Algorithmic Logic-Based Verification with SeaHorn

Arie Gurfinkel

Department of Electrical and Computer Engineering University of Waterloo Waterloo, Ontario, Canada

http://ece.uwaterloo.ca/~agurfink

based on work with Teme Kahsai, Jorge Navas, Anvesh Komuravelli, Jeffrey Gennari, Ed Schwartz, and many others

Automated Software Analysis

Turing, 1936: "undecidable"

Turing, 1949

Alan M. Turing. "Checking a large routine", 1949

How can one check a routine in the sense of making sure that it is right?

programmer should make a number of definite assertions which can be checked individually, and from which the correctness of the whole programme easily follows.

Automated Verification

Deductive Verification

- A user provides a program and a verification certificate
 - e.g., inductive invariant, pre- and post-conditions, function summaries, etc.
- A tool automatically checks validity of the certificate
 - this is not easy! (might even be undecidable)
- Verification is manual but machine certified

Algorithmic Verification

- A user provides a program and a desired specification
 - e.g., program never writes outside of allocated memory
- A tool automatically checks validity of the specification
 - and generates a verification certificate if the program is correct
 - and generates a counterexample if the program is not correct
- Verification is completely automatic "push-button"

Algorithmic Logic-Based Verification

http://seahorn.github.io

Temesghen Kahsai (NASA/CMU)

Jorge Navas (SRI)

SeaHorn Usage

Example: in test.c, check that x is always greater than or equal to y test.c

SeaHorn Philosophy

Build a state-of-the-art Software Model Checker

- useful to "average" users
 - user-friendly, efficient, trusted, certificate-producing, ...
- useful to researchers in verification
 - modular design, clean separation between syntax, semantics, and logic, ...

Stand on the shoulders of giants

- reuse techniques from compiler community to reduce verification effort
 - SSA, loop restructuring, induction variables, alias analysis, ...
 - static analysis and abstract interpretation
- reduce verification to logic
 - verification condition generation
 - Constrained Horn Clauses

Build reusable logic-based verification technology

• "SMT-LIB" for program verification

Three-Layers of a Program Verifier

Compiler

- compiles surface syntax a target machine
- embodies syntax with semantics

Verification Condition Generator

- transforms a program and a property to a verification condition in logic
- employs different abstractions, refinements, proof-search strategies, etc.

Automated Theorem Prover / Reasoning Engine

- discharges verification conditions
- general purpose constraint solver
- SAT, SMT, Abstract Interpreter, Temporal Logic Model Checker,...

SeaHorn Architecture

DEMO

Property-Directed Test-Case Generation

A Counterexample Harness

<pre>if (get_input() == 0x1234 && get_input() == 0x8765) { VERIFIER_error(); } else { return 0; }</pre>	<pre>get_input() is an external function Program considered buggy if and only ifVERIFIER_error() is reachable</pre>
<pre>voidget_input() { static int x = 0; switch (x++) { case 0: return 0x1234; case 1: return 0x8765; default: return 0; } }</pre>	Implementation of external functions linked to original source code Causes program to execute VERIFIER_error()

Generating Harnesses for Linux Device Drivers

```
void *ldv_ptr(void)
  void *tmp;
  tmp = c();
  return tmp;
}
...
  void *is_got = ldv_ptr();
  if (is_got <= (long)2012)</pre>
  \{\ldots\}
```

- Sample from Linux Device Verification (LDV) project¹
- Harness functions returning pointers are tricky
 - May not be reasonable addresses
 - Might return "new" memory
- Original program instrumented with memory read/store hooks that control access to external memory

¹http://linuxtesting.org/ldv

Virtual External Memory

Accesses to external "virtual" memory are mapped to real memory

- opportunistically allocate memory for new accesses
- ignore invalid stores, return a default value for an invalid load

Spacer SMT-BASED DECISION PROCEDURE FOR DECIDING CHC

Safety Verification Problem

Is Bad reachable?

Safety Verification Problem

Is Bad reachable?

Yes. There is a counterexample!

Safety Verification Problem

Is Bad reachable?

No. There is an inductive invariant

Symbolic Reachability Problem

P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number *N* s.t.

$$Init(X_0) \land \left(\bigwedge_{i=0}^{N-1} Tr(X_i, X_{i+1})\right) \land Bad(X_N) \not\Rightarrow \bot$$

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

$$Init \Rightarrow Inv
 Inv(X) \land Tr(X, X') \Rightarrow Inv(X')
 Inv(X')
 Inv \Rightarrow \neg Bad
 Safe$$

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL formula of the form

 $\forall V . (\phi \land p_1[X_1] \land ... \land p_n[X_n] \rightarrow h[X]),$

where

- A is a background theory (e.g., Linear Arithmetic, Arrays, Bit-Vectors, or combinations of the above)
- ϕ is a constrained in the background theory A
- $p_1, ..., p_n$, h are n-ary predicates
- p_i[X] is an application of a predicate to first-order terms

A **model** of a set of clauses is an interpretation of the predicates p_i and h that makes all clauses **valid** A set of clauses is **satisfiable** iff it has a model

From Programs to Logic

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses

- stand-alone implementation in a fork of Z3
- <u>http://bitbucket.org/spacer/code</u>
- Support for Non-Linear CHC
 - model procedure summaries in inter-procedural verification conditions
 - model assume-guarantee reasoning
 - uses MBP to under-approximate models for finite unfoldings of predicates
 - uses MAX-SAT to decide on an unfolding strategy

Supported SMT-Theories

- Best-effort support for arbitrary SMT-theories
 - data-structures, bit-vectors, non-linear arithmetic
- Full support for Linear arithmetic (rational and integer)
- Quantifier-free theory of arrays
 - only quantifier free models with limited applications of array equality

Verification by Evolving Approximations

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker

- Incremental Construction of Inductive Clauses for Indubitable Correctness
- A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

- Property Directed Reachability
- N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to SMT)

- A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit Predicate Abstraction. TACAS 2014
- J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-Guided Abstraction-Refinement (CTIGAR). CAV 2014

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints

- Generalized Property Directed Reachability
- K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic

- fixes an incompleteness issue in GPDR and extends it with under-approximate summaries
- A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive Programs. CAV 2014

PolyPDR: Convex models for Linear CHC

- simulating Numeric Abstract Interpretation with PDR
- N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015

ArrayPDR: CHC with constraints over Airthmetic + Arrays

- Required to model heap manipulating programs
- A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015

Algorithm Overview

bounded safety

Input: Safety problem $\langle Init(X), Tr(X, X'), Bad(X) \rangle$

 $F_0 \leftarrow Init; N \leftarrow 0$ repeat

 $\mathbf{G} \leftarrow \text{PdrMkSafe}([F_0, \dots, F_N], Bad)$

if $\mathbf{G} = []$ then return *Reachable*; $\forall 0 \leq i \leq N \cdot F_i \leftarrow \mathbf{G}[i]$

$$F_0, \ldots, F_N \leftarrow \text{PdrPush}([F_0, \ldots, F_N])$$

if $\exists 0 \leq i < N \cdot F_i = F_{i+1}$ then return Unreg hable;

$$| N \leftarrow N + 1; F_N \leftarrow \emptyset$$

until ∞ ;

strengthen result

IC3/PDR In Pictures: MkSafe

IC3/PDR in Pictures: Push

Logic-based Algorithmic Verification

SV-COMP 2015

4th Competition on Software Verification held at TACAS 2015

Goals

- Provide a snapshot of the state-of-the-art in software verification to the community.
- Increase the visibility and credits that tool developers receive.
- Establish a set of benchmarks for software verification in the community.

Participants:

 Over 22 participants, including most popular Software Model Checkers and Bounded Model Checkers

Benchmarks:

- C programs with error location (programs include pointers, structures, etc.)
- Over 6,000 files, each 2K 100K LOC
- Linux Device Drivers, Product Lines, Regressions/Tricky examples
- <u>http://sv-comp.sosy-lab.org/2015/benchmarks.php</u>

Results for DeviceDriver category

Applications of SeaHorn at NASA

Absence of Buffer Overflows

- Open source auto-pilots
 - paparazzi and mnav autopilots

- Automatically instrument buffer accesses with runtime checks
- Use SeaHorn to validate that run-time checks never fail
 - slower than pure abstract interpretation
 - BUT, much more precise!

Verify Level 5 requirements of the LADEE software stack

- Manually encode requirements in Simulink model
- Verify that the requirements hold in auto-generated C

Memory safety of C++ controller code

• ongoing...

Conclusion

SeaHorn (http://seahorn.github.io)

- a state-of-the-art Software Model Checker
- LLVM-based front-end
- CHC-based verification engine
- a framework for research in logic-based verification

The future

- making SeaHorn useful to the consumers of verification technology
 - counterexamples, build integration, property specification, proofs,
- Concurrent / distributed / embedded systems
 - cyber-physical systems
 - very challenging but there are many opportunities
- richer properties
 - termination[TACAS'16], liveness, synthesis

?

?

? ?

IC3/PDR

Input: A safety problem (Init(X), Tr(X, X'), Bad(X)). **Output**: Unreachable or Reachable **Data**: A cex queue Q, where $c \in Q$ is a pair $\langle m, i \rangle$, m is a cube over state variables, and $i \in \mathbb{N}$. A level N. A trace F_0, F_1, \ldots **Initially:** $Q = \emptyset$, N = 0, $F_0 = Init$, $\forall i > 0 \cdot F_i = \emptyset$. repeat **Unreachable** If there is an i < N s.t. $F_i \subseteq F_{i+1}$ return Unreachable. **Reachable** If there is an m s.t. $\langle m, 0 \rangle \in Q$ return *Reachable*. **Unfold** If $F_N \to \neg Bad$, then set $N \leftarrow N + 1$. **Candidate** If for some $m, m \to F_N \land Bad$, then add $\langle m, N \rangle$ to Q. **Decide** If $(m, i+1) \in Q$ and there are m_0 and m_1 s.t. $m_1 \to m, m_0 \wedge m'_1$ is satisfiable, and $m_0 \wedge m'_1 \to F_i \wedge Tr \wedge m'$, then add $\langle m_0, i \rangle$ to Q. **Conflict** For $0 \le i < N$: given a candidate model $\langle m, i+1 \rangle \in Q$ and clause φ , such that $\varphi \to \neg m$, if $Init \to \varphi$, and $\varphi \wedge F_i \wedge Tr \to \varphi'$, then add φ to F_i , for $j \leq i+1$. **Leaf** If $\langle m, i \rangle \in Q$, 0 < i < N and $F_{i-1} \wedge Tr \wedge m'$ is unsatisfiable, then add $\langle m, i+1 \rangle$ to Q. **Induction** For $0 \leq i < N$ and a clause $(\varphi \lor \psi) \in F_i$, if $\varphi \notin F_{i+1}$, $Init \to \varphi$ and $\varphi \wedge F_i \wedge Tr \rightarrow \varphi'$, then add φ to F_i , for each $j \leq i+1$.

until ∞ ;

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

• terminate the algorithm when a solution is found

Unfold

• increase search bound by 1

Candidate

choose a bad state in the last frame

Decide

- extend a cex (backward) consistent with the current frame
- choose s s.t. (s \wedge R_i \wedge Tr \wedge cex') is SAT

Conflict

- Find a lemma that explains why cex cannot be extended
- Find L s.t. L \Rightarrow ¬cex and L \land R_i \land Tr \Rightarrow L'

Induction

• Propositional generalization (drop literals from the lemma)

dependent

Theory

$((F_i \land Tr) \lor Init') \Rightarrow \varphi'$ $\varphi' \Rightarrow c'$

Looking for φ' ARITHMETIC CONFLICT

Craig Interpolation Theorem

Theorem (Craig 1957)

Let A and B be two First Order (FO) formulae such that $A \Rightarrow \neg B$, then there exists a FO formula I, denoted ITP(A, B), such that

$$\mathsf{A} \Rightarrow \mathsf{I} \qquad \mathsf{I} \Rightarrow \neg \mathsf{B}$$

$atoms(I) \in atoms(A) \cap atoms(B)$

A Craig interpolant ITP(A, B) can be effectively constructed from a resolution proof of unsatisfiability of A \wedge B

In Model Cheching, Craig Interpolation Theorem is used to safely overapproximate the set of (finitely) reachable states

Craig Interpolant

Examples of Craig Interpolation for Theories

Boolean logic

$$A = (\neg b \land (\neg a \lor b \lor c) \land a)$$
 $B = (\neg a \lor \neg c)$
 $ITP(A, B) = a \land c$

Equality with Uniterpreted Functions (EUF)

 $A = (f(a) = b \land p(f(a))) \qquad B = (b = c \land \neg p(c))$ ITP(A, B) = p(b)

Linear Real Arithmetic (LRA)

 $A = (z + x + y > 10 \land z < 5) \qquad \qquad B = (x < -5 \land y < -3)$

$$ITP(A,B) = x + y > 5$$

Alternative Definition of an Interpolant

Let F = A(x, z) \land B(z, y) be UNSAT, where x and y are distinct

- Note that for any assignment v to z either
 - A(x, v) is UNSAT, or
 - B(v, y) is UNSAT

An interpolant is a circuit I(z) such that for every assignment v to z

- I(v) = A only if A(x, v) is UNSAT
- I(v) = B only if B(v, y) is UNSAT

A proof system S has a *feasible interpolation* if for every refutation π of F in S, F has an interpolant polynomial in the size of π

- propositional resolution has feasible interpolation
- extended resolution does not have feasible interpolation

Farkas Lemma

Let $M = t_1 \ge b_1 \land \ldots \land t_n \ge b_n$, where t_i are linear terms and b_i are constants M is *unsatisfiable* iff $0 \ge 1$ is derivable from M by resolution

M is *unsatisfiable* iff M ⊢ 0 ≥ 1 • e.g., x + y > 10, -x > 5, -y > 3 ⊢ (x+y-x-y) > (10 + 5 + 3) ⊢ 0 > 18

M is unsatisfiable iff there exist *Farkas* coefficients $g_1, ..., g_n$ such that

- $g_i \ge 0$
- $g_1 \times t_1$ + ... + $g_n \times t_n$ = 0
- $g_1 \times b_1$ + ... + $g_n \times b_n \ge 1$

Interpolation for Linear Real Arithmetic

Let M = A \land B be UNSAT, where

- A = $t_1 \geq b_1 \wedge \ldots \wedge t_i \geq b_i$, and
- $\bullet \ B = t_{i+1} \geq b_i \wedge \, \ldots \, \wedge \, t_n \geq b_n$

Let $g_1, \, \ldots, \, g_n$ be the Farkas coefficients witnessing UNSAT

Then

- $g_1 \times (t_1 \ge b_1)$ + ... + $g_i \times (t_i \ge b_i)$ is an interpolant between A and B
- $g_{i+1} \times (t_{i+1} \ge b_i)$ + ... + $g_n \times (t_n \ge b_n)$ is an interpolant between B and A
- $g_1 \times t_1 + \ldots + g_i \times t_i = -(g_{i+1} \times t_{i+1} + \ldots + g_n \times t_n)$
- $\neg(g_{i+1} \times (t_{i+1} \ge b_i) + ... + g_n \times (t_n \ge b_n))$ is an interpolant between A and B

Useful properties of existing interpolation algorithms [CGS10] [HB12]

- $I \in ITP (A, B)$ then $\neg I \in ITP (B, A)$
- if A is syntactically convex (a monomial), then I is convex
- if B is syntactically convex, then I is co-convex (a clause)
- if A and B are syntactically convex, then I is a half-space

Arithmetic Conflict

Notation: $\mathcal{F}(A) = (A(X) \wedge Tr) \vee Init(X').$

Conflict For $0 \leq i < N$, given a counterexample $\langle P, i+1 \rangle \in Q$ s.t. $\mathcal{F}(F_i) \wedge P'$ is unsatisfiable, add $P^{\uparrow} = \operatorname{ITP}(\mathcal{F}(F_i), P')$ to F_j for $j \leq i+1$.

Counterexample is blocked using Craig Interpolation

• summarizes the reason why the counterexample cannot be extended

Generalization is not inductive

- weaker than IC3/PDR
- inductive generalization for arithmetic is still an open problem

$s \subseteq pre(c)$ $\equiv s \Rightarrow \exists X' . Tr \land c'$

Computing a predecessor *s* of a counterexample *c* **ARITHMETIC DECIDE**

Model Based Projection

Definition: Let φ be a formula, U a set of variables, and M a model of φ . Then ψ = MBP (U, M, φ) is a Model Based Projection of U, M and φ iff

- 1. ψ is a monomial (optional)
- 2. $Vars(\psi) \subseteq Vars(\phi) \setminus U$
- 3. $M \vDash \psi$
- 4. $\psi \Rightarrow \exists U . \phi$

For a fixed set of variables U and a formula ϕ , MBP is a function from models to formulas

MBP is *finite* if its range (as a function defined above) is finite

Model Based Projection

Loos Weispfenning Quantifier Elimination

 φ is LRA formula in Negation Normal Form E is set of x=t atoms, U set of x < t atoms, and L set of s < x atoms There are no other occurrences of x in φ [x]

$$\exists x.\varphi[x] \equiv \varphi[\infty] \lor \bigvee_{x=t \in E} \varphi[t] \lor \bigvee_{x < t \in U} \varphi[t-\epsilon]$$

where

 $(x < t')[t - \epsilon] \equiv t \le t' \qquad (s < x)[t - \epsilon] \equiv s < t \qquad (x = e)[t - \epsilon] \equiv false$

The case of lower bounds is dual

• using $-\infty$ and t+ ϵ

LW-Quantifier Elimination Example

$$\exists x . \varphi[x] \\ \exists x . (x = e \land \psi_1) \lor (s < x \land x < t) \lor (x < t \land \psi_2) \\ \equiv \varphi[e] \lor \varphi[t - \epsilon] \lor \varphi[\infty] \\ \equiv (\psi_1 \lor (s < e \land e < t) \lor (e < t \land \psi_2)) \lor \\ (s < t \land t \le t) \lor (t \le t \land \psi_2) \lor \\ f_* t \sim t \le t = t$$

false

MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model

• Use the Model to uniquely pick a substitution term for x

 $Mbp_{x}(M, x = s \land L) = L[x \leftarrow s]$ $Mbp_{x}(M, x \neq s \land L) = Mbp_{x}(M, s < x \land L) \text{ if } M(x) > M(s)$ $Mbp_{x}(M, x \neq s \land L) = Mbp_{x}(M, -s < -x \land L) \text{ if } M(x) < M(s)$

$$Mbp_x(M, \bigwedge_i s_i < x \land \bigwedge_j x < t_j) = \bigwedge_i s_i < t_0 \land \bigwedge_j t_0 \le t_j \text{ where } M(t_0) \le M(t_i), \forall i$$

MBP techniques have been developed for

- Linear Rational Arithmetic, Linear Integer Arithmetic
- Theories of Arrays, and Recursive Data Types

Arithmetic Decide

Notation: $\mathcal{F}(A) = (A(X) \land Tr(X, X') \lor Init(X').$

Decide If $\langle P, i+1 \rangle \in Q$ and there is a model m(X, X') s.t. $m \models \mathcal{F}(F_i) \land P'$, add $\langle P_{\downarrow}, i \rangle$ to Q, where $P_{\downarrow} = \text{MBP}(X', m, \mathcal{F}(F_i) \land P')$.

Compute a predecessor using an under-approximation of quantifier elimination – called Model Based Projection

To ensure progress, Decide must be finite

• finitely many possible predecessors when all other arguments are fixed

Alternatives

- Completeness can follow from the **Conflict** rule only
 - for Linear Arithmetic this means using Fourier-Motzkin implicants
- Completeness can follow from an interaction of Decide and Conflict

PROPERTY-DIRECTED TEST CASE GENERATION

Property-Directed Test-Case Generation

A Counterexample Harness

<pre>if (get_input() == 0x1234 && get_input() == 0x8765) { VERIFIER_error(); } else { return 0; }</pre>	<pre>get_input() is an external function Program considered buggy if and only ifVERIFIER_error() is reachable</pre>
<pre>voidget_input() { static int x = 0; switch (x++) { case 0: return 0x1234; case 1: return 0x8765; default: return 0; } }</pre>	Implementation of external functions linked to original source code Causes program to execute VERIFIER_error()

Generating Harnesses for Linux Device Drivers

```
void *ldv_ptr(void)
  void *tmp;
  tmp = c();
  return tmp;
}
...
  void *is_got = ldv_ptr();
  if (is_got <= (long)2012)</pre>
  \{\ldots\}
```

- Sample from Linux Device Verification (LDV) project¹
- Harness functions returning pointers are tricky
 - May not be reasonable addresses
 - Might return "new" memory
- Original program instrumented with memory read/store hooks that control access to external memory

¹http://linuxtesting.org/ldv

Virtual External Memory

Accesses to external "virtual" memory are mapped to real memory

- opportunistically allocate memory for new accesses
- ignore invalid stores, return a default value for an invalid load

