
Algorithmic Logic-Based Verification
with SeaHorn

Arie Gurfinkel

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada

http://ece.uwaterloo.ca/~agurfink

based on work with Teme Kahsai, Jorge Navas, Anvesh
Komuravelli, Jeffrey Gennari, Ed Schwartz, and many others

…

2 2

Automated

Analysis

Software Model Checking
with Predicate Abstraction

e.g., Microsoft’s SDV

Automated Software Analysis

Program
Correct

Incorrect

Abstract Interpretation with
Numeric Abstraction

e.g., ASTREE, Polyspace

3 3

Turing, 1936: “undecidable”

4 44

Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949

5 5

Automated Verification

Deductive Verification
• A user provides a program and a verification certificate
– e.g., inductive invariant, pre- and post-conditions, function summaries, etc.

• A tool automatically checks validity of the certificate
– this is not easy! (might even be undecidable)

• Verification is manual but machine certified

Algorithmic Verification
• A user provides a program and a desired specification
– e.g., program never writes outside of allocated memory

• A tool automatically checks validity of the specification
– and generates a verification certificate if the program is correct
– and generates a counterexample if the program is not correct

• Verification is completely automatic – “push-button”

6 6

Algorithmic Logic-Based Verification

Program + Spec

Verification
Condition (in Logic)

Decision Procedure

Yes No

Safety
Properties

Constrained
Horn Clauses

Spacer

7 7

http://seahorn.github.io

8 8
http://seahorn.github.io

Temesghen
Kahsai

(NASA/CMU)

Jorge Navas
(SRI)

9 9

Example: in test.c, check that x is always greater than or equal to y
test.c

SeaHorn command: SeaHorn result:

SeaHorn Usage

10 10

SeaHorn Philosophy

Build a state-of-the-art Software Model Checker
• useful to “average” users
– user-friendly, efficient, trusted, certificate-producing, …

• useful to researchers in verification
– modular design, clean separation between syntax, semantics, and logic, …

Stand on the shoulders of giants
• reuse techniques from compiler community to reduce verification effort
– SSA, loop restructuring, induction variables, alias analysis, …
– static analysis and abstract interpretation

• reduce verification to logic
– verification condition generation
– Constrained Horn Clauses

Build reusable logic-based verification technology
• “SMT-LIB” for program verification

11 11

Three-Layers of a Program Verifier

Compiler
• compiles surface syntax a target machine
• embodies syntax with semantics

Verification Condition Generator
• transforms a program and a property to a verification condition in logic
• employs different abstractions, refinements, proof-search strategies, etc.

Automated Theorem Prover / Reasoning Engine
• discharges verification conditions
• general purpose constraint solver
• SAT, SMT, Abstract Interpreter, Temporal Logic Model Checker,…

12 12

SeaHorn Architecture

 LLVM Opt

Devirt/Exc Elim

Property Instr

Lifting Assert

Heap Disambig

Array Abstraction

 VC Generation:
small, large, flat...

Precision:scalars,
pointers, memory

 Crab

Template Inv

 Spacer

 Front-end Middle-end Back-end

 C/C++ LLVM bitcode Horn Clauses

 BMC

13 13

DEMO

14 14

Property-Directed Test-Case Generation

program

property

executable

Software
Model

Checker

Directed
Symbolic
Execution

trace
executable

harness

precise
abstract traces

efficient complete
traces

PDTG

interaction between
SMC and SE

15 15

A Counterexample Harness

if (get_input() == 0x1234 &&
get_input() == 0x8765) {

__VERIFIER_error();
} else {

return 0;
}

void __get_input() {
static int x = 0;
switch (x++) {

case 0: return 0x1234;
case 1: return 0x8765;
default: return 0; }

}

get_input() is an external
function
Program considered buggy if and
only if __VERIFIER_error() is
reachable

Implementation of external
functions linked to original source
code
Causes program to execute
__VERIFIER_error()

16 16

Generating Harnesses for Linux Device Drivers

void *ldv_ptr(void)
{
void *tmp;
tmp = __c();
return tmp;

}

…

void *is_got = ldv_ptr();
if (is_got <= (long)2012)
{ ... }

• Sample from Linux Device
Verification (LDV) project1

• Harness functions returning
pointers are tricky
– May not be reasonable

addresses
– Might return “new” memory

• Original program instrumented with
memory read/store hooks that
control access to external memory

1http://linuxtesting.org/ldv

17 17

Virtual External Memory

Accesses to external “virtual” memory are mapped to real memory
• opportunistically allocate memory for new accesses
• ignore invalid stores, return a default value for an invalid load

Program Memory

Internal
Memory
Access

External
Memory
Access

18 18

SMT-BASED DECISION
PROCEDURE FOR DECIDING
CHC

Spacer

19 19

INIT

Safety Verification Problem

Bad

Is Bad reachable?

20 20

INIT

Safety Verification Problem

Bad

Is Bad reachable?

……

Yes. There is a counterexample!

21 21

INIT

Safety Verification Problem

Bad

Is Bad reachable?

Inv

No. There is an inductive invariant

22 22

Symbolic Reachability Problem

P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN) 6) ?

Init) Inv

Inv(X) ^ Tr(X,X 0)) Inv(X 0)

Inv) ¬Bad

23 23

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL formula of
the form

8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → h[X]),
where
• A is a background theory (e.g., Linear Arithmetic, Arrays, Bit-

Vectors, or combinations of the above)
• Á is a constrained in the background theory A
• p1, …, pn, h are n-ary predicates
• pi[X] is an application of a predicate to first-order terms

A model of a set of clauses is an interpretation of the
predicates pi and h that makes all clauses valid
A set of clauses is satisfiable iff it has a model

24 24

From Programs to Logic

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y)

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0)
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4 (x � y), p3(x, y).
h7i perr (x < y), p3(x, y).
h8i p4 p4.
h9i ? perr.

Program CFG CHC

25 25

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
• stand-alone implementation in a fork of Z3
• http://bitbucket.org/spacer/code

Support for Non-Linear CHC
• model procedure summaries in inter-procedural verification conditions
• model assume-guarantee reasoning
• uses MBP to under-approximate models for finite unfoldings of predicates
• uses MAX-SAT to decide on an unfolding strategy

Supported SMT-Theories
• Best-effort support for arbitrary SMT-theories
– data-structures, bit-vectors, non-linear arithmetic

• Full support for Linear arithmetic (rational and integer)
• Quantifier-free theory of arrays
– only quantifier free models with limited applications of array equality

26 26

Verification by Evolving Approximations

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?
No No No

solver solver solver

approx. 1 approx. 2 approx. 3

27 27

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property

directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to
SMT)
• A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit

Predicate Abstraction. TACAS 2014
• J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014

28 28

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate

summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive

Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI

2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification

of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD
2015

29 29

Algorithm Overview

Input: Safety problem hInit(X),Tr(X,X 0
),Bad(X)i

F0 Init ;N 0 repeat
G PdrMkSafe([F0, . . . , FN],Bad)
if G = [] then return Reachable;
80 i N · Fi G[i]

F0, . . . , FN PdrPush([F0, . . . , FN])

if 90 i < N · Fi = Fi+1 then return Unreachable;

N N + 1 ; FN ;
until 1;

bounded
safety

strengthen
result

30 30

IC3/PDR In Pictures: MkSafe MkSafe

𝑥 = 1, 𝑦 = 0𝑥 = 3, 𝑦 = 0

𝑥 ≠ 3 ∨ 𝑦 ≠ 0𝑥 < 𝑦

31 31

Inductive

IC3/PDR in Pictures: Push Push

Algorithm Invariants
Ri → ¬ Bad Init → Ri

Ri → Ri+1 Ri Æ ½ → Ri+1

32 32

Logic-based Algorithmic Verification

Spacer

CPR

Simulink

Lustre

Java

C/C++ concurrent
/distributed

systems

T2Termination
for C

SeaHorn

33 33

SV-COMP 2015

4th Competition on Software Verification held at TACAS 2015
Goals
• Provide a snapshot of the state-of-the-art in software verification to the

community.
• Increase the visibility and credits that tool developers receive.
• Establish a set of benchmarks for software verification in the community.

Participants:
• Over 22 participants, including most popular Software Model Checkers and

Bounded Model Checkers
Benchmarks:
• C programs with error location (programs include pointers, structures, etc.)
• Over 6,000 files, each 2K – 100K LOC
• Linux Device Drivers, Product Lines, Regressions/Tricky examples
• http://sv-comp.sosy-lab.org/2015/benchmarks.php

http://sv-comp.sosy-lab.org/2015/

34 34

Results for DeviceDriver category

�

��

���

����

��
�
��
��
��

�����
����

����������
�����
�������

�����������
����������

������

� ��� ���� ���� ���� ����

�����������������

35 35

Applications of SeaHorn at NASA

Absence of Buffer Overflows
• Open source auto-pilots
– paparazzi and mnav autopilots

• Automatically instrument buffer accesses with runtime checks
• Use SeaHorn to validate that run-time checks never fail
– slower than pure abstract interpretation
– BUT, much more precise!

Verify Level 5 requirements of the LADEE software stack
• Manually encode requirements in Simulink model
• Verify that the requirements hold in auto-generated C

Memory safety of C++ controller code
• ongoing…

36 36

Conclusion

SeaHorn (http://seahorn.github.io)
• a state-of-the-art Software Model Checker
• LLVM-based front-end
• CHC-based verification engine
• a framework for research in logic-based verification

The future
• making SeaHorn useful to the consumers of verification technology
– counterexamples, build integration, property specification, proofs,

• Concurrent / distributed / embedded systems
– cyber-physical systems
– very challenging but there are many opportunities

• richer properties
– termination[TACAS’16], liveness, synthesis

37 37

38 38

IC3/PDR
Input: A safety problem hInit(X),Tr(X,X 0

),Bad(X)i.
Output: Unreachable or Reachable
Data: A cex queue Q , where c 2 Q is a pair hm, ii, m is a cube over

state variables, and i 2 N. A level N . A trace F0, F1, . . .
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · Fi = ;.
repeat

Unreachable If there is an i < N s.t. Fi ✓ Fi+1 return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q return Reachable.

Unfold If FN ! ¬Bad , then set N N + 1.

Candidate If for some m, m! FN ^ Bad , then add hm,Ni to Q .

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0

, then add hm0, ii to Q .

Conflict For 0 i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that '! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0
, then add ' to

Fj , for j i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and Fi�1 ^ Tr ^m0
is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0 i < N and a clause (' _) 2 Fi, if ' 62 Fi+1, Init ! '
and ' ^ Fi ^ Tr ! '0

, then add ' to Fj , for each j i+ 1.

until 1;

39 39

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
• terminate the algorithm when a solution is found

Unfold
• increase search bound by 1

Candidate
• choose a bad state in the last frame

Decide
• extend a cex (backward) consistent with the current frame
• choose s s.t. (s ⋀ Ri ⋀ Tr ⋀ cex’) is SAT

Conflict
• Find a lemma that explains why cex cannot be extended
• Find L s.t. L⇒¬cex and L ⋀ Ri ⋀ Tr⇒ L’

Induction
• Propositional generalization (drop literals from the lemma)

Theory
dependent

40 40

ARITHMETIC CONFLICT
Looking for φ’

((Fi ^ Tr) _ Init 0)) '0

'0) c0

41 41

Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A) ¬B, then
there exists a FO formula I, denoted ITP(A, B), such that

A) I I) ¬B
atoms(I) 2 atoms(A) Å atoms(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a
resolution proof of unsatisfiability of A Æ B

In Model Cheching, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

42 42

A

Craig Interpolant

42

B

I

43 43

Examples of Craig Interpolation for Theories

Boolean logic

Equality with Uniterpreted Functions (EUF)

Linear Real Arithmetic (LRA)

A = (¬b ^ (¬a _ b _ c) ^ a) B = (¬a _ ¬c)

ITP (A,B) = a ^ c

A = (f(a) = b ^ p(f(a))) B = (b = c ^ ¬p(c))

ITP (A,B) = p(b)

A = (z + x+ y > 10 ^ z < 5) B = (x < �5 ^ y < �3)

ITP (A,B) = x+ y > 5

44 44

Alternative Definition of an Interpolant

Let F = A(x, z) Æ B(z, y) be UNSAT, where x and y are distinct
• Note that for any assignment v to z either
– A(x, v) is UNSAT, or
– B(v, y) is UNSAT

An interpolant is a circuit I(z) such that for every assignment v to z
• I(v) = A only if A(x, v) is UNSAT
• I(v) = B only if B(v, y) is UNSAT

A proof system S has a feasible interpolation if for every refutation ¼ of F
in S, F has an interpolant polynomial in the size of ¼
• propositional resolution has feasible interpolation
• extended resolution does not have feasible interpolation

45 45

Farkas Lemma

Let M = t1 ¸ b1 Æ … Æ tn ¸ bn, where ti are linear terms and bi are
constants M is unsatisfiable iff 0 ¸ 1 is derivable from M by resolution

M is unsatisfiable iff M ` 0 ¸ 1
• e.g., x + y > 10, -x > 5, -y > 3 ` (x+y-x-y) > (10 + 5 + 3) ` 0 > 18

M is unsatisfiable iff there exist Farkas coefficients g1, …, gn such that
• gi ¸ 0
• g1£t1 + … + gn£tn = 0
• g1£b1 + … + gn£bn ¸ 1

46 46

Interpolation for Linear Real Arithmetic

Let M = A Æ B be UNSAT, where
• A = t1 ¸ b1 Æ … Æ ti ¸ bi, and
• B = ti+1 ¸ bi Æ … Æ tn ¸ bn

Let g1, …, gn be the Farkas coefficients witnessing UNSAT

Then
• g1£(t1 ¸ b1) + … + gi£(ti ¸ bi) is an interpolant between A and B
• gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn) is an interpolant between B and A

• g1£t1 +…+gi£ti = - (gi+1£ti+1 + … + gn£tn)
• ¬(gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn)) is an interpolant between A and B

47 47

Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]
• I 2 ITP (A, B) then ¬I 2 ITP (B, A)
• if A is syntactically convex (a monomial), then I is convex
• if B is syntactically convex, then I is co-convex (a clause)
• if A and B are syntactically convex, then I is a half-space

A = F(Ri)

I = lemma

48 48

Arithmetic Conflict

Counterexample is blocked using Craig Interpolation
• summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
• weaker than IC3/PDR
• inductive generalization for arithmetic is still an open problem

Notation: F(A) = (A(X) ^ Tr) _ Init(X 0
).

Conflict For 0 i < N , given a counterexample hP, i+ 1i 2 Q s.t.

F(Fi) ^ P 0
is unsatisfiable, add P "

= Itp(F(Fi), P 0
) to Fj for j i+ 1.

49 49

ARITHMETIC DECIDE
Computing a predecessor s of a counterexample c

s ✓ pre(c)

⌘ s) 9X 0 . T r ^ c0

50 50

Model Based Projection

Definition: Let φ be a formula, U a set of variables, and M a
model of φ. Then Ã = MBP (U, M, φ) is a Model Based
Projection of U, M and φ iff
1. Ã is a monomial (optional)
2. Vars(Ã) µ Vars(φ) \ U
3. M ² Ã
4. Ã) 9 U . φ

For a fixed set of variables U and a formula φ, MBP is a
function from models to formulas

MBP is finite if its range (as a function defined above) is
finite

51 51

1. Find model M of φ (x,y)

 (y) ⌘ 9x · '(x, y)Expensive to find a quantifier-free

9x · '(x, y)Models of 2. Compute a partition containing M

Model Based Projection

M

52 52

Loos Weispfenning Quantifier Elimination

φ is LRA formula in Negation Normal Form
E is set of x=t atoms, U set of x < t atoms, and L set of s < x atoms
There are no other occurrences of x in φ[x]

where

The case of lower bounds is dual
• using –∞ and t+𝜖

(x < t

0)[t� ✏] ⌘ t t

0 (s < x)[t� ✏] ⌘ s < t (x = e)[t� ✏] ⌘ false

9x.'[x] ⌘ '[1] _
_

x=t2E

'[t] _
_

x<t2U

'[t� ✏]

53 53

LW-Quantifier Elimination Example

9x . '[x]
⌘ 9x . (x = e ^ 1) _ (s < x ^ x < t) _ (x < t ^ 2)

⌘ '[e] _ '[t� ✏] _ '[1]

⌘ (1 _ (s < e ^ e < t) _ (e < t ^ 2)) _

(s < t ^ t t) _ (t t ^ 2) _

false

54 54

MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model
• Use the Model to uniquely pick a substitution term for x

MBP techniques have been developed for
• Linear Rational Arithmetic, Linear Integer Arithmetic
• Theories of Arrays, and Recursive Data Types

Mbp

x

(M,x = s ^ L) = L[x s]

Mbp

x

(M,x 6= s ^ L) = Mbp

x

(M, s < x ^ L) if M(x) > M(s)

Mbp

x

(M,x 6= s ^ L) = Mbp

x

(M,�s < �x ^ L) if M(x) < M(s)

Mbp

x

(M,

^

i

s

i

< x ^
^

j

x < t

j

) =
^

i

s

i

< t0 ^
^

j

t0 t

j

where M(t0) M(t
i

), 8i

55 55

Arithmetic Decide

Compute a predecessor using an under-approximation of quantifier
elimination – called Model Based Projection

To ensure progress, Decide must be finite
• finitely many possible predecessors when all other arguments are fixed

Alternatives
• Completeness can follow from the Conflict rule only
– for Linear Arithmetic this means using Fourier-Motzkin implicants

• Completeness can follow from an interaction of Decide and Conflict

Notation: F(A) = (A(X) ^ Tr(X,X 0
) _ Init(X 0

).

Decide If hP, i+ 1i 2 Q and there is a model m(X,X 0
) s.t. m |= F(Fi) ^ P 0

,

add hP#, ii to Q , where P# = MBP(X 0,m,F(Fi) ^ P 0
).

56 56

PROPERTY-DIRECTED TEST
CASE GENERATION

57 57

Property-Directed Test-Case Generation

program

property

executable

Software
Model

Checker

Directed
Symbolic
Execution

trace
executable

harness

precise
abstract traces

efficient complete
traces

PDTG

interaction between
SMC and SE

58 58

A Counterexample Harness

if (get_input() == 0x1234 &&
get_input() == 0x8765) {

__VERIFIER_error();
} else {

return 0;
}

void __get_input() {
static int x = 0;
switch (x++) {

case 0: return 0x1234;
case 1: return 0x8765;
default: return 0; }

}

get_input() is an external
function
Program considered buggy if and
only if __VERIFIER_error() is
reachable

Implementation of external
functions linked to original source
code
Causes program to execute
__VERIFIER_error()

59 59

Generating Harnesses for Linux Device Drivers

void *ldv_ptr(void)
{
void *tmp;
tmp = __c();
return tmp;

}

…

void *is_got = ldv_ptr();
if (is_got <= (long)2012)
{ ... }

• Sample from Linux Device
Verification (LDV) project1

• Harness functions returning
pointers are tricky
– May not be reasonable

addresses
– Might return “new” memory

• Original program instrumented with
memory read/store hooks that
control access to external memory

1http://linuxtesting.org/ldv

60 60

Virtual External Memory

Accesses to external “virtual” memory are mapped to real memory
• opportunistically allocate memory for new accesses
• ignore invalid stores, return a default value for an invalid load

Program Memory

Internal
Memory
Access

External
Memory
Access

