution of a set of CHCs II is a substitution o from predicates p, to
T-formulas such that I1o is T-valid

In the context of program verification
e a program satisfies a property iff corresponding CHCs are satisfiable
e solutions are inductive invariants
e refutation proofs are counterexample traces

IIIIIIIIIIII

WATERLOO

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN
» QARMC, Eldarica, ...
Maximal Inductive Subset from a finite Candidate space (Houdini)
e TACAS'18: hoice, FregHorn
Machine Learning
 PLDI'18: sample, ML to guess predicates, DT to guess combinations
Abstract Interpretation (Poly, intervals, boxes, arrays...)
o Approximate least model by an abstract domain (SeaHorn, ...)
Interpolation-based Model Checking
e Duality, QARMC, ...

~
SMT-based Unbounded Model Checking (IC3/PDR)

e Spacer, Implicit Predicate Abstraction

o

IIIIIIIIIIII

Spacer: Solving SMT-constrained CHC

Spacer: SAT procedure for SMT-constrained Horn Clauses
e now the default CHC solver in Z3
— https://qgithub.com/Z3Prover/z3
— dev branch at https://github.com/agurfinkel/z3

Supported SMT-Theories

 Linear Real and Integer Arithmetic
» Quantifier-free theory of arrays
» Universally quantified theory of arrays + arithmetic
o Best-effort support for many other SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
Support for Non-Linear CHC

 for procedure summaries in inter-procedural verification conditions

 for compositional reasoning: abstraction, assume-guarantee, thread modular,
etc.

UNIVERSITY OF

WATERLOO

https://github.com/Z3Prover/z3

Program Verification with HORN(LIA)

Z = X; 1 = 0;

assume (y > 0);

while (i < vy) { ‘ IS SAT?
Z =2 + 1;
i=1+ 1;
}
assert(z == x + y); -\ /-
z=xXx&1 =08&y >0 = Inv(x, y, z, 1)

Inv(x, vy, z, i) & i <y & z1=z+1 & il=i+1 = Inv(x, y, zl, il)
Inv(x, vy, z, 1) & i >=y & z != x+y = false

%) WATERLOO 8

In SMT-LIB

(set-logic HORN)

55 Inv(x, y, z, 1)

(declare-fun Inv (Int Int Int Int) Bool)

(assert
(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (> B @) (=CA) (=D 9))
(Inv A B C D)))

)
(assert
(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))
(=>
(and (Inv ABCD) (¢<DB) (=C1 (+C1)) (=D1 (+D
1))
(Inv A B C1 D1)
)
)
)
(assert

(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
false

)

(check-sat)
(get-model)

$ z3 add-by-one.smt2

sat

(model

(define-fun Inv ((x!@ Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool
(and (<= (+ x!2 (* (- 1) x!@) (* (- 1) x!3)) 0)
(<= (+ x!2 (* (- 1) x!@) (* (- 1) x!1)) @)

(<= (+ x!o x!I3 (* (- 1) x!2)) 0)))

Inv(x, y, z, 1)

y4 X + 1

X +Yy

UNITVERSITY OF

WATERLOO

HORN(ALIA): Arrays + LIA

int A[N];

for (int i = @; i < N; ++1)
A[i] = 0;

int j = nd();

assume(@ <= j < N);

assert(A[j] == 0);

Inv(A, N, ©)
Inv(A, N, i) & i < N & Inv(A[i

g]] UNIVERSITY OF
% WATERLOO

:= 0], N, i+1)

10

In SMT-LIB

(set-logic HORN)

$ z3 array-zero.smt2

;5 Inv(A, N, 1)

(declare-fun Inv ((Array Int Int) Int Int) Bool) Sat
(assert (model
(forall ((A (Array Int Int)) (N Int) (C Int)) (Inv A N 9))) (define-fun Inv ((x!@ (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
(let ((a'l (forall ((sk!'e Int))
(assert
(forall ((A (Array Int Int)) (N Int) (i Int)) (* (or (not (>= skle @))
(=> (>= (select x!0 sk!e) o)
(and (Inv AN i) (< iN)) (<= (+ x!12 (* (- 1) sklo)) @))
(Inv (store A'i @) N (+ i 1)) ‘weight 15)))
)
) (al2 (forall ((sk!e Int))
) (! (or (not (>= skl!e 9))
(assert (<= (select x!0 sk!e) o)

(forall ((A (Array Int Int)) (N Int) (i Int) (j Int)) (<= (+ x12 (* (- 1) sk!1@)) @))

cLioight+ 10))))

(=> (and (Inv AN i)
(>= 1 N) (<=0 3) (< j N) (not (= (select A

: false) InV(A’ N, 1

)

VOo<=j<i<N=D
(get-model) A[j] B @

2022 UNIVERSITY OF
33

WATERLOO)) - 11
A. Gurfinkel, S. Shoham, Y. Vizel: Quantifiers on Demand. ATVA 2018

MkSafe

IC3/PDR In Pictures: MkSafe

O€ x=3,y=0 x=1y=0

| | | | | 70/I

. R

Predecessor find M s.t. M = F; ATr Am’
find mst. (M Em)A(m = IV -TrAm')

NewLemma find £s.t. (F;ATr =)Nl = —m)

IIIIIIIIIIII

%) WATERLOO 12

Push

IC3/PDR in Pictures: Push

<€ @) O\O<
= O€ O

Algorithm Invariants
F,—-Bad Init— F;

Fi — Fi+1 Fi N\ Tr — Fi+1

Inductive

iz DM T-query: FLAF; N Tr — A "

Predecessor and NewLemma rules in Spacer

Predecessor — generate a new predecessor of a given POB m
» Use SMT to check satisfiability of a transition relation with given pre- and

post-conditions

e Use Model-based Projection to construct new POB over pre-variables only

find M st. M
find m s.t. (M

— FANTr Am/

= m)A(m = V' -TrAm')

NewLemma — create a new lemma that blocks a given POB m
o Use SMT to check unsatisfiability of a transition relation with a given pre- and

post-conditions

e Use Interpolation to construct a new lemma

find £ st. (B;ATr = ()N = —m)

UNIVERSITY OF

WATERLOO

14

THE CURSE OF INTYERPOLATION

WATERLOO

‘ current work with Hari Govind and Yu-Ting ‘Jeffz Chen \

The Curse of Interpolation

Interpolation is capable of generating many interesting terms

e (almost) any inductive invariant is an interpolant of something under the right
conditions!

Interpolation often works in practice
o creates false sense of security
 predicate / term generation is a solved problem

But, interpolation is very hard to control!

o Small changes to input result in big change in interpolants
o Small changes to solver parameter result in big change in interpolants

e Works well overall (i.e., large benchmark set), but poorly for any given user
problem!

UNIVERSITY OF

WATERLOO 16

& cC O @ GitHub, Inc. [US] | https://github.com/Z3Prover/z3/issues/2278 w 9 0 @ (s)

i Apps @ Getting Started @ Google Bookmark @ Addto WishList @ +Pocket @ Google Bookmark Application Funda... » [Other Bookmarks

Pull requests Issues Marketplace Explore

El Z3Prover [/ z3 ® Unwatch~ = 169 % Star = 4,193 YFork 716

Code ® Issues 136 Pull requests 8 Projects 0 Wiki Insights

Spacer's difficulty in finding linear invariants [Now ssue

shiatsumat opened this issue 4 days ago - 1 comment

e shiatsumat commented 4 days ago Assignees

No one assigned

It seems that Spacer is still not very good at finding linear invariants.
Are there any configurations on Spacer to enhance invariant finding? Labels

Example: None yet

(declare-rel loop (Int Int Int Int)) Projects

(rule (forall ((i Int) (x Int) (n Int) (r Int)) (=> (¢ in) (loop (+ i 1) (+ x 1) nr) (loopixnr None yet
(rule (forall ((i Int) (x Int) (n Int) (r Int)) (=> (>=1in) (=r x) (loop i x nr))))

(declare-rel q ())

(rule (forall ((x Int) (n Int) (r Int)) (=> (loop @ x n r) (>= n @) (distinct r (+ x n)) q))) Milestone
; this is ok (rule (forall ((i Int) (x Int) (n Int) (r Int)) (=> (loop i x n r) (>= n i) (distinct r

(query q) ; timeout No milestone

Notifications

% WATERLOO 17

& cC O @& GitHub, Inc. [US] | https://github.com/Z3Prover/z3/issues/2278 Y 8 Q9 0 @ (s)

i Apps @ Getting Started @ Google Bookmark @ Addto WishList @ +Pocket @ Google Bookmark Application Funda... » [Other Bookmarks

Pull requests Issues Marketplace Explore

method loop(i : int, x : int, n : int)
Z3 o 716
returns (r : int)
requires n >= 0;
ensures i <= hnh ==>pr ==X + n - 1
Sp : v issue |
ﬁﬂ ensures i1 > n ==> r == X
ensures 1 == 0 ==> r == X + n
n(:at {
if (i < n)
{
r := loop(i + 1, x + 1, n);
return r;
}
else
{ return x; }
I

% WATERLOO 18

< - C 0 @ localhost:8000 %* ¥ o §g 0 @ :

i Apps @ Getting Started @ Google Bookmark @ Add to Wish List @ + Pocket » [Other Bookmarks

yusuke.json

(and (>=n 0) (>n0) (> (+xn (* (-1) r)) 1) (=1 1)) [yusuketweakedjson

Jweaked.json

. . 0.075
0.13 0.1

0.091

i : : 0.058
074
0.1 0.1 0.086 0.09 0.0
0.085 0.957 0.072

at depth: 0, lemma level: 0 to 2
(or (> i 1) (< (+xmn (* (-1) r)) 2))

0.055

%Y WATERLOO

0.075

0.072

0.055

UNIVERSITY OF

WATERLOO 20

Data Driven Generalization & Lemma Discovery

Global view of the current solver state
e group lemmas (and pobs) based on syntactic/semantic similarity
— we currently use anti-unification on interpreted constants
» detect whenever global proof is diverging and mitigate

One lemma to rule them all
* merge lemmas in group to form a single universal lemma
e interpolation and inductive generalization can be applied to generalize further
* new lemma reduces the global proof by blocking all POBs in its group

Reduce, reuse, recycle
e under-approximate groups that cannot be merged in current theory
 learn multiple (simple) lemmas to block a (complex) pob

UNIVERSITY OF

WATERLOO o1

IIIIIIIIIIII

22

%Y WATERLOO 23

Conclusion

Verification of Safety Properties is FOL satisfiability
e Logic: Constrained Horn Clauses (CHC)
e “Decision” procedure: Spacer

The Curse of Interpolation
* Interpolation can be amazing at guessing required terms
 but, is hard to control and masks the underlying problem!

Data driven generalization
e supplement interpolation with data-driven learning
 global view of the overall proof process
* identify diverging patterns / groups
e generalize lemmas based on groups

UNIVERSITY OF

WATERLOO

24

&

25

THE END

%) WATERLOO

