
Regression Verification for
Multi-Threaded Programs

Dagstuhl Seminar on Program
Equivalence
April 2018

Originally presented at VMCAI 2012

Arie Gurfinkel, Sagar Chaki

SEI/CMU

Ofer Strichman

Technion
Waterloo Mentor Graphics

2 2

3 3

Regression Verification

Formal equivalence checking of two similar programs

Three selling points:
• Specification:
– not needed

• Complexity:
– depends on the semantic difference between the programs, and not on

their size
• Invariants:
– Easy to derive automatically high-quality loop/recursion invariants

4 4

Applications of an “ideal” RV tool

Regression Verification
• Validate refactoring
• Understand how changes propagate through the API

Semantic Impact Analysis

Generic Translation Validation

Proving Determinism
• P is equivalent to itself IFF P is deterministic

And many more…

5 5

Definition: Partial Equivalence (Strichman et al.)

Program P1 and P2 are partially equivalent (p.e.) IFF
• Executions of P1 and P2 on equal inputs
– …which terminate,
– result in equal outputs.

Undecidable

Supported by several tools
• RVT by Strichman et al.
• SymDiff by Lahiri et al.
• + LLRêve

6 6

Our Motivation

“Regression verification of Embedded
Software”
• Explore use of regression verification to aid in

migration of real-time software from single-core
to multi-core platforms

Need to extend regression verification to multi-
threaded software first
• Real-time software is inherently multi-threaded
• Tasks run “in parallel”, communicating via

shared variables and locks
• Led to the research reported in this paper

= ?

7 7

Outline

What is a multi-threaded program?

Partial equivalence of multi-threaded programs
• Why the notion for sequential programs does not apply
• How to fix it

Sound proof rules for regression verification of multi-
threaded programs
• What are the premises and the conclusion
• How to discharge the premises

Summary and Future Thoughts

f1 || f2
=?

f’1 || f’2?

®, ¯, °, …

f1 || f2 = f’1 || f’2

f1 || f2

8 8

Multi-Threaded Program

Finite set of C functions : P = f1 || … || fn
• Each executed in a separate thread of control
• Communicate via shared variables

Programs pre-processed as follows
• Loops are outlined to recursive functions
• Mutual recursion converted to simple recursion
• Non-recursive functions inlined
• Auxiliary variables introduced to load and store

shared variables such that:
• Shared variable x only appears in

• t = x or x = exp
• Each auxiliary variable is read once

• Functions return values through parameters
passed by reference

int base = 1;

void f1(int n, int *r) {
if (n < 1) *r = base;
else {
int x;
f1(n-1, &x);
*r = n * x;

}
}

void f2() {
base = 2;

}

P

shared
variable return value / output

omitting
auxiliary
variable

Computes
factorial(n) or
2*factorial(n)

input

threadthread

9 9

Partial equivalence of multithreaded programs

Partial equivalence of sequential programs:
• P1 and P2 partially equivalent , all executions

of P1 and P2 on equal inputs
– …which terminate,
– result in equal outputs

Consider multithreaded program P from
previous slide
• Is P partially equivalent to itself?

No!

int base = 1;

void f1(int n, int *r) {
if (n < 1) *r = base;
else {
int x;
f1(n-1, &x);
*r = n * x;

}
}

void f2() {
base = 2;

}

10 10

Partial equivalence of multithreaded programs

P is a multi-threaded program (MTP)

Π(P): the set of terminating computations of P

R(P): relates inputs and outputs defined by Π(P):
• R(P) = { (in, out) | ∃π∈ Π(P). π begins in in and

ends in out }

Definition: MTPs P1, P2 are partially equivalent if
R(P1) = R(P2)
• denoted p.e. (P1, P2)

In our example P, is partially equivalent to itself

• R(P) = {(n, n!), (n, 2 * n!) | n ∈ nat }

int base = 1;

void f1(int n, int *r) {
if (n < 1) *r = base;
else {
int x;
f1(n-1, &x);
*r = n * x;

}
}

void f2() {
base = 2;

}

11 11

SOUND PROOF RULES FOR
REGRESSION VERIFICATION
OF MULTI-THREADED
PROGRAMS

12 12

f2(int in) {

x1 = in;

x2 = in;

}

What affects partial equivalence of MTPs?

Before:
in = 1

o1 = 1, o2 = 0;

(1, h1, 0i) 2 R(p)

f1() {

o1 = x1;

o2 = x2;

}

||

x1 = x2 = 0

After:

in = 1

o1 = 1) o2 = 1

(1, h1, 0i) Ï R(p)

Swap write order

x2 = in;

x1 = in;

13 13

f1(int in1) {

x1 = in1;

t1 = x2;

o1 = t1;

}

f2(int in2) {

t2 = x1;

x2 = in2;

o2 = t2;

}

What affects partial equivalence of MTPs?

After:
in1 = 1, in2 = 2
o2 = 1)
x1 = 1 < t2 = x1)
t1 = 0)
o1 = 0
(h1,2i, h2,1i) Ï R(p)

||

x1 = x2 = 0

Before:
in1 = 1, in2 = 2
x1 = 1;
t2 = x1 = 1;
x2 = in2 = 2;
t1 = x2 = 2;
o1 = t1 = 2;
o2 = t2 = 1;
(h1,2i, h2,1i) 2 R(p)

Swap R/W order

t1 = x2;

x1 = in1;

14 14

f2(int in) {

x1 = in;

x2 = in;

}

What affects partial equivalence of MTPs?

Before:
in = 1

o1 = 0, o2 = 1;

(1, h0, 1i) 2 R(p)

f1() {

o1 = x1;

o2 = x2;

}

||

x1 = x2 = 0

After:
in = 1

o1 = 0) o2 = 0

(1, h0, 1i) Ï R(p)

Swap read order

o2 = x2;

o1 = x1;

15 15

Mapping

Assume each function is used in a single thread.
• Otherwise, duplicate it

Find a mapping between the non-basic types

Find a bijective map between:
• threads
• shared variables
• functions (same prototype),
• in mapped functions: read globals, written-to globals

Without such a mapping: goto end-of-talk.

16 16

Function Semantics: Observable Stream

Consider a function f and input in

The observable stream of f(in)’s run is its sequence of
• function calls
• read/write of shared variables

Example: let x be a shared variable:

The observable
stream:

x = in; W(x,1)

t1 = t;

t = x; R(x,1)

g(t+1); Call(g, <2>);

17 17

Observable Equivalence of Functions

Consider a function f and input in

The observable stream of f(in)’s run is its sequence of function calls and
read/write of shared variables
• If the run is finite, we say it is a finite observable stream

f, f’ are observably equivalent ,
8in. f(in), f’(in) have equal sets of finite observable streams

• Denoted by observe-equiv(f,f’)

Assume: outputs are defined via shared variables (i.e., observable)
Then: observable equivalence) partial equivalence

18 18

Checking Observable Equivalence of f and f’

Transform function f and f’ to [f] and [f’] by:
• Reading shared variable x from an “input” stream UFx

– Maintain a location c in the stream
– t = x Ã t = UFx(c)

• Recording outputs to the observable stream

– shared variable accesses and function calls

Generate sequential program S that calls [f];[f’] but also
• Ensures that inputs to f and f’ are non-deterministic but equal

• assume equal arguments and UFx = UFx’

• Asserts at the end that the observable streams of f and f’ are equal

• S is linear in size of f and f’

Check validity (i.e., no assertion failure) of S (e.g., with CBMC)

f

f’

[f]

[f’]
S CBMC

19 19

Example

int base = 1;

void f1 (int n,int *r) {
if (n < 1) {
int t;
t = base;
*r = t;

} else {
int x;
f(n-1,&x);
*r = n * x;

}
}

read

write

write

function
call

list out;
int base = 1;

void [f1] (int n,int *r) {
int c = 0;
if (n < 1) {
int t;
t = UFbase(c);
out += (R,”base”); c++;
out += (W,”r”,t); c++;

} else {
int x;
x = UFf,x(n-1,base);
base = UFbase(n-1,base)
out += (C,f,n-1);
out += (W,”r”, n * x);
c++;

}
}

Output treated as
shared variable

Observable
stream

Append to
observable

stream

input stream
for base

f1
[f1]

20 20

Compute gcd(td,x), where x is a shared variable set in another thread

21 21

22 22

Proof Rule 1

Assume bijective mapping map between the functions of P1 and P2

8 f,f’ 2 map. observe-equiv(f,f’)

p.e. (P1, P2)

Sound (proof in
the paper)

Compositional:

- check one function pair at a time (supports
recursion)

- requires verification of sequential program only
(no thread composition)

- even when there are more than two threads

- shows that regression verification is “easier”
than verification even for MTPs

However:

- Premises are very strong

- f must be equivalent to f’ under all environments

23 23

Proof Rule 2

Premises are weaker than Rule 1 but harder to discharge
• More “complete” than Rule 1
• Details in the paper

8 f,f’ 2 map. ¢ (f,f’)

p.e. (P1, P2)

Observable equivalence of f and
f’ under environments

compatible with the other
threads in the program

Key insights:

since there are no loops, each
function f reads shared
variables atmost K times (K
depends on f)

the environment of f
compatible with another
thread fq is abstracted by a K-
recursion-bounded abstraction
of fq
intuitively, the abstraction

allows all behaviors with at
most K recursive calls of fq

Compositional (like Proof Rule 1)

check one function pair at a time (supports
recursion)

requires verification of sequential program only
(no thread composition)

even when there are more than two threads

24 24

Other extensions

Support arbitrary many threads with dynamic thread creation
• Track thread creation in the output stream
• As long as same threads are crated, p.e. holds

Support atomic sections
• Necessary for modeling synchronization primitives such as locks
• Use local read/write (i.e., no UF) for shared variables written under atomic

section

Sagar Chaki, Arie Gurfinkel, Ofer Strichman: Regression verification for multi-threaded
programs (with extensions to locks and dynamic thread creation). Formal Methods in
System Design 47(3): 287-301 (2015)

25 25

Summary and Future Thoughts

Foundations of regression verification for multi-threaded programs
• Notion of partial equivalence of multi-threaded programs
• Two (sound) proof rules

Implementation and experimental validation

Synchronization primitives
• Locks, semaphores, atomic blocks

Real-time software
• Different execution (e.g., reactive) and scheduler model (e.g., priority-based)
• Different synchronization primitives (e.g., priority-ceiling, priority-inheritance)

THANK YOU!

27 27

Contact Information

Arie Gurfinkel
Senior Member of Technical Staff
RTSS Program
Telephone: +1 412-268-7788
Email: arie@cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu/staff/arie

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

mailto:arie@cmu.edu

28 28

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

