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Regression Verification

Formal equivalence checking of two similar programs

Three selling points:
• Specification: 
– not needed

• Complexity: 
– depends on the semantic difference between the programs, and not on 

their size
• Invariants: 
– Easy to derive automatically high-quality loop/recursion invariants
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Applications of an “ideal” RV tool

Regression Verification
• Validate refactoring
• Understand how changes propagate through the API

Semantic Impact Analysis

Generic Translation Validation

Proving Determinism
• P is equivalent to itself IFF P is deterministic

And many more…
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Definition: Partial Equivalence (Strichman et al.)

Program P1 and P2 are partially equivalent (p.e.) IFF
• Executions of P1 and P2 on equal inputs 
– …which terminate,
– result in equal outputs.

Undecidable

Supported by several tools
• RVT by Strichman et al.
• SymDiff by Lahiri et al.
• + LLRêve
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Our Motivation

“Regression verification of Embedded 
Software”
• Explore use of regression verification to aid in 

migration of real-time software from single-core 
to multi-core platforms

Need to extend regression verification to multi-
threaded software first
• Real-time software is inherently multi-threaded
• Tasks run “in parallel”, communicating via 

shared variables and locks
• Led to the research reported in this paper

= ?
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Outline

What is a multi-threaded program?

Partial equivalence of multi-threaded programs
• Why the notion for sequential programs does not apply
• How to fix it

Sound proof rules for regression verification of multi-
threaded programs
• What are the premises and the conclusion
• How to discharge the premises

Summary and Future Thoughts

f1 || f2
=?

f’1 || f’2?

®, ¯, °, …

f1 || f2 = f’1 || f’2

f1 || f2
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Multi-Threaded Program

Finite set of C functions : P = f1 || … || fn
• Each executed in a separate thread of control
• Communicate via shared variables

Programs pre-processed as follows
• Loops are outlined to recursive functions
• Mutual recursion converted to simple recursion
• Non-recursive functions inlined
• Auxiliary variables introduced to load and store 

shared variables such that:
• Shared variable x only appears in 

• t = x or x = exp
• Each auxiliary variable is read once

• Functions return values through parameters 
passed by reference

int base = 1;

void f1(int n, int *r) {
if (n < 1) *r = base;
else {
int x;
f1(n-1, &x);
*r = n * x;

}
}

void f2() {
base = 2;

}

P

shared 
variable return value / output

omitting 
auxiliary 
variable

Computes 
factorial(n) or 
2*factorial(n)

input

threadthread
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Partial equivalence of multithreaded programs

Partial equivalence of sequential programs:
• P1 and P2 partially equivalent , all executions 

of P1 and P2 on equal inputs 
– …which terminate,
– result in equal outputs 

Consider multithreaded program P from 
previous slide
• Is P partially equivalent to itself? 

No!

int base = 1;

void f1(int n, int *r) {
if (n < 1) *r = base;
else {
int x;
f1(n-1, &x);
*r = n * x;

}
}

void f2() {
base = 2;

}
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Partial equivalence of multithreaded programs

P is a multi-threaded program (MTP)

Π(P): the set of terminating computations of P

R(P): relates inputs and outputs defined by Π(P):
• R(P) = { (in, out) | ∃π∈ Π(P). π begins in in and   

ends in out }

Definition: MTPs P1, P2 are partially equivalent if 
R(P1) = R(P2)
• denoted p.e. (P1, P2)

In our example P, is partially equivalent to itself

• R(P) = {(n, n!), (n, 2 * n!) | n ∈ nat }

int base = 1;

void f1(int n, int *r) {
if (n < 1) *r = base;
else {
int x;
f1(n-1, &x);
*r = n * x;

}
}

void f2() {
base = 2;

}
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SOUND PROOF RULES FOR 
REGRESSION VERIFICATION 
OF MULTI-THREADED 
PROGRAMS 
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f2(int in) {

x1 = in;

x2 = in;

}

What affects partial equivalence of MTPs?

Before: 
in = 1

o1 = 1, o2 = 0;

(1, h1, 0i) 2 R(p)

f1() {

o1 = x1;

o2 = x2;

}

||

x1 = x2 = 0

After:

in = 1

o1 = 1) o2 = 1

(1, h1, 0i) Ï R(p)

Swap write order

x2 = in;

x1 = in;
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f1(int in1) {

x1 = in1;

t1 = x2;  

o1 = t1;

}

f2(int in2) {

t2 = x1;

x2 = in2;

o2 = t2;

}

What affects partial equivalence of MTPs?

After: 
in1 = 1, in2 = 2
o2 = 1 )
x1 = 1 < t2 = x1 )
t1 = 0 )
o1 = 0
(h1,2i, h2,1i) Ï R(p)

||

x1 = x2 = 0

Before:
in1 = 1, in2 = 2
x1 = 1; 
t2 = x1 = 1; 
x2 = in2 = 2;
t1 = x2 = 2; 
o1 = t1 = 2; 
o2 = t2 = 1;
(h1,2i, h2,1i) 2 R(p)

Swap R/W order

t1 = x2;

x1 = in1;
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f2(int in) {

x1 = in;

x2 = in;

}

What affects partial equivalence of MTPs?

Before: 
in = 1

o1 = 0, o2 = 1;

(1, h0, 1i) 2 R(p)

f1() {

o1 = x1;

o2 = x2;

}

||

x1 = x2 = 0

After:
in = 1

o1 = 0) o2 = 0

(1, h0, 1i) Ï R(p)

Swap read order

o2 = x2;

o1 = x1;
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Mapping

Assume each function is used in a single thread.
• Otherwise, duplicate it

Find a mapping between the non-basic types

Find a bijective map between:
• threads
• shared variables 
• functions (same prototype),
• in mapped functions: read globals, written-to globals

Without such a mapping: goto end-of-talk.
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Function Semantics: Observable Stream

Consider a function f and input in

The observable stream of f(in)’s run is its sequence of
• function calls
• read/write of shared variables

Example: let x be a shared variable:

The observable 
stream:

x = in; W(x,1)

t1 = t;

t = x; R(x,1)

g(t+1); Call(g, <2>);
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Observable Equivalence of Functions

Consider a function f and input in

The observable stream of f(in)’s run is its sequence of function calls and 
read/write of shared variables
• If the run is finite, we say it is a finite observable stream

f, f’ are observably equivalent ,
8in. f(in), f’(in) have equal sets of finite observable streams

• Denoted by observe-equiv(f,f’) 

Assume: outputs are defined via shared variables (i.e., observable)
Then: observable equivalence ) partial equivalence
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Checking Observable Equivalence of f and f’

Transform function f and f’ to [f] and [f’] by:
• Reading shared variable x from an “input” stream UFx

– Maintain a location c in the stream
– t = x Ã t = UFx(c)

• Recording outputs to the observable stream

– shared variable accesses and function calls

Generate sequential program S that calls [f];[f’] but also
• Ensures that inputs to f and f’ are non-deterministic but equal

• assume equal arguments and UFx = UFx’

• Asserts at the end that the observable streams of f and f’ are equal

• S is linear in size of f and f’

Check validity (i.e., no assertion failure) of S (e.g., with CBMC)

f

f’

[f]

[f’]
S CBMC
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Example

int base = 1;

void f1 (int n,int *r) {
if (n < 1) {
int t;
t = base;
*r = t;

} else {
int x;
f(n-1,&x);
*r = n * x;

}
}

read

write

write

function
call

list out;
int base = 1;

void [f1] (int n,int *r) {
int c = 0;
if (n < 1) {
int t;
t = UFbase(c);
out += (R,”base”); c++;
out += (W,”r”,t); c++;

} else {
int x;
x = UFf,x(n-1,base);
base = UFbase(n-1,base)
out += (C,f,n-1);
out += (W,”r”, n * x);
c++;

}
}

Output treated as 
shared variable

Observable 
stream

Append to
observable

stream

input stream 
for base

f1
[f1]
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Compute gcd(td,x), where x is a shared variable set in another thread
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Proof Rule 1

Assume bijective mapping map between the functions of P1 and P2

8 f,f’ 2 map. observe-equiv(f,f’)

p.e. (P1, P2)

Sound (proof in 
the paper)

Compositional:

- check one function pair at a time (supports 
recursion)

- requires verification of sequential program only 
(no thread composition)

- even when there are more than two threads

- shows that regression verification is “easier” 
than verification even for MTPs

However:

- Premises are very strong

- f must be equivalent to f’ under all environments
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Proof Rule 2

Premises are weaker than Rule 1 but harder to discharge
• More “complete” than Rule 1
• Details in the paper

8 f,f’ 2 map. ¢ (f,f’)

p.e. (P1, P2)

Observable equivalence of f and 
f’ under environments 

compatible with the other 
threads in the program

Key insights:

since there are no loops, each 
function f reads shared 
variables atmost K times (K 
depends on f)

the environment of f 
compatible with another 
thread fq is abstracted by a K-
recursion-bounded abstraction 
of fq
intuitively, the abstraction 

allows all behaviors with at 
most K recursive calls of fq

Compositional (like Proof Rule 1)

check one function pair at a time (supports 
recursion)

requires verification of sequential program only 
(no thread composition)

even when there are more than two threads
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Other extensions

Support arbitrary many threads with dynamic thread creation
• Track thread creation in the output stream
• As long as same threads are crated, p.e. holds

Support atomic sections
• Necessary for modeling synchronization primitives such as locks
• Use local read/write (i.e., no UF) for shared variables written under atomic

section

Sagar Chaki, Arie Gurfinkel, Ofer Strichman: Regression verification for multi-threaded 
programs (with extensions to locks and dynamic thread creation). Formal Methods in 
System Design 47(3): 287-301 (2015)
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Summary and Future Thoughts

Foundations of regression verification for multi-threaded programs
• Notion of partial equivalence of multi-threaded programs
• Two (sound) proof rules

Implementation and experimental validation

Synchronization primitives
• Locks, semaphores, atomic blocks

Real-time software
• Different execution (e.g., reactive) and scheduler model (e.g., priority-based)
• Different synchronization primitives (e.g., priority-ceiling, priority-inheritance)



THANK YOU!
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