
Interpolating Property Directed Reachability?

Yakir Vizel1 and Arie Gurfinkel2

1 Computer Science Department, The Technion, Haifa, Israel
2 Carnegie Mellon Software Engineering Institute, Pittsburgh, USA

Abstract. Current SAT-based Model Checking is based on two ma-
jor approaches: Interpolation-based (Imc) (global, with unrollings) and
Property Directed Reachability/IC3 (Pdr) (local, without unrollings).
Imc generates candidate invariants using interpolation over an unrolling
of a system, without putting any restrictions on the SAT-solver’s search.
Pdr generates candidate invariants by a local search over a single in-
stantiation of the transition relation, effectively guiding the SAT solver’s
search. The two techniques are considered to be orthogonal and have
different strength and limitations. In this paper, we present a new tech-
nique, called Avy, that effectively combines the key insights of the two
approaches. Like Imc, it uses unrollings and interpolants to construct
an initial candidate invariant, and, like Pdr, it uses local inductive gen-
eralization to keep the invariants in compact clausal form. On the one
hand, Avy is an incremental Imc extended with a local search for CNF
interpolants. On the other, it is Pdr extended with a global search for
bounded counterexamples. We implemented the technique using ABC
and have evaluated it on the HWMCC benchmark-suite from 2012 and
2013. Our results show that the prototype significantly outperforms Pdr
and McMillan’s interpolation algorithm (as implemented in ABC) on the
industrial sub-category of the benchmark.

1 Introduction

SAT-based (unbounded) Model Checking (MC) is an extremely successful tech-
nique for both Hardware [12,4,10] and Software [13,2,11] verification. Current
state-of-the-art techniques are Interpolation-based Model Checking (Imc) [12,15]
and Property Directed Reachability/IC3 (Pdr) [4,10]. Pdr and Imc are able to
either verify a property by generating a safe inductive invariant, or falsify a
property by finding a counterexample. Conceptually, both work by repeatedly
generalizing bounded proofs of correctness, until either a safe inductive invariant
is synthesized or a counterexample is found. They scale to systems with an enor-
mous number of states, are considered orthogonal, and have different strength
and weaknesses.

Imc works by searching for a counterexample via repeatedly posing Bounded
Model Checking [3] (BMC) queries to a SAT-solver. If a BMC query Q is satis-
fied, a counterexample is found. Otherwise, the SAT-solver generates a proof of

?
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the United States Department
of Defense. This material has been approved for public release and unlimited distribution. DM-0001263.

unsatisfiability of Q. An interpolation procedure is then used to generalize the
proof to a candidate safe invariant using sequence interpolants [15]. If the invari-
ant is also inductive (checked by an additional SAT query), the procedure stops
and returns SAFE to the user, indicating the validity of the checked property.
Otherwise, the process repeats with another, longer, BMC query.

Imc leverages both advances in BMC and in interpolation. It can be seen as
a simple addition to BMC that turns it into a complete Model Checking pro-
cedure. Other than proof-logging which is necessary for interpolation, it poses
no restrictions on the SAT-solver’s search. However, Imc does not offer much
control over generalization. It is at the mercy of both the SAT-solver that pro-
vides a particular resolution proof, and of the procedure used to generate the
interpolant. For example, attempts to improve Imc by using interpolation algo-
rithms with different strength have not been very successful [9]. Furthermore,
the interpolants tend to be large, which poses additional limitation on their use.

Pdr is similar to Imc, but approaches the process in a completely differ-
ent manner. Instead of blindly relying on the SAT-solver, it manages both the
search for the counterexample and the generalization phases. Conceptually, Pdr
is based on a backward search. Starting with a bad (UNSAFE) state, it uses a
SAT-solver to repeatedly find a one-step predecessor state. Thus, all SAT-queries
are local, involving only one instance of the transition relation, and no BMC-
unrolling is used. If the bad suffix can be extended all the way to the initial state,
a counterexample is found. Otherwise, when a suffix cannot be extended further,
a process called inductive generalization [4], is used to learn a consequence that
blocks the current suffix (and possibly many others). The conjunction of all such
learned consequences is used to synthesize an inductive invariant. While this
description omits many important aspects of Pdr, it is sufficient for now.

Pdr offers many advantages compared to Imc, including incremental solving
and fine-grained control over generalization. However, it is limited to a fixed
local search strategy that can be inefficient. In fact, it is not difficult to construct
examples in which backward search is ineffective and Pdr does not perform well.

In this paper, we present a new algorithm, Avy, that strives to overcome these
deficiencies by combining both global interpolant-driven generalization with local
inductive generalization. Avy can be seen as a combination of Pdr and Imc. On
the one hand, it extends Imc with Pdr-like local reasoning in the form of local
search and inductive generalization. On the other hand, it extends Pdr with the
use of unrolling and proof-based interpolation. More interestingly, it allows the
combination of Imc and Pdr strategies inside a single solver.

The first step of Avy is similar to Imc: it unrolls the system and searches
for a counterexample. If none is found, it generates a candidate invariant using
sequence interpolants [15]. This is the global generalization phase. Next, it enters
the local generalization phase and uses Pdr-style inductive generalization to
strengthen the candidate invariant and to put it into CNF. If the candidate is
inductive, the process stops. Otherwise, the next global phase is entered.

Maintaining the candidate invariant in CNF allows Avy to use it as “learned
clauses” in the next global phase. When a new global phase starts, Avy adds the

clauses from the previously computed candidate invariant into the checked BMC
formula, thus making the global phase incremental. This significantly reduces
the search space for the SAT-solver to explore. It also reduces the size of the
resulting resolution proof and the computed interpolants. This addresses the
main problem with Imc: lack of incrementality as already learned interpolants
are not used in successive iterations and interpolant growth.

Adding the learned clauses to the BMC problem at a given iteration N ,
makes it, in a way, equivalent to the problem Pdr tries to solve at iteration N .
Though, unlike Pdr, Avy handles this problem globally, with one SAT-solver
instance that can roam over the entire search space, and does not break it to
local checks as part of a backward search. This kind of strategy addresses the
main weakness of Pdr: no use of “global” knowledge during the search.

The combination of interpolation and inductive reasoning allows Avy to ben-
efit from the advantages of both methods. It uses the SAT-solver without guiding
it during the search, but it does guide its proof construction. The advantage of
this combination is evident in our experiments. We have implemented Avy on
top of ABC [5] and compared it against Pdr and McMillan’s interpolation (Itp),
as implemented in ABC, on the HWMCC’12/13 benchmarks. Our experiments
indicate that Avy can solve a considerable number of test cases, especially on
the industrial sub-category, that are not solved by either Pdr nor Itp.
Related work. This paper builds on Interpolation-based Model Checking [12,15],
IC3 [4], and Pdr [10]. We describe them in detail in Section 3. Some of the
techniques used in Avy have appeared before, but not in the way Avy combines
them. Like [6], we use sequence interpolants, but we show that they can be
more efficient than the original algorithm in [12]. Like [1], we re-use previously
computed interpolants, but we combine re-use with inductive generalization. Our
approach can be seen as an efficient extension of [7] to sequence interpolation.

As stated above, Avy is a synergy between an interpolation-based approach
and Pdr. Ideas for combining the two have also appeared in [16,17]. In [16],
the authors suggest to use both forward and backward reachable sets of states.
This allows them to try and block a set of all bad states in a local manner that
resembles the blocking of a bad state applied by Pdr. Unlike [16], in this work we
only use the forward reachable states that are derived by means of interpolation,
and use specific Pdr functionality to transform these sets into CNF and use them
to simplify the successive BMC invocations. In [17], the authors show how to
compute interpolants in CNF and create a variant of the algorithm that appears
in [12], which uses the fact that interpolants are in CNF in order to apply Pdr-
style reasoning. There are two major differences between Avy and the approach
that appear in [17]. First, in [17], the resolution refutation is used to derive a
”near interpolant” in CNF, which is then strengthened and transformed into
an interpolant by applying inductive generalization on the (A,B) pair, while
Avy derives a sequence interpolant, and then uses Pdr to transform it to CNF.
Second, like in [17], Avy also uses the fact that interpolants are in CNF and tries
to push clauses between different interpolants. But, while [17] uses pushing only
to learn clauses that may appear in later interpolants that were not computed
yet, Avy, as stated, uses the pushed clauses to simplify the BMC formula.

The rest of the paper is structured as follows. After describing the necessary
background and notation in Section 2, we give an overview of SAT-based Model
Checking in Section 3. Section 4 presents two versions of Avy, a basic and an
optimized one. We describe our experimental results in Section 5, and conclude
in Section 6.

2 Preliminaries

In this section, we present notations and background that is required for the
description of our algorithm.

Safety verification. A transition system T is a tuple (V, Init ,Tr ,Bad), where
V is a set of variables that defines the states of the system (i.e., 2V), Init and
Bad are formulas with variables in V denoting the set of initial states and bad
states, respectively, and Tr is a formula with free variables in V ∪ V ′, denoting
the transition relation. A state s ∈ 2V is said to be reachable in T if and only if
(iff) there exists a state s0 ∈ Init , and (si, si+1) ∈ Tr for 0 ≤ i ≤ N , and s = sN .

A transition system T is UNSAFE iff there exists a state s ∈ Bad s.t. s is
reachable. Equivalently, T is UNSAFE iff there exists a number N such that the
following formula is satisfiable:

Init(v0) ∧

(
N−1∧
i=0

Tr(vi, vi+1)

)
∧ Bad(vN) (1)

When T is UNSAFE and sN ∈ Bad is the reachable state, the path from s0 ∈ Init
to sN is called a counterexample (CEX).

A transition system T is SAFE iff all reachable states in T do not satisfy Bad .
Equivalently, there exists a formula Inv , called an inductive safe invariant3, that
satisfies:

Init(v)→ Inv(v) Inv(v) ∧ Tr(v, u)→ Inv(u) Inv(v)→ ¬Bad(v) (2)

A safety verification problem is to decide whether a transition system T is SAFE
or UNSAFE, i.e., whether there exists an initial state in Init that can reach a
bad state in Bad , or synthesize a safe inductive invariant.

In SAT-based model checking, the verification problem is determined by com-
puting over-approximations of the states reachable in T and, by that, trying to
either construct an invariant or find a CEX.

Craig Interpolation. Given a pair of inconsistent formulas (A,B) (i.e., A ∧B |=
⊥), a Craig interpolant [8] for (A,B) is a formula I such that:

A→ I I → ¬B L(I) ⊆ L(A) ∩ L(B) (3)

3 The reachable states form an inductive invariant. The inductive invariant is safe if
the reachable states do not intersect the bad states.

where L(A) denotes the set of all atomic propositions in A. A sequence (or
path) interpolant extends interpolation to a sequence of formulas. We write F =
[F1, . . . , FN] to denote a sequence with N elements, and F i for the ith element of
the sequence. Given an unsatisfiable sequence of formulas A = [A1, . . . , AN], i.e.,
A1 ∧ · · · ∧ AN |= ⊥, a sequence interpolant I = seqItp(A) for A is a sequence
of formulas I = [I1, . . . , IN−1] such that:

A1 → I1 ∀1 < i < N · Ii−1 ∧Ai → Ii IN−1 ∧AN → ⊥ (4)

and for all 1 ≤ i ≤ N , L(Ii) ⊆ L(A1 ∧ · · · ∧ Ai) ∩ L(Ai+1 ∧ · · · ∧ AN). We
use subscripts on brackets to mark interpolation partitions for a formula. For
example, (A)0 ∧ (B)1 ∧ (C)0 means that A and C belong to partition 0 and B
to partition 1, respectively.

3 SAT-Based Model Checking

In this section, we review two algorithms for SAT-based unbounded Model Check-
ing – Interpolation-based Model Checking (IMC), and Property Directed Reach-
ability/IC3 (PDR).

The key insight in both algorithms is to maintain an over-approximation of
a set of reachable states in an inductive trace. An inductive trace, or simply a
trace, is a sequence of formulas [F0, . . . , FN] that satisfy:

Init → F0 ∀0 ≤ i < N · Fi(v) ∧ Tr(v, u)→ Fi+1(u) (5)

A trace is safe if each Fi is safe: ∀i · Fi → ¬Bad ; it is monotone if ∀0 ≤ i <
N · Fi → Fi+1; it is clausal if each Fi is in CNF (in this case, we often abuse
notation and treat each Fi as a set of clauses). A trace [F0, . . . , FN] is stronger
than a trace [G0, . . . , GN] if ∀0 ≤ i ≤ N · Fi → Gi. We assume that traces
are silently extended as needed, by letting Fi = > for all i > N for any trace
[F0, . . . , FN]. Traces are closed under pointwise conjunction.

A trace [F0, . . . , FN] is closed if ∃1 ≤ i ≤ N · Fi →
(∨i−1

j=0 Fj

)
. There is an

obvious relationship between existence of closed traces and safety of a transition
system:

Theorem 1. A transition system T is SAFE iff it admits a safe closed trace.

Thus, safety verification is reduced to searching for a safe closed trace or finding
a CEX.

3.1 Interpolation-Based Model Checking

The original interpolation-based algorithm is due to McMillan [12]. Here, we
present its variant from [15], called Imc, based on sequence interpolants. This
version is closer to Pdr (described in Section 3.2) and is a basis for our algorithm.

Imc is shown in Alg. 1. It maintains a trace [F0, . . . , FN]. The trace is made
safe toward the end of the loop (line 5). In the beginning of each iteration,

Input: Transition system T = (Init ,Tr ,Bad)
1 F0 ← Init ;N ← 0
2 repeat
3 G← ImcMkSafe([F0, . . . , FN],Bad)
4 if G = [] then return UNSAFE;
5 ∀0 ≤ i ≤ N · Fi ← G[i]

// Invariant: F0, . . . , FN is a safe trace

6 if ∃1 ≤ i ≤ N · Fi → (
∨i−1

j=0 Fj) then return SAFE;

7 N ← N + 1 ; FN ← >
8 until ∞;

Algorithm 1: Imc.

Input: Transition system T = (Init ,Tr ,Bad)
Input: A trace F0, . . . , FN

1 ϕ← (Init(v0))0 ∧
∧N−1

i=0 (Tr(vi, vi+1))i ∧ (Bad(vN))N
2 if isSat(ϕ) then return [];
3 I1, . . . , IN ← seqItp(ϕ)
4 G0 ← Init ; ∀1 ≤ i ≤ N ·Gi ← Fi ∧ Ii
5 return [G0, . . . , GN]

Algorithm 2: ImcMkSafe.

a candidate trace is made safe using ImcMkSafe, if possible. The algorithm
terminates when either a trace cannot be made safe, or when a closed trace is
discovered.

ImcMkSafe is shown in Alg. 2. The key insight is that a safe trace can be
constructed by sequence interpolation. First, a BMC problem is solved to check
for absence of a CEX. Second, a sequence interpolant is computed and is used to
strengthen the current trace. Note that the sequence interpolant Init , I1, . . . , IN
itself is a trace. Hence, correctness follows via closure of traces under conjunction.

The main advantage of Imc is that it integrates well with BMC, effectively
turning incremental BMC into a complete Model Checking procedure. A main
deficiency is that interpolants from one BMC check are not used to help the next
one. An obvious improvement is to use the current trace to strengthen the BMC
query at line 1 of ImcMkSafe as follows:

ϕ← Init(v0) ∧
N−1∧
i=0

Tr(vi, vi+1) ∧ Fi+1(vi+1) ∧ Bad(vN) (6)

This, however, is not effective in practice. The formulas Fi are typically large
(as propositional formulas) and adding them significantly slows down BMC.

3.2 Property Directed Reachability

In this section, we give an overview of Property Directed Reachability (PDR/IC3)
algorithm and its properties. Our presentation of PDR/IC3 is unorthodox, but

Input: Transition system T = (Init ,Tr ,Bad)
1 F0 ← Init ;N ← 0
2 repeat
3 G← PdrMkSafe([F0, . . . , FN],Bad)
4 if G = [] then return UNSAFE;
5 ∀0 ≤ i ≤ N · Fi ← G[i]
6 F0, . . . , FN ← PdrPush([F0, . . . , FN])

// F0, . . . , FN is a safe δ-trace
7 if ∃0 ≤ i ≤ N · Fi = ∅ then return SAFE;
8 N ← N + 1 ; FN ← ∅
9 until ∞;

Algorithm 3: PDR/IC3.

it highlights the parts necessary for understanding our new algorithm. For more
details on PDR/IC3 the reader is referred to [4,10].

Like Imc, Pdr computes an inductive trace. Unlike Imc, Pdr does not use an
unrolling of the transition system during the computation of the trace. Further-
more, the trace is kept monotone and clausal. To better explain the characteris-
tics of the trace computed by Pdr, we introduce the notion of a δ-trace: A δ-trace
is a sequence of formulas [F0, . . . , FN] such that the sequence [G0, . . . , GN], where

Gi =
∧N

j=i Fj , is a monotone clausal trace. For a δ-trace F , we write F ↑i for the
ith element of the corresponding trace (i.e., Gi above). Note that a δ-trace F is
closed if there exists an i such that F i = ∅.

Pdr is shown in Alg. 3. It maintains a loop invariant that F0, . . . , FN is a safe
δ-trace (after line 6). Each iteration starts with a δ-trace that is safe except for
the last element FN . If possible, the trace is made safe via PdrMkSafe, other-
wise the problem is decided UNSAFE. Then, the now safe δ-trace F0, . . . , FN is
strengthened using PdrPush. PdrPush takes a δ-trace F = [F0, . . . , FN] and
returns a stronger pushed δ-trace G = [G0, . . . , GN] defined as follows:

H0 = F0 Hi = Fi ∪ {c ∈ Hi−1 | (Hi−1(u) ∧ Tr(u, v))→ c(v)} (7)

GN = HN Gi = Hi \Hi+1 for 0 ≤ i < N (8)

If this closes the trace, the problem is decided SAFE. Otherwise, N is incre-
mented and the loop is repeated.

PdrMkSafe takes a δ-trace F = [F0, . . . , FN] that is safe except for FN

and makes it safe (by strengthening it) if possible, and, if not, returns an
empty sequence. This is the main procedure of Pdr. We only give a high-
level description of it here. Intuitively, PdrMkSafe does a backward search
along the given trace F , starting in some state sN ∈ Bad (recall, FN is un-
safe, so such sN always exists). Then, a predecessor sN−1 is extracted from a
model of FN−1(v) ∧ Tr(v, u) ∧ sN (u). This is repeated until Init is reached,
or, for some i, Fi−1(v) ∧ Tr(v, u) ∧ si(u) becomes UNSAT. In the latter case,
Fi−1(u)∧Tr(u, v)→ ¬si(u), and ¬si can be conjoined (added as a clause) to Fi.
PdrMkSafe improves this by a process called inductive generalization. Instead

of adding ¬si directly, it finds a sub-clause c→ ¬si such that

Init → c F ↑i (u) ∧ c(u) ∧ Tr(u, v)→ c(v) (9)

Such c is guaranteed to exist, in the worst case ¬si is taken as c. Inductive
generalization is often argued to be the most important element that contributes
to the efficiency of Pdr. This process is continued until FN becomes safe. An
important property of PdrMkSafe is that it is guaranteed to find some safe
strengthening of F if a strengthening exists.

Pdr offers many advantages, including incrementally (at each iteration only
longer paths are explored) and locality of its SAT queries (all queries are over
a single transition relation only). However, locality and the backward search
strategy are also its Achilles’ heel. There are many practical problems for which
Imc’s global and less directed search is superior.

4 Interpolating Property Directed Reachability

In this section, we introduce Avy, a Model Checking algorithm that, like Imc,
uses BMC and sequence interpolants, and furthermore, like Pdr it uses backward
search and inductive generalization. We first describe the basic building blocks
of Avy, and then go into fine-grained details.

4.1 Basic Algortihm

Avy is shown in Alg. 4. Like Pdr it maintains a safe δ-trace F = [F0, . . . , FN]
and has the same high-level structure. However, the main steps for construct-
ing the trace, making it safe (via AvyMkSafe) and maintaining δ-form (via
AvyMkDelta), are done differently. We first give a high-level description of
Avy and then of the two main functions.

Main loop. First, AvyMkSafe is used to check whether the current trace can
be safely extended to the next bound. If possible, it returns a safe trace G that is
stronger than F . However, G is not necessarily a δ-trace. Second, AvyMkDelta
strengthens (again) G and makes it a δ-trace. Finally, the algorithm continues as
Pdr, using PdrPush to further strengthen the trace and check for convergence.
In each iteration the trace can be incremented by an arbitrary step. But, for
simplicity of presentation, assume that step = 1 unless stated otherwise. Note
that the main loop maintains a safe δ-trace. Hence, in each iteration, the main
loop of Pdr can be used instead, leading to an interleaved version of the two
algorithms.

AvyMkSafe is presented in Alg. 5. It resembles ImcMkSafe, but with
one key difference: it uses the existing trace to simplify both the BMC and
interpolation problems (see line 1, where F ↑i is conjoined to the ith copy of
the Tr). If the BMC formula ϕ is UNSAT, AvyMkSafe extracts the sequence
interpolant and uses it to strengthen and extend the existing trace. Otherwise,
ϕ is SAT and AvyMkSafe returns an empty trace.

There are multiple ways to partition the BMC formula ϕ for interpolation.
To better understand the choice made in AvyMkSafe, consider the following
example: T = ({x}, x = 0, x′ = x + 1, x ≥ 6). T represents a simple counter
that counts from 0, and the bad region is where the counter goes beyond 5. Let
us assume that we have the following trace [x = 0, x ≤ 1,>], and consider the
BMC problem for bound 2, with the partitioning used by AvyMkSafe:

((x0 = 0) ∧ (x1 = x0 + 1))0 ∧ ((x1 ≤ 1) ∧ (x2 = x1 + 1))1 ∧ (x2 ≥ 6)2 (10)

An alternative way to partition the formula is to add the ith element of the trace
to the i− 1 partition (for i ≥ 1):

((x0 = 0) ∧ (x1 = x0 + 1) ∧ (x1 ≤ 1))0 ∧ (x2 = x1 + 1)1 ∧ (x2 ≥ 6)2 (11)

The choice of the partitioning influences the resulting sequence interpolant.
In (10), the sequence interpolant contains only the parts that are needed to
strengthen the existing trace. In (11), the interpolant is stronger than the trace
(i.e., as if the trace was not added to the BMC formula).

In our example, in (10), since x1 ≤ 1 is strong enough, the suffix ((x1 ≤
1) ∧ (x2 = x1 + 1))1 ∧ (x2 ≥ 6)2 is UNSAT. By that we conclude that the
first element of the sequence interpolant is >. That is, F1 in the trace needs no
strengthening, which is evident in the resulting interpolant.

The example illustrates the advantage in choosing the partitioning used by
Avy: the newly computed sequence interpolant takes into account the existing
trace and only strengthens it as needed. This is part of the incrementality in Avy.

AvyMkDelta is shown in Alg. 6. We first describe the intuition, then the
mechanics. AvyMkDelta converts a safe trace G = [G0, . . . , GN] into a mono-
tone and clausal trace F = [F0, . . . , FN]. Note that the result of AvyMkSafe
is safe but neither monotone nor clausal. One alternative to making a trace
[G0, . . . , GN] monotone is to replace each element Gi by a disjunction of its pre-
decessors {Gj}j<i, i.e., by letting Fi =

∨
j<iGj . But this is inefficient because

the resulting formulas are too large.
Another alternative is to use interpolation. For example, let [Init , G1, G2] be

a safe but non-monotone and non-clausal trace. To make it monotone, we need
Init→ G1 and G1 → G2. For the first implication, create the following problem

A = Init(v) ∨ (Init(u) ∧ Tr(u, v)) B = ¬Init(v) ∧ ¬G1(v) (12)

From the definition of a trace, A∧B is unsatisfiable. Let F1 be a corresponding
interpolant. By construction, Init→ F1 and Init(u)∧Tr(u, v)→ F1(v). For the
second implication, we compute an interpolant F2 between A = F1(v)∨ (F1(u)∧
Tr(u, v)) and B = ¬(F1(v)∨G2(v)). F2 satisfies: F1 → F2 and F1(v)∧Tr(v, v′)→
F2(v′). Hence, the trace [Init, F1, F2] is safe and monotone.

However, in addition to monotonicity, we require that the trace is a clausal δ-
trace. Transforming an arbitrary propositional formula into CNF without adding
new variables is expensive. One possibility is to generate interpolants in CNF
by a CNF-producing interpolation procedure (e.g., [17]). While [17] is efficient
it does not generate a δ-trace.

Input: Transition system T = (Init ,Tr ,Bad)
1 F0 ← Init ;N ← 0
2 repeat
3 G← AvyMkSafe([F0, . . . , FN],Bad)
4 if G = [] then return UNSAFE;
5 F0, . . . , FN ← AvyMkDelta(G)
6 F0, . . . , FN ← PdrPush([F0, . . . , FN])

// F0, . . . , FN is a safe δ-trace
7 if ∃0 ≤ i ≤ N · Fi = ∅ then return SAFE;
8 pick step ≥ 1
9 ∀N ≤ i < N + step · Fi ← ∅

10 N ← N + step

11 until ∞;
Algorithm 4: Avy (simplified).

Input: Transition system T = (Init ,Tr ,Bad)
Input: A δ-trace F = [F0, . . . , FN]

1 ϕ←
∧N−1

i=0

(
F ↑i (vi) ∧ Tr(vi, vi+1)

)
i
∧ (F ↑N (vN) ∧ Bad(vN))N

2 if isSat(ϕ) then return [];
3 I1, . . . , IN ← seqItp(ϕ)

4 G0 ← Init ; ∀1 ≤ i ≤ N ·Gi ← F ↑i ∧ Ii
5 return [G0, . . . , GN]

Algorithm 5: AvyMkSafe.

Instead, we have chosen to re-use Pdr’s PdrMkSafe that already maintains
a δ-trace. Our unorthodox use of PdrMkSafe is guided towards our purpose.
We establish the correctness of this method at the end of the section.

As before, consider a non-monotone non-clausal trace [Init = G0, G1, G2].
Recall that PdrMkSafe takes a δ-trace and returns a strengthened safe δ-trace
w.r.t. a given property. For the first element of the trace, we define [Init ,>] as
the input δ-trace. Then, PdrMkSafe is used to transform this δ-trace into a
safe δ-trace w.r.t. the property Init ∨G1. The result of PdrMkSafe is therefore
a safe δ-trace [Init , F1] s.t. Init → F ↑1 and Init(u) ∧ Tr(u, v) → F ↑1(v). For the
second element G2, the δ-trace [Init , F1,>] is used. Now, PdrMkSafe is used

to transform w.r.t. the property F ↑1 ∨ G2. The result is again, a safe δ-trace

[Init , F1, F2] s.t. the previous holds and in addition, F ↑1 → F ↑2 and F ↑1(u) ∧
Tr(u, v)→ F ↑2(v). The general version of this algorithm is shown in Alg. 6.

We conclude with an outline of the correctness argument. To show correct-
ness, it is enough to show that (a) AvyMkSafe always returns a safe trace if
possible, and (b) AvyMkDelta returns a safe δ-trace given a safe trace. The
rest of the proof (both for soundness and completeness) is the same as for Pdr.
Part (a) is an immediate consequence of sequence interpolation property, and we
do not expand on it further. To show (b), we need to show that (i) the calls to

Input: Transition system T = (Init ,Tr ,Bad)
Input: A safe trace G = [G0, . . . , GN]
Output: A safe δ-trace F = [F0 . . . , FN]

1 F0 ← Init
2 [, F1]← PdrMkSafe([Init ,>],¬(Init ∨G1))
3 for i← 2 to N do
4 [, , Fi]← PdrMkSafe([Init , Fi−1,>],¬(Fi−1 ∨Gi))
5 end

Algorithm 6: AvyMkDelta.

PdrMkSafe always return a safe δ-trace, and (ii) δ-traces can be concatenated
together. Part (ii) is an immediate consequence of the δ-trace property:

Lemma 1. If F = [Init , F1, . . . , FN] and G = [Init , FN , G2] are safe δ-traces,
then so is [Init , F1, . . . , FN , G2].

To establish (i), we only need to show that the input to PdrMkSafe can be
made safe. For the call at line 2 of AvyMkDelta, by the trace property of G,
Init(u) ∧ Tr(u, v) → G1(v). For the call at line 4, we show by induction that
(Fi−1(u) ∧Tr(u, v))→ (Fi−1(v) ∨Gi(v)). The base case is i = 2. We know that
F1 → (Init ∨ G1) (the call at line 2). Since both [G0, G1, G2] and [Init , F1] are
traces, we have: (G1(u) ∧ Tr(u, v))→ G2(v)) and (Init(u) ∧ Tr(u, v))→ F1(v).
By these three facts we get (F1(u)∧Tr(u, v))→ (F1(v)∨G2(v)). The inductive
case is similar. Using (Fi−1(u)∧Tr(u, v))→ (Fi−1(v)∨Gi(v)), we can conclude
that each call at line 4 does not change Fi−1 and thus Lemma 1 is applicable.

Theorem 2. Avy is sound and complete for step = 1.

When step > 1, AvyMkSafe is not guaranteed to return a safe trace. While
the last frame is safe, the intermediate ones might not be. One way around this
is to require that Tr gets trapped in the Bad region.

Definition 1 (Stuck-On-Error). A transition system T = (Init ,Tr ,Bad) is
stuck-on-error iff ∀s ∈ Bad · ∃t ∈ Bad · Tr(s, t).

Note that stuck-on-error can be enforced for any Tr by adding a self-loop on all
Bad states. The rest of the proof remains unchanged.

Theorem 3. Avy is sound and complete for step > 1 for any transition system
T that satisfies stuck-on-error property of Def. 1.

4.2 The Whole Picture

In the previous section, we gave a simplified description of Avy. Here, we de-
scribe some of its key features. The complete algorithm is shown in Alg. 7. The
biggest change is that this version combines all the steps into a single function.
In the rest of the section, we explain some features in detail.

Global δ-trace. Unlike the simplified presentation before, this version maintains
a single global δ-trace. At every iteration, F is used incrementally by adding
missing clauses. This is evident at lines 6–8. Note that both at line 6 and at
line 8, the δ-trace that is given to PdrMkSafe already has clauses that were
learned in previous iterations. Hence, when transforming the newly generated
interpolant to CNF, only clauses that are missing are added to F . This eliminates
an expensive clause re-learning of the simplified version of the algorithm.

Guided Proofs. The upside of relying on interpolation is that Avy does not
interfere with the SAT-solver during the BMC step. The downside is that, com-
pared to Pdr, there is very little control on the quality of the generated lemmas.
A solution we adopt is to “guide” the SAT-solver that is producing the proof
for interpolation. This is done by asking the solver to produce Minimal Unsat-
isfiable Subset (MUS) that excludes as many clauses from Tr and includes as
many clauses from F as possible. The choice of a MUS affects the quality of the
generated interpolants, and the choice of MUS algorithm affects the efficiency.
In our implementation, we use a basic MUS algorithm (cf. [14]), and the MUS
strategies described next.

We have tried two strategies for guiding the proof. First, called min-core,
simply computes the MUS, letting the MUS algorithm pick which clauses to
select. While this strategy is very fine grained, it was not effective in practice.
It did cause an order of magnitude improvement in one example, but degraded
performance overall.

The second strategy, called min-suffix, attempts to find a MUS that com-
pletely contains a suffix of the BMC problem. That is, it looks for the largest k
such that (

∧N−1
i=k F ↑i (vi) ∧ Tr(vi, vi+1)) ∧ F ↑N (vN) ∧ Bad(vN) is unsatisfiable.

To illustrate, consider the example from the previous section (reproduced
here for convenience):

((x0 = 0) ∧ (x1 = x0 + 1))0 ∧ ((x1 ≤ 1) ∧ (x2 = x1 + 1))1 ∧ (x2 ≥ 6)2 (13)

Recall, x ≤ 1 is sufficient and, therefore, min-suffix reduces it to:

(>)0 ∧ ((x0 ≤ 1) ∧ (x1 = x0 + 1))1 ∧ (x1 ≥ 6)2 (14)

The immediate benefits of min-suffix are: (a) the solved BMC formula is simpler
(shorter bound); (b) the extracted sequence interpolant is smaller and, therefore,
less interpolants need to be transformed to monotone clausal form; and (c) the
proof is guided towards the important facts (e.g., to x ≤ 1 in the case above).
This makes generalization more effective.

Shallow Push. At each iteration of trace strengthening, new clauses are added
to the global trace F . Therefore, it is possible to push the clauses forward after
adding them (line 9) as they might be useful for the next iteration. Note that
this is very different from the simplified version of the algorithm. There, the
pushing-phase happens only after all of the strengthening. In practice, we push
more conservatively, to which we refer as shallow push. During shallow push,
clauses are only pushed starting from the ith location (where clauses were just
added). This way, in the next iteration, when PdrMkSafe is applied, it may
need to find less clauses (or even none at all).

Input: Transition system T = (Init ,Tr ,Bad)
Data: A δ-trace F = [F0, . . . , FN]

1 F0 ← Init ;N ← 0
2 repeat

3 ϕ←
∧N−1

i=0

(
F ↑i (vi) ∧ Tr(vi, vi+1)

)
i
∧ (F ↑N (vN) ∧ Bad(vN))N

4 if isSat(ϕ) then return UNSAFE;
5 I1, . . . , IN ← seqItp(ϕ)

6 [, F1]← PdrMkSafe([Init ,F ↑1],¬(Init ∨ I1))
7 for i← 2 to N do

8 [, , Fi]← PdrMkSafe([Init ,F ↑i−1,F
↑
i],¬(F ↑i−1 ∨ Ii))

9 F0, . . . , FN ← PdrPush([F0, . . . , FN])

10 end
// F0, . . . , FN is a safe δ-trace

11 if ∃0 ≤ i ≤ N · Fi = ∅ then return SAFE;
12 pick step ≥ 1
13 ∀N ≤ i < N + step · Fi ← ∅
14 N ← N + step

15 until ∞; Algorithm 7: Avy.

Table 1: Summary of solved instances on HWMCC’12 and HWMCC’13. CNF-
ITP appears with (*) since we were not able to run it on the entire HWMCC’13
benchmark due to technical issues.

Status Avy Pdr Itp CNF-ITP Virtual Best

SAFE 76 72 62 59(*) 112

UNSAFE 24 15 26 25(*) 29

5 Experiments

We have implemented Avy4 using C++ on top of ABC [5] – a well known
open-source verification framework. We have compared it on HWMCC’12 and
HWMCC’13 benchmark suites against Pdr, McMillan’s Interpolation algorithm
(Itp) [12] as implemented in ABC, and CNF-ITP [17]. Note that Itp is slightly
different from Imc described in Section 3.1. While an efficient implementation of
Imc was not available, prior experiments indicate that Itp outperforms Imc on
HWMCC benchmarks [6]. All experiments were performed on Intel E5-2697V2
running at 2.7GHz and with 256GB of RAM with a 900 seconds timeout.

We have joined HWMCC’12 and HWMCC’13 together into a set of bench-
marks, excluding Beem 5 test cases as we put emphasis on the industrial section
of the benchmark (which includes 328 test cases).

The results are summarized in Table 1. Avy dominates the benchmark in
number of solved instances. In particular, on the Intel set, Avy and CNF-

4 Available at http://www.cs.technion.ac.il/~yvizel/avy.html.
5 http://paradise.fi.muni.cz/beem.

http://www.cs.technion.ac.il/~yvizel/avy.html
http://paradise.fi.muni.cz/beem

Table 2: Detailed experimental results. D represents the depth of convergence,]
Clauses - the number of clauses in the proof, and Time is the runtime in seconds.
(*) Note that CNF-ITP failed to run on the OSKI cases due to technical issues.

Test Status ITP CNF-ITP PDR Avy
D Time[s] D] Clauses Time[s] D] Clauses Time[s] D] Clauses Time[s]

6s102 T 53 TO 46 16,350 111 13 2966 222.22 23 162 61.92
6s121 T 342 TO 42 2,907 13.2 17 – TO 49 1,713 499.14
6s130 T 14 18.66 18 93,600 856 7 – TO 9 2,669 114.7
6s144 T 35 TO 23 – TO 9 – TO 22 371 449.53
6s159 T 63 11.5 10 280 0.3 45 114 2.7 36 19 10.2
6s189 T 37 TO 23 – TO 8 – TO 26 384 793.15
6s194 T 70 TO 80 – TO 38 4,763 93.32 50 – TO

6s205b16 T 61 213.01 35 – TO 43 – TO 10 – TO
6s206rb025 T 7 2.51 6 24 2.5 4 8 0.22 4 8 8.28
6s207rb16 F 9 2.52 10 – TO 5 – TO 8 – 22.94
6s282b15 T 33 13.38 33 49,025 65 19 1,576 9.99 25 697 116.59

6s288r T 83 TO 40 3,998 155 19 236 10.38 21 106 170.49
6s131 T 13 19.18 20 – TO 6 – TO 8 2,626 96.88
6s162 F 73 217.72 73 – TO 13 – TO 72 – 173.63
6s38 T 23 TO 24 4,508 558 9 – TO 12 1,193 130.15

6s407rb296 T 18 TO 9 – TO 9 – TO 12 238 173.18
6s408rb191 T 37 TO 16 33,116 228 6 883 0.97 8 644 199.94

6s8 T 43 TO 38 – TO 26 – TO 35 2,021 829.12
6s9 T 14 30.56 10 – TO 9 – TO 8 2,727 96.85

intel011 T 72 TO 20 – TO 27 – TO 52 572 233.94
intel015 T 72 TO 21 – TO 51 – TO 60 726 124.29
intel018 T 78 TO 16 – TO 50 – TO 60 328 56.6
intel020 T 90 TO 15 3,975 48 33 – TO 46 370 56.28
intel021 T 92 TO 18 5,958 115 33 – TO 52 365 99.62
intel022 T 84 TO 21 – TO 27 – TO 38 405 73.18
intel023 T 96 TO 32 9,312 606 30 – TO 50 243 57.09
intel024 T 96 TO 15 4,395 78 23 – TO 38 194 23.43
intel025 T 60 TO 17 – TO 23 – TO 42 1,204 421.07
intel029 T 84 TO 16 – TO 47 – TO 54 230 53.31
intel034 T 86 TO 16 1,344 119 55 – TO 72 232 603.85

oski1rub03 T 9 4.02 –(*) –(*) –(*) 8 169 12.71 6 43 13.96
oski1rub04 F 13 28.46 –(*) –(*) –(*) 14 – 112.42 12 – 81.89
oski1rub07 T 4 1.22 –(*) –(*) –(*) 7 144 3.51 2 140 6.22

ITP are the only techniques able to solve safe instances, though Avy solves
considerably more instances than CNF-ITP. Inspecting the entire set of solved
instances, the instances solved by Avy and Pdr are significantly different. The
“Virtual Best” column shows the result of a solver that runs all 3 techniques and
takes the best result. It shows that Avy is complimentary to Pdr. Together, they
solve at least a third more benchmarks than either one in isolation.

More details are shown in Table 2. There are two important parameters to
notice: the depth at which a proof (fixpoint) is found and the number of clauses
in the proof. On the cases where both Pdr and Avy reach to a fixpoint, the
number of clauses in the proof Avy finds is smaller than those in the proof found
by Pdr, even in the cases where Pdr converges at a lower depth.

The run-time results for the entire benchmark are shown in Fig. 1. In all plots,
Avy is represented by the y-axis. While whenever Avy solves a problem that
is solved by another method, it is slower, it solves a large number of problems

(a) Pdr vs. Avy: All. (b) Itp vs. Avy: All.

Fig. 1: Runtime comparison between Avy (y-axis) and Pdr and Itp.

not solved by other techniques. We believe that the performance issues are in
part due to our implementation of interpolation and lack of support for the
combination of incremental SAT-solving and interpolation.

We have also evaluated the effect of specific techniques used by Avy and
found all of them to be important. Avy is not competitive if any of them are
disabled. In particular, maintaining the global δ-trace and guiding the proof
towards minimal unsatisfiable suffix are critical to performance. In addition, 3
test cases were only solved with the min-core option.

6 Conclusion

We introduce Avy, a new SAT-based model checking algorithm. Like Imc and
Pdr, Avy constructs a safe inductive invariant to show the validity of a prop-
erty. It uses BMC-unrolling with sequence interpolants to construct an initial
candidate invariant (similar to Imc), but then uses local backward search and
inductive generalization to keep the candidate invariant in a compact clausal
form. Avy combines the advantages of both Imc and Pdr. Our experiments
show that Avy is a very capable algorithm that can solve a considerable number
of test cases that are not solvable by neither Pdr nor Itp and CNF-ITP.

As future directions, we would like to experiment with other methods that
can keep the trace in compact clausal form (e.g., using the approach from [17]). In
addition, we believe that the concepts that were introduced in this paper extends
beyond finite state systems and can be applied in the context of software model
checking.

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. Craig Interpretation. In A. Miné
and D. Schmidt, editors, SAS, volume 7460 of Lecture Notes in Computer Science,
pages 300–316. Springer, 2012.

2. A. Albarghouthi, A. Gurfinkel, Y. Li, S. Chaki, and M. Chechik. UFO: Verification
with Interpolants and Abstract Interpretation - (Competition Contribution). In
TACAS, pages 637–640, 2013.

3. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58:117–148, 2003.

4. A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI, pages
70–87, 2011.

5. R. K. Brayton and A. Mishchenko. ABC: An Academic Industrial-Strength Ver-
ification Tool. In T. Touili, B. Cook, and P. Jackson, editors, CAV, volume 6174
of Lecture Notes in Computer Science, pages 24–40. Springer, 2010.

6. G. Cabodi, S. Nocco, and S. Quer. Interpolation sequences revisited. In DATE,
pages 316–322. IEEE, 2011.

7. H. Chockler, A. Ivrii, and A. Matsliah. Computing interpolants without proofs.
In A. Biere, A. Nahir, and T. E. J. Vos, editors, Haifa Verification Conference,
volume 7857 of Lecture Notes in Computer Science, pages 72–85. Springer, 2012.

8. W. Craig. Three Uses of the Herbrand-Gentzen Theorem in Relating Model Theory
and Proof Theory. J. of Symbolic Logic, 22(3):269–285, 1957.

9. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant
strength. In G. Barthe and M. V. Hermenegildo, editors, VMCAI, volume 5944 of
Lecture Notes in Computer Science, pages 129–145. Springer, 2010.

10. N. Eén, A. Mishchenko, and R. K. Brayton. Efficient implementation of property
directed reachability. In P. Bjesse and A. Slobodová, editors, FMCAD, pages 125–
134. FMCAD Inc., 2011.

11. K. Hoder and N. Bjørner. Generalized property directed reachability. In SAT,
pages 157–171, 2012.

12. K. L. McMillan. Interpolation and SAT-Based Model Checking. In CAV, pages
1–13, 2003.

13. K. L. McMillan. Lazy abstraction with interpolants. In CAV, pages 123–136, 2006.
14. A. Nadel. Boosting minimal unsatisfiable core extraction. In R. Bloem and

N. Sharygina, editors, FMCAD, pages 221–229. IEEE, 2010.
15. Y. Vizel and O. Grumberg. Interpolation-sequence based model checking. In

FMCAD, pages 1–8. IEEE, 2009.
16. Y. Vizel, O. Grumberg, and S. Shoham. Intertwined forward-backward reachability

analysis using interpolants. In N. Piterman and S. A. Smolka, editors, TACAS,
volume 7795 of Lecture Notes in Computer Science, pages 308–323. Springer, 2013.

17. Y. Vizel, V. Ryvchin, and A. Nadel. Efficient generation of small interpolants in
CNF. In CAV, pages 330–346, 2013.

	Interpolating Property Directed Reachability
	Yakir Vizel and Arie Gurfinkel

