Spacer: Model Checking in the land
of Theorem Provers

Arie Gurfinkel
Electrical and Computer Engineering
University of Waterloo

Coverif Workshop on Combining Abstract
Interpretation and Constraint Programming
CIRM, September 25 — 28, 2018

% WATERLOO

Automated (Software) Verification

Program and/or model

/V Correct
Reasoning \ X

Automated

Incorrect

How can one check a routine in the sense of making sure that it is right?

prograsaer should mske a number of definite assertions which can be checked
individually, and from which the correctness of the whole programmse easily

B WATERL follows. ,

2000 started PhD in MC at UofT SLAM BLAST || VMCAI

¥

=

y® multi-valued model checking

Conerete , Abstract VMCAI'06
mede 1, L~ 5(P)
2006 SMC Yasm: safety, liveness,] e i

L Pm
Model (D, (PEeap):0%) — (B(D)7, (Pjcar):O™)

multi-valued abstraction for MC

2010 Boxes abstract domain (SAS’10)

P2

2012 UFO: mMC +ALSAS12 2
o - -t U F
PR it
; SV-COMP
2015 SeaHorn: MC (Spacer) and Al (Crab)
A 4
%) WATERLOO 3

Symbolic Reachability Problem

P = (X, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.
N-—1

Init(Xo) A (/\ Tr(X;, XZ+1)> A Bad(Xy) #& L
1=0
P is SAFE if and only if there exists a safe inductive invariant Inv(X) s.t.

Init = Inv

Inductive

Inv(X)N\ Tr(X, X") = Inv(X")

Inv = = Bad Safe

IIIIIIIIIIII

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

YV - (o Ap1[X1 A ApplXa]) = h|X]

where

e T is a background theory (e.g., Linear Arithmetic, Arrays,
Bit-Vectors, or combinations of the above)

e \/ are variables, and X, are terms over V

¢ Is a constraint in the background theory T°

° D4, ..., Py, h are n-ary predicates

e pi[X] is an application of a predicate to first-order terms

IIIIIIIIIIII

>

CHC Satisfiability

A T-model of a set of a CHCs [] is an extension of the model M of T
with a first-order interpretation of each predicate p, that makes all
clauses in II true in M

A set of clauses is satisfiable if and only if it has a model
» This is the usual FOL satisfiability

A T-solution of a set of CHCs II is a substitution o from predicates p, to
T-formulas such that I1o is T-valid

In the context of program verification
e a program satisfies a property iff corresponding CHCs are satisfiable
e solutions are inductive invariants
e refutation proofs are counterexample traces

IIIIIIIIIIII

WATERLOO

Satisfiability Modulo Theory (SMT)

Satisfiability is the problem of determining wither a formula F has a
model

o if F is propositional, a model is a truth assignment to Boolean variables

o if F is first-order formula, a model assigns values to variables and
interpretation to all the function and predicate symbols

SAT Solvers
 check satisfiability of propositional formulas

SMT Solvers

 check satisfiability of formulas in a decidable first-order theory (e.g., linear
arithmetic, uninterpreted functions, array theory, bit-vectors)

UNIVERSITY OF

WATERLOO

Program Verification with HORN(LIA)

Z = X; 1 = 0;

assume (y > 0);

while (i < vy) { ‘ IS SAT?
Z =2 + 1;
i=1+ 1;
}
assert(z == x + y); -\ /-
z=xXx&1 =08&y >0 = Inv(x, y, z, 1)

Inv(x, vy, z, i) & i <y & z1=z+1 & il=i+1 = Inv(x, y, zl, il)
Inv(x, vy, z, 1) & i >=y & z != x+y = false

%) WATERLOO 8

In SMT-LIB

(set-logic HORN)

55 Inv(x, y, z, 1)

(declare-fun Inv (Int Int Int Int) Bool)

(assert
(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (> B @) (=CA) (=D 9))
(Inv A B C D)))

)
(assert
(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))
(=>
(and (Inv ABCD) (¢<DB) (=C1 (+C1)) (=D1 (+D
1))
(Inv A B C1 D1)
)
)
)
(assert

(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
false

)

(check-sat)
(get-model)

$ z3 add-by-one.smt2

sat

(model

(define-fun Inv ((x!@ Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool
(and (<= (+ x!2 (* (- 1) x!@) (* (- 1) x!3)) 0)
(<= (+ x!2 (* (- 1) x!@) (* (- 1) x!1)) @)

(<= (+ x!o x!I3 (* (- 1) x!2)) 0)))

Inv(x, y, z, 1)

y4 X + 1

X +Yy

UNITVERSITY OF

WATERLOO

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN
» QARMC, Eldarica, ...
Maximal Inductive Subset from a finite Candidate space (Houdini)
e TACAS'18: hoice, FregHorn
Machine Learning
 PLDI'18: sample, ML to guess predicates, DT to guess combinations
Abstract Interpretation (Poly, intervals, boxes, arrays...)
o Approximate least model by an abstract domain (SeaHorn, ...)
Interpolation-based Model Checking
e Duality, QARMC, ...

~
SMT-based Unbounded Model Checking (IC3/PDR)

e Spacer, Implicit Predicate Abstraction

o

IIIIIIIIIIII

10

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
e now the default (and only) CHC solver in Z3
— https://github.com/Z3Prover/z3
— dev branch at https://github.com/agurfinkel/z3

Supported SMT-Theories

 Linear Real and Integer Arithmetic
» Quantifier-free theory of arrays
* Universally quantified theory of arrays + arithmetic (NEW: ATVA18)
o Best-effort support for many other SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
Support for Non-Linear CHC

 for procedure summaries in inter-procedural verification conditions

 for compositional reasoning: abstraction, assume-guarantee, thread modular,
etc.

UNIVERSITY OF

WATERLOO 1

https://github.com/Z3Prover/z3

Algorithmic Logic-Based Verification

Safety
Properties

Program + Spec

Verification
Condition (in Logic)

Decision Procedure

Yes No

IIIIIIIIIIII

Constrained
Horn Clauses

12

Logic-based Algorithmic Verification

‘Snnuﬁnk\
C/C++
concurrent
Q /distributed
systems

L——
osw ;
-~ _ Java
N\ *
wnnm SeaHo
‘ Lustre L 00§
208V
Termination
‘ for C %TZ

CPR

Spacer

IIIIIIIIIIII

%) WATERLOO 13

&

&«

** Apps

SeaHorn | A Verification Fr %
O % 4 =

C fn seahorn.github.io

GJ Getting Started Google Bookmark Note in Reader Add to Wish List + Pocket Google Bookmark » || Other Bookmarks
. A
O,

SeaHorn i Fro
Home About Download Publications People S
6‘,;.' \
%
%

A fully automated verification framework for LLVM-based
languages.

http://seahorn.github.io

14

SeaHorn at a glance

Publicly Available (http://seahorn.github.io)
state-of-the-art Software Model Checker

Industrial-strength front-end based on Clang and LLVM
Abstract Interpretation engine: Crab

SMT-based verification engine: Spacer

Bit-precise Bounded Model Checker and Symbolic Execution
Executable Counter-Examples

A framework for research and application of logic-based verification

UNIVERSITY OF

WATERLOO

15

http://seahorn.github.io)/

Architecture of Seahorn

C/C++ LLVM bitcode

[f LLVM Opt: \\
- SSA
- DCE
- Peephole
(CFG Simplificationj

~

4 Devirtualization
and
Exception Lowering

Property Instr:
-Buffer overflow
-Null dereferences
N J
()
Slicing Assertions

\= /X >

Front-end Middle-end Back-end

%Y WATERLOO 16

Crab Abstract Interpretation Library

Crab — Cornucopia of Abstract Domains
e Numerical domains (intervals, zones, boxes)
e 3rd party domains (apron, elina)

e arrays, uninterpreted functions, null, pointer

Language independent core with plugins for LLVM bitcode
e fixed-point engine
* widening / narrowing strategies

e crab-llvm : integrates LLVM optimizations and analysis of LLVM bitcode

Support for inter-procedural analysis

e pre-, post-conditions, function summaries

Extensible, publicly available on GitHub, open C++ API

%) WATERLOO

Horn Clauses for Program Verification

(‘Ol]tl\"’[:“ wo, LC‘"" WY ALLLAL 1D Caa LLLLI"V lJULLlL LW DULACDODUL Luaw.

with the edges are formulated as follows:

Pinit(To,w, L) &z =x¢ where r occurs in w
Pezxit(Zo, ret, T) « €(zg,w, T) for each label £, and re

plz,ret, L, L) popi(z, ret, L)

plz,ret, L, T) ¢ pezit(z, ret, T)

boilza.w' . e.) e blza.w.e) A —e: A—winlS.—(e: =

5. incorrect :- Z=W+1, W>0, W+1<
read(A,W,U), read(A,?

Weakest Preconditions If we apply Boogie directly we obtain a translation
from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

ToHorn(program) := wip(Main(), T) A /\ ToHorn(decl)

decl€ program
h) 0=1I;
ToHorn(def p(z) {S}) := wip (a:;’l;’;l:p:st?;x)l:n;:c.l T "y n:t))
wlp(z :=E.Q):=let z=E in Q

)
wip((if E then S; else S;), Q) := wip(((assume E; S;)(assume -E;S;)),Q)
wip((5:0S,), Q) := wip(S,, Q) A wip(S2, Q)
wip(S1: 82, Q) := wlp(S:, wip(S2,Q))
wip(havoc z, Q) :

wip(assert ¢, Q) :
wlp(assume ¢, Q) :=p = Q
wip((while E do §),Q) := inv(w) A
Vo . (((r:m.'(w) AE) = wlp(S, inv(w))))
A ((inv(w) A—-E) = Q)

6. p(I1,N,B) :- 1<I, I<N, D=I—1, T1=TI+1. V=U+1.

read(A,D,U), write(A
7.o(I.N.A) :-I=1. N>1.

De Angelis et al. Verifying Array
Programs by Transforming
Verification Conditions. VMCAI'14

To translate a procedure call £ : y := g(£); £ within a procedure p, create

he clauses:

plwo, wy) + p(wo, wy), call(w;, wy), g(wsa, ws), retumn(w;, ws, wy)
g(wsz, ws) + p(wg, w1), call(w,, w;)
calllw,w')+r=62' =Ex" ={,_,

)

—n' =4, w' =wret'/yl[x]

Bjgrner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

%) WATERLOO

18

Horn Clauses for Concurrent / Distributed /

Parameterized Systems

{R(7p0') A dlsf(pl, 7pk)/\R(g7p17|17"'7pk7|k) } (6)
oES,
R(g plvlla 7pk7|k) — dlSt(plv apk)/\Inlt(gvll)/\"'/\Init(galk) (7)
Rgzphl 3. 7pk7|k « dist P1s---sPk) A gv'l 13 gl7|/ AR gvplylly-'-vpkvlk (8)
For assertions R1,..., Ry over V and E1,...,Ex over V, V', RE Il I; i E))(((()I)(ﬂ(l?)l’))(RC © k)) ©
gvplalv"'apkak < dist(po,P1,---,Px) A ((8,lo g:lp A OI'lj yieieisly
CM1: init(V) — Riy(V) . |]
CM2: Ri(V) A pi(V, V') — Ry(V") false < dist(p1,...,pr) A (jﬂ/\rspj =piN(glj) eEj)) ARConj(1,...,r) (10
CM3: (Viel..N\{j} Ri(V) A pi(V, V")) E;(V, V)
CM4: Ri(V)AE(V,V')Api (V,V') — Ri(V') Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-
CM5: Ri(V)A---ANRN(V) A error(V) — false ant. Sy is the symmetric group on {1,...,k}, i.e., the group of all permutations of k numbers; as an
optimisation, any generating subset of Sy, for instance transpositions, can be used instead of S;. In (10),
multi-threaded program P is safe we define r = max{m,k}.

Rybalchenko et al. Synthesizing Software
Verifiers from Proof Rules. PLDI'12

Hojjat et al. Horn Clauses for Communicating Timed
Systems. HCVS'14

Init(3, §,9) A Init(4,4,) A
Init(i,i,v) A Init(4, j,v) = I2(i, J, V)

L(i,5,9) A Tr(i,0,v') = I2(i,5,7) (3)
(initial) init(g, z1) A - - - Ainit(g,) = Inv(g, linit, T1, - - - , linit, Tk) I (’l j 5) A T?"(j 7 51) = I, (’I, j 51) (4)
1J)) b 1J)
(inductive) I’rL'U(g,Zl,ZEh...,Zi,wi,“.,fk,:l:k)/\s(g,xi,g’7x;)—)Inv(g',Zl,.’l:l,...,f;,zg,...,f}c,.' 1—2(2] 6) A 1—2(2 k 6) A I2(] k ﬁ) A
]))) b)) 5)
(non-interference) Inv(g,%1,Z1,-..,Lk, Tk) A — = . c 2 o =0 (
Inv(g,é*,zf,ég,m,...,ék,zk)/\ Tr(k,v,v) A k # (24 k ?é .7 = I2(7".7av)
: I>(i, j,v) = —Bad(i, j,v)
Inv(g, 1,21, .., bu—1,25-1,€,27) A s(g,27,9,-) = Inv(g’, b1, 21, . .., Lk, k)
(safe) Inv(g, b1, 21, .., £k, zk) Aerr(g, €1, Z1, . . ., m, Tm) — false Figure 3: VC(T) for two-quantifier invariants.
Figure 6. I-Ilorn clause er_lcoding for thread modularity at .leve?l k (where (£:,s,£,) and (£, s, -) refer to statement s on ar Gurfinkel et al. SMT-Based Verification of
from £; to £; and, respectively, from £ to some other location in the control flow graph) Parameterized Systems ESE 2016
S L veRs Ty oF Hoenicke et al. Thread Modularity at Many
% WATERLOO | | evels. POPL'17 19

SMT-based Model Checking

Generalizing from bounded proofs
lT, N=0

~

/A counterexample
Yes of length N No, N:=N+1

SMT
x A 4 4 s a safe)
inductive YES
No + bounded invariant? _>/

proof —
a N\ \= /
Generalize proof l
candidate
\SMT y Inv

IIIIIIIIIIII

%) WATERLOO 20

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker

e Incremental Construction of Inductive Clauses for Indubitable Correctness
* A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

» Property Directed Reachability

* N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property
directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to
SMT)

e A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit
Predicate Abstraction. TACAS 2014

 J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). CAV 2014

UNIVERSITY OF

WATERLOO o1

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints

» Generalized Property Directed Reachability
e K. Hoder and N. Bjgrner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
 fixes an incompleteness issue in GPDR and extends it with under-approximate
summaries
o A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive
Programs. CAV 2014
PolyPDR: Convex models for Linear CHC

e simulating Numeric Abstract Interpretation with PDR
. BIOPé'@rner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI

ArrayPDR: CHC with constraints over Airthmetic + Arrays

» Required to model heap manipulating programs
* A. Komuravelli, N. Bjgrner, A. Gurfinkel, K. L. McMillan:Compositional Verification
%I;gocedural Programs using Horn Clauses over Integers and Arrays. FMCAD

UNIVERSITY OF

WATERLOO

IC3, PDR, and Friends (3)

Quip: Forward Reachable States + Conjectures

» Use both forward and backward reachability information

o A. Gurfinkel and A. lvrii: Pushing to the Top. FMCAD 2015
Avy: Interpolation with IC3

» Use SAT-solver for blocking, IC3 for pushing

* Y. Vizel, A. Gurfinkel: Interpolating Property Directed Reachability. CAV 2014
UPDR: Constraints in EPR fragment of FOL

e Universally quantified inductive invariants (or their absence)

* A. Karbyshev, N. Bjgrner, S. ltzhaky, N. Rinetzky, S. Shoham: Property-
Directed Inference of Universal Invariants or Proving Their Absence. CAV
2015

Quic3: Universally quantified invariants for LIA + Arrays

o Extending Spacer with quantified reasoning
o A. Gurfinkel, S. Shoham, Y. Vizel: Quantifiers on Demand. ATVA 2018

UNIVERSITY OF

WATERLOO

MkSafe

Spacer In Pictures: MkSafe

O€ x=3,y=0 x=1y=0

| | | | | 70/I

x <y

Predecessor find M s.t. M = F; ATr Am’
find mst. (M Em)A(m = IV -TrAm')

NewLemma find £s.t. (F;ATr =)Nl = —m)

IIIIIIIIIIII

%) WATERLOO o4

Spacer in Pictures: Push

Push

<€ O€ O\@(
< O O

IIIIIIIIIIII

Algorithm Invariants
F,—-Bad Init— F;

Fi — Fi+1 Fi N\ Tr — Fi+1

Inductive

SMT-query: F/AF;ANTr — 0",

Predecessor and NewLemma rules in Spacer

Predecessor — generate a new predecessor POB of a given POB m
» Use SMT to check satisfiability of a transition relation with given pre- and

post-conditions

e Use Model-based Projection to construct new POB over pre-variables only

find M st. M
find m s.t. (M

— FANTr Am/

= m)A(m = V' -TrAm')

NewLemma — create a new lemma that blocks a given POB m
o Use SMT to check unsatisfiability of a transition relation with a given pre- and

post-conditions

e Use Interpolation/UNSAT core/lUC to construct a new lemma

find £ st. (B;ATr = ()N = —m)

UNIVERSITY OF

WATERLOO

26

Extends Spacer with reasoning about quantified solutions

QUIC3: QUANTIFIED IC3

IIIIIIIIIIII

27

HORN(ALIA): Arrays + LIA

int A[N];

for (int i = @; i < N; ++1)
A[i] = 0;

int j = nd();

assume(@ <= j < N);

assert(A[j] == 0);

Inv(A, N, ©)
Inv(A, N, i) & i < N & Inv(A[i

g]] UNIVERSITY OF
% WATERLOO

:= 0], N, i+1)

28

In SMT-LIB

(set-logic HORN)

55 Inv(A, N, 1)
(declare-fun Inv ((Array Int Int) Int Int) Bool)

(assert

(forall ((A (Array Int Int)) (N Int) (C Int)) (Inv AN 9)))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Inv AN i) (< i N))
(Inv (store A'i @) N (+1i 1))
)
)

)

(assert

(forall ((A (Array Int Int)) (N Int) (i Int) (j Int))
(=> (and (Inv AN i)

(>= 1 N) (<=0 3) (< j N) (not (= (select A
3) @)

false

)

(check-sat)
(get-model)

UNITVERSITY OF

WATERLOO

$ z3 -t:100 array-zero.smt2

canceled

unknown

Inv(A, N, i)

V0 <= j<i

< N =D
A[J] = ©

29

Predecessor in array-zero example

Inv(A, N, i) & i >= N & @ <= j < N & A[j] !'= @ = false

Trri<N&O<=j<N&A[]!=0 POB: true

3j-i>NAO<j<NAA[J]£0
— i>NAZJj-(0<j<NAA[j|#0)

= 777

No way to eliminate the existential quantifier!

e can use the value of j in the current model
 but this only works when A[j] is not important

IIIIIIIIIIII

%) WATERLOO 30

Quantified POBs and Lemmas

Must deal with existentially quantified POBs

find M st. M =F, ANTr Am/
find mst. (M Em)A(m = IV -TrAm’)

Learning universally quantified lemmas is easy!
 if POB m is existentially quantified, then it's negation is universally quantified
e checking that Tr implies a universally quantified lemma is easy

find ¢/ s.t. (F;ATr =)N ({ = —m)

But universal quantifiers make even basic SMT queries undecidable!
e cannot assume that SMT-solver will magically handle this for us

IIIIIIIIIIII

QUIC3: Quantified IC3 [kwik-ee]

Spacer extends IC3/PDR from Propositional logic to LIA + Arrays

Quic3 extends Spacer to discovering Universally Quantified solutions
e Extend proof obligations with free (implicitly existentially quantified) variables
e Allow universal quantifiers in lemmas
» Explicitly manage quantifier instantiations to guarantee progress
— without syntactic restriction of formulas (e.g., MBQI, Local Theory, APF)
— without user-specified patterns
* Quantified generalization to heuristically infer new quantifiers

Implemented in spacer in Z3 master branch

e 23 fp.spacer.ground pobs=false fp.spacer.q3.use _ggen=true
NAME . smt2

UNIVERSITY OF

WATERLOO

32

QUIC3: Trace and Proof Obligations

A quantified trace Q = Qq, ..., Qyis a sequence of frames.

e A frame Q; is a set of (¢, o), where £ is alemma and ¢ a
substitution.

e qi(Q) ={fa | (¢, 0) € Q} vQ={v¢| (¢, o) € Q} |

e |nvariants:

— Bounded Safety: Vi< N . vQ;, — "Bad
— Monotonicity: Vi< N . VvQ; € VQ
— Inductiveness: Vi<N.VQ A Tr — VQ'i,4

A priority queue @ of quantified proof obligations (POBSs)
e (m, ¢, i) € @ where mis a cube, ¢ is a ground substitution for all

free variables of m, and i is a numeric level

o if (M, €, i) € Q then there exists a path of length (N-i) from a state in
m¢ to a state in Bad

UNIVERSITY OF

WATERLOO

33

>

QUIC3: Rules

UNIVERSITY OF

WATERLOO

Input: A safety problem (Init(X), Tr(X, X’), Bad(X)).

Assumptions: Init, Tr and Bad are quantifier free.

Data: A POB queue Q, where a POB ¢ € Q is a triple (m, 0,7), m is a
conjunction of literals over X and free variables, o is a substitution
s.t. mo is ground, and ¢ € N. A level N. A quantified trace
T = Qo, Q1, ..., where for every pair (¢,0) € Q;, ¢ is a quantifier-free
formula over X and free variables and o a substitution s.t. {o is
ground.

Notation: F(A) = (A(X) A Tr(X, X)) V Init(X"); ¢i(Q) = {lo | (¢,0) € Q};

VQ ={Vl|({,0) € Q}.
Output: Safe or Cex
Initially: Q =0, N =0, Qo = {(Init,0)}, Vi > 0-Q; = 0.

repeat
Safe If there is an i < N s.t. VQ; C VQ;+1 return Safe.

Cex If there is an m, o s.t. (m,0,0) € Q return Cez.
Unfold If ¢i(Qn) — —Bad, then set N <~ N + 1.
Candidate If for some m, m — qi(Qn) A Bad, then add (m,(, N) to Q.

Predecessor If (m,&,i+ 1) € Q and there is a model M s.t.
M E q¢i(Qi) A Tr A (ml), add (v, 0,4) to Q, where (¢, 0) = abs(U, ¢) and
(p,U) = pPMBP(X' USK, Tr Am’;,, M).

NewLemma For 0 < i < N, given a POB (m,0,i+ 1) € Q s.t. F(qi(Q:)) Amly, is
unsatisfiable, and L' = ITP(F(qi(Q:)), m.;), add (¢,0) to Q; for j <i+1,
where (¢,_) = abs(SK, L).

Push For 0 <i < N and ((¢ V¢),0) € Qs if (p,0) € Qit1, Init — Vo and
(Vo) AVQi A qi(Qi) N Tr — Yy’ then add (p, o) to Qj, for all 7 < i+ 1.

until oo;

34

QUIC3: Predecessor, NewLemma, and Push

repeat

M = qi(Qq)

(V) AVQ

N

qi(Q:)

until oo;

Predecessor If (m,&,i+ 1) € Q and there is a model M s.t.
A Tr A (mly,), add (¢, 0,1) to Q, where (¢, 0) = abs(U, ¢) and
(p,U) = pPMBP(X'USK, Tr Aml,, M).

NewLemma For 0 <4 < N, given a POB (m,0,i+ 1) € Q s.t.| gi(Qi)IN Tr Aml is
unsatisfiable, and L' = ITP(F(qi(Q:)), m%;), add (£,0) to Q; for 7 < i+ 1,
where (¢,_) = abs(SK, L).

Push For 0 <i< N and ((¢V),0) € Qi, if (p,0) € Qit+1, Init — Y and

A Tr — V¢, then add (p,0) to Q;, for all 7 <i+ 1.

In Predecessor and NewLemma only use current instantiations of
quantified lemmas. All SMT queries are quantifier free

In Push, quantified lemmas are required for relative completeness

e in practice, we use incomplete pattern-based instantiation and hope that it is
sufficient together with qi(Q;)

%) WATERLOO

35

Progress and Counterexamples

The Predecessor rule is only finitely applicable to any POB

o follows from how quantified terms are abstracted by free variables and how
quantified lemmas are instantiated

» assumes that Skolemization is deterministic
o uses finiteness of Model Based Projection

MkSafe in Quic3 is terminating for any given bound N
 W.l.o.g, assume Bad is a single POB
e Follows by induction on the bound N

MkSafe in Quic3 computes a quantified interpolation sequence

If there is a counterexample, Quic3 will terminate with the shortest
counterexample

UNIVERSITY OF

WATERLOO

36

In SMT-LIB

(set-logic HORN)

$ z3 array-zero.smt2

55 Inv(A, N, i)

(declare-fun Inv ((Array Int Int) Int Int) Bool) Sa.t
(assert (model
(forall ((A (Array Int Int)) (N Int) (C Int)) (Inv A N 9))) (define-fun Inv ((x!0@ (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
(let ((a'l (forall ((sk!'e Int))
(assert
(forall ((A (Array Int Int)) (N Int) (i Int)) (* (or (not (>= skle @))
(=> (>= (select x!0 sk!e) o)
(and (Inv AN i) (< iN)) (<= (+ x!12 (* (- 1) sklo)) @))
(Inv (store A'i @) N (+ i 1)) ‘weight 15)))
)
) (al2 (forall ((sk!e Int))
) (! (or (not (>= skl!e 9))
(assert (<= (select x!0 sk!@) o)

(forall E iA(::;‘r‘?)I/nIn: ;n‘.C); (N Int) (i Int) (J Int)) (<= (+ x12 (* (- 1) sk!@)) 0))
= \" 1
(>= 1 N) (<=0 3) (< JN) (not (= (select A rweight 15))))
i) e))) (and al!l al2)))

false

)

(check-sat)
(get-model)

UNITVERSITY OF

WATERLOO 37

almost ...

THE END

%) WATERLOO

HORN(ALIA): Arrays + LIA

int A[N];

for (int 1 = 0; i < N; ++1)

?
A[i] = ©; ‘ IS SAT*

for (1 = 0; 1 < N; ++1)

assert(A[i] == 0);

X/

Invli(A, N,) NV
Invi(A, N, i) & i < N & Invi(A[i := @], N, i+1)
Invi(A, N, i) & i >= N & Inv2(A, N,)

Inv2(A, N, i) & i < N & A[i] = @ =& Inv2(A, N, i+1)
Inv2(A, N, i) & i < N & A[i] != @ = false

IIIIIIIIIIII

In SMT-LIB

(set-logic HORN)

55 Inv(A, N, 1)

$ z3 -t:100 array-zero2.smt2

(declare-fun Invl ((Array Int Int) Int Int) Bool)
(declare-fun Inv2 ((Array Int Int) Int Int) Bool)

(sssert canceled

(forall ((A (Array Int Int)) (N Int) (C Int)) (Invl AN ©)))

ser unknown

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Invli AN i) (< iN))
(Invl (store A i @) N (+ i 1))
)
)

)

(assert

(forall ((A (Array In
(=>
(and (Invl A

)

=

Int)) (N Int) (i Int))

=

i) (>= i N)) (Inv2 A N @)

))

(assert

(forall ((A (Array In
(=>
(and (Inv2 A

)

=

Int)) (N Int) (i Int))

Ed

i) (< i N) (= (select A i) @)) (Inv2 AN (+ i 1))

))

(assert

(forall ((A (Array In
(=>
(and (Inv2 A

)

=

Int)) (N Int) (i Int))

=

i) (< i N) (not (= (select A i) @))) false

(check-sat)
(get-model)

% WATERLOO 40

Why this example diverges?
Inv2(A, N, i) & i < N & A[i] != @ = false

i< NAAJi]#£0 < true

Invi(A, N, i) & i >= N 2 Inv2(A, N, 0)

0<N<iNAD#0 < i < N AAJ)#0

Inv2(A, N, i) & i < N & A[i] = @ & Inv2(A, N, i+l)

1 +1 < NA
Ali] =0 A Ali +1] £ 0

- i < N ANAJi)#0

Invi(A, N, i) & i >= N 2 Inv2(A, N, ©)

1< N <iA i+1<NA
A0l =0AA[L] £0 Ali] =0 AN A[i+1] #0

IIIIIIIIIIII

%) WATERLOO 41

Quantified Generalizer

“... to boldly go where no one has gone before” (but many have been)

1< N<zANAO=0ANA[1] #0

Quantified generalizer is a heuristic to generalize POBs using existential
quantifiers

e e.g., in our example, we want to generalize the pob into

J7- 1< N<iN0O<j<NAA[j|#O

We look for a pattern in the formula (anti-unification)

Use convex closure (i.e., abstract join) to capture the pattern by a
conjunction

Apply after pob is blocked and generalized
e As any generalization, it is a dark magic

IIIIIIIIIIII

%) WATERLOO 492

In SMT-LIB

(set-logic HORN)

55 Inv(A, N, 1)

(declare-fun Invl ((Array Int Int) Int Int) Bool)

(declare-fun Inv2 ((Array Int Int) Int Int) Bool)

(assert

(forall ((A (Array Int Int)) (N Int) (C Int)) (Invl AN ©)))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Invl AN i) (< i N))
(Invl (store A i @) N (+ i 1))
)
)

)

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Invl AN i) (>=1i N)) (Inv2 AN 9)
)

))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Inv2 A N i) (< i N) (= (select A i) @)) (Inv2 AN (+ i 1))
)

))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Inv2 AN i) (< i N) (not (= (select A i) @))) false
)

))

(check-sat)

(get-model)

%) WATERLOO

$ z3 array-zero2.smt2

sat

(model
(define-fun Inv2 ((x!® (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
(let ((al!l (forall ((sk!e Int))
(! (or (<= (+ x!1 (* (- 1) skl@)) o)
(<= (select x!0 skl!o) @)
(<= (+ skle (* (- 1) x!2)) @))
:weight 15)))
(al2 (or (<= (+ x!1 (* (- 1) x!12)) @) (<= (select x!@ x!2) @)))
(al3 (or (>= (select x!@ x!12) @) (<= (+ x!1 (* (- 1) x!2)) @)))
(a!4 (forall ((sk!e Int))
(! (or (<= (+ x!1 (* (- 1) skl@)) o)
(>= (select x!0 skl!o) @)
(<= (+ skle (* (- 1) x!2)) @))
tweight 15))))
(and a!l al!2 a!3 al4)))

(define-fun Invl ((x!® (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
(let ((al!l (forall ((sk!e Int))
(! (or (<= (select x!0 sk!@) 0)
(<= (+ x!2 (* (- 1) skle)) o)
(<= sk!o 0))

:weight 15)))
(a!2 (forall ((sk!e Int))
(! (let ((a!l (>= (+ skle (* (- 1) (select x!@ sk!@))) @)))
(or (not (>= sk!@ @)) (<= (+ x!2 (* (- 1) skl@)) @) all))
:weight 15)))
(a!3 (forall ((sk!e Int))
(! (or (<= (+ x!2 (* (- 1) skl@)) o)
(>= (select x!0 skl!o) @)
(<= sk!o 0))
tweight 15))))
(and a!l al!2 (or (>= (select x!@ @) @) (<= x!2 0)) al3)))

43

DEMO

%) WATERLOO

Related Work

Predicate Abstraction
o extend predicates with fresh universally quantified variables
* relies on a decision procedure for quantified logic
Model-Checking Modulo Theories (MCMT)
* model checking of array manipulating programs
e supported by multiple tools: cubicle, mcmt, safari, ...
e quantifier elimination to compute predecessors

e requires checking satisfiability of quantified formulas for sub-sumption and
convergence

Discovery of Universal Invariants with Abstract Interpretation
e compute universally quantified inductive invariants of a certain shape
e often specialized for reasoning about arrays in programming languages
 not property directed, no guarantees, but often very quick
e can be combined with Quic3 as pre-processing

UNIVERSITY OF

WATERLOO

45

Most Closely Related Work

Safari and Booster

» extends Lazy Abstraction with Interpolants (LAWI) to array manipulating
programs

e solves mkSafe() using quantifier free theory of arrays and computes
quantifier free sequence interpolant

* heuristically guesses quantified lemmas by abstracting terms

e see Avy for in-depth comparison between interpolation and IC3
Transformation into non-linear CHC

e guess number of quantifiers and instances statically

e use quantifier-free non-linear CHC solver to find template invariant

e generalizes most Abstract Interpretation / Template-based approaches

e cannot discover counterexamples
 can be simulated in Quic3 by restricting instantiations used

UPDR
 existential pobs and universal lemmas over decidable theories

UNIVERSITY OF

WATERLOO

Conclusion

Quic3 brings reasoning about quantified invariants to CHC
e Implemented in spacer
e can discover non-trivial quantified invariants of complex code

Guarantee progress and counterexamples
» don’t get stuck with a quantified SMT query
e find shortest counterexample

Many open questions remain

o strides — memory is traversed in a stride (e.g., x=x+4)
 additional quantified generalizers (speed vs precision)

Enumerating invariants in a decidable fragment (EssenUF, APF, etc.)

Full paper to appear in ATVA 2018

UNIVERSITY OF

WATERLOO 47

CHC-COMP: CHC Solving Competition
First edition on July 13, 2018 at HVCS@FLOC

Constrained Horn Clauses (CHC) is a fragment of First Order Logic
(FOL) that is sufficiently expressive to describe many verification,
inference, and synthesis problems including inductive invariant
inference, model checking of safety properties, inference of procedure
summaries, regression verification, and sequential equivalence. The
CHC competition (CHC-COMP) will compare state-of-the-art tools for
CHC solving with respect to performance and effectiveness on a set of
publicly available benchmarks. The winners among participating solvers
are recognized by measuring the number of correctly solved

benchmarks as well as the runtime.

%) WATERLOO 48

Web: https://chc-comp.github.io/

Gitter: https://qitter.im/chc-comp/Lobby

GitHub: https://github.com/chc-comp

Format: https://chc-comp.github.io/2018/format.html

https://gitter.im/chc-comp/Lobby
https://github.com/chc-comp

&

49

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
 terminate the algorithm when a solution is found

Unfold
e increase search bound by 1

Candidate
» choose a bad state in the last frame

/ Decide
e extend a cex (backward) consistent with the current frame
e choose an assignment ss.t. (s AF; A Tr A cex’) is SAT
Conflict

* construct a lemma to explain why cex cannot be extended
_* Findaclause L s.t. L=7cex, Init=L,andLAFATr=L

Induction
e propagate a lemma as far into the future as possible
 (optionally) strengthen by dropping literals

UNIVERSITY OF

WATERLOO

50

Lemma Generation Example

error

O« o

MkSafe

Transition Relation
X=XgAZ=Zt1 Ai=igtT Ay > g
Farkas explanation for unsat

Xog+ Vo <=2y X<=Xy,Zy<Z i<=ig+1

Pob

I>=yAX+y>2Z

| >=y, Xty >z

X+1<=Z

X+1>27

false

B Rz oF Learn lemma: | x+i<=1z

51

