Algorithmic Logic-Based Verification
with SeaHorn

Arie Gurfinkel
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada

http://ece.uwaterloo.ca/~aqurfink

based on work with Teme Kahsai, Jorge Navas, Anvesh
Komuravelli, Jeffrey Gennari, Ed Schwartz, and many others

2 WATERLOO

Automated Software Analysis

Program ’J —)

Correct
Automated /

Analysis

fi

/(rh
\ \
\ ’l." V:
Incorrect | =
¥ AL

Software Model Checking
with Predicate Abstraction

e.g., Microsoft's SDV

/_

IIIIIIIIIIII

\

Abstract Interpretation with
Numeric Abstraction

e.g., ASTREE, Polyspace

IIIIIIIIIIII

Turing, 1949

Alan M. Turing. “Checking a large routine”, 1949

How can one check a routine in the sense of making sure that it is right?

l.xould muke a number of definite assertions which éan ﬁc-éhc;;kod
nd : , and from which the correctness of the whole programae easily
follows,
|
r<n r<n s<r<n s<sr<n
“' u=r! u=r! 0 210E u=sr! u=(s+ 1)
o<n I** : v=rl |% v=rl v=r!
T I ! | |
: Ak : = : =1 : =u+v : s:=s+1
u=1 < Vi=Uu r—n E S = - u:=u g

]
1
I
Y—1sr<n
ri=r+1K

1 u=sr!
|
|

r<n
u=(+1)r
.gg hhhhhhhh

Automated Verification

Deductive Verification
e A user provides a program and a verification certificate
— e.g., inductive invariant, pre- and post-conditions, function summaries, etc.
» A tool automatically checks validity of the certificate
— this is not easy! (might even be undecidable)
 Verification is manual but machine certified

mgorithmic Verification \

e A user provides a program and a desired specification
— e.g., program never writes outside of allocated memory
A tool automatically checks validity of the specification
— and generates a verification certificate if the program is correct
— and generates a counterexample if the program is not correct
K. Verification is completely automatic — “push-button” j

UNIVERSITY OF

WATERLOO 5

Algorithmic Logic-Based Verification
Safety }

Properties

Program + Spec

Constrained
Horn Clauses

Verification

Condition (in Logic)

Decision Procedure

Yes No

IIIIIIIIIIII

&

&«

i Apps

SeaHorn | A Verification Fr- %
A L. =

C fn seahorn.github.io

U Getting Started Google Bookmark Note in Reader Add to Wish List + Pocket Google Bookmark » || Other Bookmarks
s
.%o,

SeaHorn e AR
Home About Download Publications People ™ O0,™
o OQ‘-
%,
)

A fully automated verification framework for LLVM-based
languages.

http://seahorn.github.io

Temesghen Jorge Navas

Kahsai

(NASA/CMU) e
y =
A o o
L ‘ &
! .
\ /)

—

% http://seahorn.g,“\

SeaHorn Usage

Example: in test.c, check that x is always greater than or equal to y
test.c

extern int nd();
extern void __ VERIFIER error() __attribute__((noreturn));
void assert (int cond) { if (!cond) __ VERIFIER error (); }
int main(){
int x,y;
x=1; y=0;
while (nd ())
{
X=X+Y ;
y++;
}

return 0;

}

SeaHorn result:
SEAHORN

SeaHorn command:

sea pf test.c PROPERTY (line 12) | TRUE

%) WATERLOO

SeaHorn Philosophy

Build a state-of-the-art Software Model Checker
 useful to “average” users
— user-friendly, efficient, trusted, certificate-producing, ...
 useful to researchers in verification

— modular design, clean separation between syntax, semantics, and logic, ...

Stand on the shoulders of giants
e reuse techniques from compiler community to reduce verification effort
— SSA, loop restructuring, induction variables, alias analysis, ...
— static analysis and abstract interpretation
 reduce verification to logic
— verification condition generation
— Constrained Horn Clauses
Build reusable logic-based verification technology
o “SMT-LIB” for program verification

UNIVERSITY OF

WATERLOO

10

Three-Layers of a Program Verifier

Compiler
e compiles surface syntax a target machine
e embodies syntax with semantics

Verification Condition Generator
e transforms a program and a property to a verification condition in logic
e employs different abstractions, refinements, proof-search strategies, etc.

Automated Theorem Prover / Reasoning Engine
e discharges verification conditions
e general purpose constraint solver
o SAT, SMT, Abstract Interpreter, Temporal Logic Model Checker,...

UNIVERSITY OF

WATERLOO 1

SeaHorn Architecture

&

 a

LLVM bit

(&

~

LLVM Opt

~N

J

~

(S

Devirt/Exc Elim

~

J

~

(S

Property Instr

~

J

-

Lifting Assert

~

\&

~/

Front-end

IIIIIIIIII

%) WATERLOO

code
)

Middle-end

(o \

Template Inv

Back-end

12

DEMO

%) WATERLOO

>

Property-Directed Test-Case Generation

(efficient complete PDTG
traces
\
N interaction between
Soltware SMC and SE
property Model
Checker
executable
program harness
Directed
Symbolic
precise Execution J
[abstract traces
—> executable
WATERLOO

14

A Counterexample Harness

if (get _input() == 0x1234 &&
get _input() == 0x8765) {
__VERIFIER error();
} else {
return O;

}

void get input() {
static int x = 9;
switch (x++) {
case 0: return 0x1234;
case 1: return 9x8765;
default: return 0; }

UNIVERSITY OF

WATERLOO

get _input() is an external
function

Program considered buggy if and
only if _ VERIFIER error() is

reachable

Implementation of external
functions linked to original source
code

Causes program to execute
__VERIFIER error()

15

Generating Harnesses for Linux Device Drivers

void *1dv_ptr(void)

{
void *tmp;
tmp = __c();
return tmp;

¥

void *is got = ldv_ptr();
if (is_got <= (long)2012)
{ ...}

UNIVERSITY OF

WATERLOO

e Sample from Linux Device
Verification (LDV) project?

e Harness functions returning
pointers are tricky

— May not be reasonable
addresses

— Might return “new” memory

e Original program instrumented with
memory read/store hooks that
control access to external memory

Thttp://linuxtesting.org/Idv

16

Virtual External Memory

—

External

—

Internal
> >

Accesses to external “virtual” memory are mapped to real memory

e opportunistically allocate memory for new accesses

e ignore invalid stores, return a default value for an invalid load

UNIVERSITY OF

% WATERLOO

17

Spacer

SMT-BASED DECISION
PROCEDURE FOR DECIDING
CHC

IIIIIIIIIIII

18

Safety Verification Problem

Is Bad reachable?

IIIIIIIIIIII

19

Safety Verification Problem

Is Bad reachable?

Yes. There is a counterexample!

IIIIIIIIIIII

20

Safety Verification Problem

Is Bad reachable?

®») @

No. There is an inductive invariant

IIIIIIIIIIII

21

Symbolic Reachability Problem
P = (V, Init, 77, Bad)

P is UNSAFE if and only if there exists a number N s.t.
N—-1

Init(Xg) A (/\ Tr(Xz,Xz+1)> A Bad(Xy) #& L

1=0
P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init = Inv
Inductive
Inv(X)A Tr(X, X" = Inv(X')
Inv = = Bad Safe

IIIIIIIIIIII

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL formula of
the form

V'V . (@ A Pa[Xe] A/ PrlXn] = hIX]),

where

e A is a background theory (e.g., Linear Arithmetic, Arrays, Bit-
Vectors, or combinations of the above)

e ¢ Is a constrained in the background theory A
°* P4, ..., Py, h @re n-ary predicates
* p)[X] is an application of a predicate to first-order terms

A model of a set of clauses is an interpretation of the
predicates p; and h that makes all clauses valid

A set of clauses is satisfiable iff it has a model

IIIIIIIIIIII

From Programs to Logic

Program CFG CHC

o (1) po-

r=1 <2> pl(xay)%

y =0 po,z =1,y =0.
it y = 0; l1 : by = nondet() F <4> p3($7 y) N pl(xa y) :
while (x) { (5) pr(’,y) <

T
T =14y l T 1 p2(z,y),
y=y+1; |h: 5 : T =z 4y,
} rT=r+Y by =2 >y y =y+ 1

Perr < (ZE < y)a p3($>y)'

assert(z > y); y=yrl % }\ (6) pa < (z > y),p3(z,y).
(7)
(8)
(9)

IIIIIIIIIIII

%) WATERLOO 24

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
e stand-alone implementation in a fork of Z3
o http://bitbucket.org/spacer/code

Support for Non-Linear CHC
* model procedure summaries in inter-procedural verification conditions
 model assume-guarantee reasoning
e uses MBP to under-approximate models for finite unfoldings of predicates
e uses MAX-SAT to decide on an unfolding strategy

Supported SMT-Theories

» Best-effort support for arbitrary SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
e Full support for Linear arithmetic (rational and integer)
» Quantifier-free theory of arrays
— only quantifier free models with limited applications of array equality

UNIVERSITY OF

WATERLOO o5

Verification by Evolving Approximations

approx. 1

| solver

[approx. 2] | [approx. 3] |

solver

Inductive Invariant Inductive Invariant Inductive Invariant

No No No
Safe? Safe? Safe?

IIIIIIIIIIII

26

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker

e Incremental Construction of Inductive Clauses for Indubitable Correctness
* A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

* Property Directed Reachability

 N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property
directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to
SMT)

e A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit
Predicate Abstraction. TACAS 2014

 J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). CAV 2014

UNIVERSITY OF

WATERLOO 57

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
e Generalized Property Directed Reachability
o K. Hoder and N. Bjgrner: Generalized Property Directed Reachability. SAT 2012

KPACER: Non-Linear CHC with Arithmetic \
 fixes an incompleteness issue in GPDR and extends it with under-approximate

summaries
o A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive
Programs. CAV 2014
PolyPDR: Convex models for Linear CHC

e simulating Numeric Abstract Interpretation with PDR
. glo%'(arner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI

ArrayPDR: CHC with constraints over Airthmetic + Arrays

* Required to model heap manipulating programs

e A. Komuravelli, N. Bjgrner, A. Gurfinkel, K. L. McMillan:Compositional Verification
\of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD/

2015

%) WATERLOO o8

Algorithm Overview bounded

safety
Input: Safety problem (Init(X), Tr(X, X'), Bad

Fo < Init ; N < O repeat
[G < PDRMKSAFE([Fy, ..., Fy], Bad) i |
if G = || then return Reachable;

| | Fp,...,Fy + PprPUSH([Fp,..., Fy]) /]
if 30 <1 < N - F; = F; 11 then return Unreq hable;
N+ N+1;Fy ¥ strengthen
until co: result

IIIIIIIIIIII

%) WATERLOO 29

IC3/PDR In Pictures: MkSafe

< O<€
<

x=3,y=0

MkSafe

|

x <y

IIIIIIIIIIII

30

Push

IC3/PDR in Pictures: Push

<€ @) O\O<
= O O

Algorithm Invariants
Ri> —-Bad Init-> R,
R 2 R+ Ri A p = Ris

Inductive

IIIIIIIIIIII

%) WATERLOO 31

Logic-based Algorithmic Verification

‘Simulink\

""*; concurrent
W /distributed
systems

[Lustre L

VAN
Termination
MTZ

CPR

IIIIIIIIIIII

%) WATERLOO 32

SV-COMP 2015 http://sv-comp.sosy-lab.org/2015/

4th Competition on Software Verification held at TACAS 2015

Goals

e Provide a snapshot of the state-of-the-art in software verification to the
community.

* Increase the visibility and credits that tool developers receive.
» Establish a set of benchmarks for software verification in the community.
Participants:

e Over 22 participants, including most popular Software Model Checkers and
Bounded Model Checkers

Benchmarks:
e C programs with error location (programs include pointers, structures, etc.)
e Over 6,000 files, each 2K — 100K LOC
 Linux Device Drivers, Product Lines, Regressions/Tricky examples
e http://sv-comp.sosy-lab.org/2015/benchmarks.php

UNIVERSITY OF

WATERLOO 33

Results for DeviceDriver category

1000

100

Timeins

-
o

BLAST
CBMC

| CPAchecker

ESBMC
SeaHorn

"SMACKCorral

UAutomizer
UKojak

/

UNIVERSITY OF

%) WATERLOO

1000

1500

Accumulated score

2000

2500

Applications of SeaHorn at NASA

Absence of Buffer Overflows
e Open source auto-pilots
— paparazzi and mnav autopilots
e Automatically instrument buffer accesses with runtime checks
e Use SeaHorn to validate that run-time checks never fail
— slower than pure abstract interpretation
— BUT, much more precise!

Verify Level 5 requirements of the LADEE software stack
* Manually encode requirements in Simulink model
 Verify that the requirements hold in auto-generated C

Memory safety of C++ controller code
e ongoing...

UNIVERSITY OF

WATERLOO

35

Conclusion

SeaHorn (http://seahorn.github.io)
* a state-of-the-art Software Model Checker
e LLVM-based front-end
e CHC-based verification engine
e a framework for research in logic-based verification

The future
e making SeaHorn useful to the consumers of verification technology
— counterexamples, build integration, property specification, proofs,
e Concurrent / distributed / embedded systems
— cyber-physical systems
— very challenging but there are many opportunities
e richer properties
— termination[TACAS’16], liveness, synthesis

UNIVERSITY OF

WATERLOO

36

&

37

IC3/PDR

Input: A safety problem (Init(X), Tr(X, X'), Bad(X)).

Output: Unreachable or Reachable

Data: A cex queue @), where ¢ € @) is a pair (m, i), m is a cube over
state variables, and ¢ € N. A level N. A trace Fy, Fy, ...

Initially: Q =0, N =0, Fy = Init, Vi > 0- F; = (.

repeat

Unreachable If there is an ¢ < N s.t. F; C F; 1 return Unreachable.

Reachable If there is an m s.t. (m,0) €) return Reachable.
Unfold If Fy — —Bad, then set N < N + 1.
Candidate If for some m, m — Fy A Bad, then add (m, N) to Q.

Decide If (m,i+ 1) € @ and there are mg and m; s.t. m; — m, mg A mj is
satisfiable, and mg A mj — F; A Tr Am/, then add (my, i) to Q.

Conflict For 0 < i < N: given a candidate model (m,i+ 1) € @ and clause
©, such that ¢ — —m, if Init — ¢, and ¢ A F; A Tr — ¢’, then add ¢ to
F;, for 3 <i¢+4 1.

Leaf If (m,i) € @Q,0< i< N and F;_1 A Tr A m’ is unsatisfiable, then add
(m,74+ 1) to Q.

Induction For 0 <i < N and a clause (¢ V) € F;, if o & Fiiq1, Init — ¢
and o A F; A Tr — ¢, then add ¢ to Fj, for each j <i+ 1.

until oo;

38

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
e terminate the algorithm when a solution is found

Unfold
* increase search bound by 1
Candidate a
. Theory
. Ch-OOSG a bad state in the last frame dependent
ﬁ)emde —

e extend a cex (backward) consistent with the current frame
e choose ss.t. (sANR;ATrAcex’)is SAT
Conflict
e Find a lemma that explains why cex cannot be extended
_* FindLst L=7cex and LARATr= VL’

Induction
* Propositional generalization (drop literals from the lemma)

UNIVERSITY OF

WATERLOO

39

(E5; A Tr) V Init") = ¢
SO/ - C/

Looking for ¢’

ARITHMETIC CONFLICT

IIIIIIIIIIII

40

Craig Interpolation Theorem

Theorem (Craig 1957)

Let A and B be two First Order (FO) formulae such that A = —B, then
there exists a FO formula |, denoted ITP(A, B), such that

A= | = —B
atoms(l) € atoms(A) N atoms(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a
resolution proof of unsatisfiability of A A B

In Model Cheching, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

%) WATERLOO 41

Craig Interpolant

IIIIIIIIIIII

42

Examples of Craig Interpolation for Theories

Boolean logic
A=(-bAN(-aVbVc)Aa) B = (—a V —c)

ITP(A,B)=aAc

Equality with Uniterpreted Functions (EUF)

A= (f(a) =bAp(f(a))) B = (b= ch=plc))
ITP(A, B) = p(b)

Linear Real Arithmetic (LRA)

A=(z4+2xz4+y>10A2z<5H) B=(rx<-5Ny< -3

ITP(A,B)=z+y>5

%) WATERLOO 43

Alternative Definition of an Interpolant

Let F = A(x, z) A B(z, y) be UNSAT, where x and y are distinct
e Note that for any assignment v to z either
— A(X, v) is UNSAT, or
— B(v, y) is UNSAT

An interpolant is a circuit 1(z) such that for every assignment v to z
e [(v) = Aonlyif A(x, v) is UNSAT
e [(v) =B only if B(v, y) is UNSAT

A proof system S has a feasible interpolation if for every refutation = of F
in S, F has an interpolant polynomial in the size of =

e propositional resolution has feasible interpolation
e extended resolution does not have feasible interpolation

%) WATERLOO 44

Farkas Lemma

LetM=1t, > b; A ... At, >D,, where t, are linear terms and b, are
constants M is unsatisfiable iff 0 > 1 is derivable from M by resolution

M is unsatisfiable iff M- 0 > 1
ee.g.,x+y>10,-x>5,-y>3F (xty-x-y)>(10+5+3)-0> 18

M is unsatisfiable iff there exist Farkas coefficients g4, ..., g,, such that
egi>0

° g1><t1 + ...+ antn =0
e gixby+ ...+ gyxby > 1

%) WATERLOO 45

Interpolation for Linear Real Arithmetic

Let M = A A B be UNSAT, where
°A=t12b1/\.../\ti2bi,and
'B=ti+12bi/\.../\tn2bn

Let g4, ..., g, be the Farkas coefficients withessing UNSAT

Then
° g1x(ty > bq) + ... + gix(t > b;) is an interpolant between A and B
° Qir X (L1 > b)) + ... + gnx (t, > b,) is an interpolant between B and A

° g1><t1 +---+gi><ti - - (gi+1><ti+1 + ...+ antn)
e =(gi+1X(tisq > b)) + ... + gy x (t, > b,)) is an interpolant between A and B

46

Craig Interpolation for Linear Arithmetic

~tmenma

Useful properties of existing interpolation algorithms [CGS10] [HB12]
« | €ITP (A, B) then =l € ITP (B, A)
 if A'is syntactically convex (a monomial), then | is convex
o if B is syntactically convex, then | is co-convex (a clause)
« if A and B are syntactically convex, then | is a half-space

IIIIIIIIIIII

WATERLOO 47

Arithmetic Conflict

Notation: F(A) = (A(X) A Tr) V Init(X').

Conflict For 0 <i < N, given a counterexample (P,i+ 1) € @ s.t.
F(F;) A P’ is unsatisfiable, add PT = ITp(F(F;), P') to F; for j < i+ 1.

Counterexample is blocked using Craig Interpolation
e summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
e weaker than IC3/PDR
 inductive generalization for arithmetic is still an open problem

UNIVERSITY OF

WATERLOO

48

s C pre(c)

= s=3dX'.Tr N(

Computing a predecessor s of a counterexample ¢

ARITHMETIC DECIDE

IIIIIIIIIIII

49

Model Based Projection

Definition: Let ¢ be a formula, U a set of variables, and M a
model of ¢. Then ¢y = MBP (U, M, ¢) is a Model Based

Projection of U, M and ¢ iff

1. 1 is a monomial (optional)
2. Vars(y) C Vars(op) \ U

3. MEy

4. v=3U.0

For a fixed set of variables U and a formula ¢, MBP is a
function from models to formulas

MBP is finite if its range (as a function defined above) is
finite

IIIIIIIIIIII

%) WATERLOO 50

Model Based Projection

[Expensive to find a quantifier-free ¢(§) = dz - 90(5, ?) }

1. Find model M of ¢ (x,y)

2. Compute a partition containing M

IIIIIIIIIIII

%) WATERLOO 51

Loos Weispfenning Quantifier Elimination

¢ is LRA formula in Negation Normal Form
E is set of x=t atoms, U set of x <t atoms, and L set of s < x atoms

There are no other occurrences of x in Q[X]

Jz.plz] = gloo] V. \/ lt]V \/ ot —¢]

r=tch rtelU

where
(x<tHt—e=t<t (s<a)t—e=s<t (z=c¢)ft— ¢ = false

The case of lower bounds is dual
e using —~ and t+¢

IIIIIIIIIIII

%) WATERLOO 52

LW-Quantifier Elimination Example

dz . p|x]
Jr.(x=eAY1)V(s<axzAx<t)V(r<tAips)

ple] V plt — €]V ploo)
(1 V(s<eNe<t)V(e<tAyy))V

(s <tAEt<E)V(E<EAY)V
false

IIIIIIIIIIII

53

MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model
e Use the Model to uniquely pick a substitution term for x

Mbp,(M,z = s N\ L)= L|x < s]
Mbp,(M,x # sNL)= Mbp,(M,s <xAL)if M(x)> M(s)

Mbp,(M,x # sNL)= Mbp,(M,—s < —x ANL)if M(x) < M(s)

Mbpw(M,/\Si < CU/\/\.%’ <tj) = /\Si <t0/\/\t0 < tj where M(to) < M(tz),Vz

MBP techniques have been developed for
e Linear Rational Arithmetic, Linear Integer Arithmetic
e Theories of Arrays, and Recursive Data Types

UNIVERSITY OF

WATERLOO

54

Arithmetic Decide

Notation: F(A) = (A(X) A Tr(X, X") V Init(X").

Decide If (P,i+ 1) € @ and there is a model m(X, X') s.t. m = F(F;) A P/,
add (Py,i) to @, where P, = MBP (X', m, F(F;) A P’).

Compute a predecessor using an under-approximation of quantifier
elimination — called Model Based Projection

To ensure progress, Decide must be finite
e finitely many possible predecessors when all other arguments are fixed

Alternatives
e Completeness can follow from the Conflict rule only
— for Linear Arithmetic this means using Fourier-Motzkin implicants
 Completeness can follow from an interaction of Decide and Conflict

UNIVERSITY OF

WATERLOO

95

PROPERTY-DIRECTED TEST
CASE GENERATION

IIIIIIIIIIII

56

>

Property-Directed Test-Case Generation

(efficient complete PDTG
traces
\
N interaction between
Soltware SMC and SE
property Model
Checker
executable
program harness
Directed
Symbolic
precise Execution J
[abstract traces
—> executable
WATERLOO

Y

A Counterexample Harness

if (get _input() == 0x1234 &&
get _input() == 0x8765) {
__VERIFIER error();
} else {
return O;

}

void get input() {
static int x = 9;
switch (x++) {
case 0: return 0x1234;
case 1: return 9x8765;
default: return 0; }

UNIVERSITY OF

WATERLOO

get _input() is an external
function

Program considered buggy if and
only if _ VERIFIER error() is

reachable

Implementation of external
functions linked to original source
code

Causes program to execute
__VERIFIER error()

58

Generating Harnesses for Linux Device Drivers

void *1dv_ptr(void)

{
void *tmp;
tmp = __c();
return tmp;

¥

void *is got = ldv_ptr();
if (is_got <= (long)2012)
{ ...}

UNIVERSITY OF

WATERLOO

e Sample from Linux Device
Verification (LDV) project?

e Harness functions returning
pointers are tricky

— May not be reasonable
addresses

— Might return “new” memory

e Original program instrumented with
memory read/store hooks that
control access to external memory

Thttp://linuxtesting.org/Idv

59

Virtual External Memory

—

External

—

Internal
> >

Accesses to external “virtual” memory are mapped to real memory

e opportunistically allocate memory for new accesses

e ignore invalid stores, return a default value for an invalid load

UNIVERSITY OF

% WATERLOO

60

