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Automated

Analysis

Software Model Checking 
with Predicate Abstraction

e.g., Microsoft’s SDV

Automated Software Analysis

Program
Correct

Incorrect

Abstract Interpretation with 
Numeric Abstraction

e.g., ASTREE, Polyspace
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Turing, 1936:  “undecidable”
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Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949 



5 5

Automated Verification

Deductive Verification
• A user provides a program and a verification certificate
– e.g., inductive invariant, pre- and post-conditions, function summaries, etc.

• A tool automatically checks validity of the certificate
– this is not easy! (might even be undecidable)

• Verification is manual but machine certified

Algorithmic Verification
• A user provides a program and a desired specification
– e.g., program never writes outside of allocated memory

• A tool automatically checks validity of the specification
– and generates a verification certificate if the program is correct
– and generates a counterexample if the program is not correct

• Verification is completely automatic – “push-button”
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Algorithmic Logic-Based Verification

Program + Spec

Verification 
Condition (in Logic)

Decision Procedure

Yes No

Safety 
Properties

Constrained 
Horn Clauses

Spacer
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http://seahorn.github.io



8 8
http://seahorn.github.io

Temesghen
Kahsai

(NASA/CMU)

Jorge Navas
(SRI)
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Example: in test.c, check that x is always greater than or equal to y
test.c

SeaHorn command: SeaHorn result:

SeaHorn Usage
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SeaHorn Philosophy

Build a state-of-the-art Software Model Checker 
• useful to “average” users
– user-friendly, efficient, trusted, certificate-producing, …

• useful to researchers in verification
– modular design, clean separation between syntax, semantics, and logic, …

Stand on the shoulders of giants
• reuse techniques from compiler community to reduce verification effort
– SSA, loop restructuring, induction variables, alias analysis, …
– static analysis and abstract interpretation

• reduce verification to logic
– verification condition generation
– Constrained Horn Clauses

Build reusable logic-based verification technology
• “SMT-LIB” for program verification
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Three-Layers of a Program Verifier

Compiler
• compiles surface syntax a target machine 
• embodies syntax with semantics

Verification Condition Generator
• transforms a program and a property to a verification condition in logic
• employs different abstractions, refinements, proof-search strategies, etc.

Automated Theorem Prover / Reasoning Engine
• discharges verification conditions
• general purpose constraint solver
• SAT, SMT, Abstract Interpreter, Temporal Logic Model Checker,…
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SeaHorn Architecture

 

    LLVM  Opt

Devirt/Exc Elim

Property Instr

Lifting Assert

Heap Disambig

Array Abstraction

  VC Generation:
small, large, flat...

Precision:scalars, 
pointers, memory

      Crab

Template Inv

     Spacer

   Front-end    Middle-end    Back-end

 C/C++  LLVM bitcode  Horn Clauses

      BMC
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DEMO
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Property-Directed Test-Case Generation

program

property

executable

Software 
Model 

Checker

Directed 
Symbolic 
Execution

trace
executable 

harness

precise 
abstract traces

efficient complete 
traces

PDTG

interaction between 
SMC and SE
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A Counterexample Harness

if (get_input() == 0x1234 &&
get_input() == 0x8765) {

__VERIFIER_error();
} else {

return 0;
}

void __get_input() {
static int x = 0;
switch (x++) {

case 0: return 0x1234;
case 1: return 0x8765;
default: return 0; }

}

get_input() is an external 
function
Program considered buggy if and 
only if __VERIFIER_error() is 
reachable

Implementation of external 
functions linked to original source 
code
Causes program to execute 
__VERIFIER_error()
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Generating Harnesses for Linux Device Drivers

void *ldv_ptr(void)
{
void *tmp;
tmp = __c();
return tmp;

}

…

void *is_got = ldv_ptr();
if (is_got <= (long)2012) 
{ ... }

• Sample from Linux Device 
Verification (LDV) project1

• Harness functions returning 
pointers are tricky
– May not be reasonable 

addresses
– Might return “new” memory

• Original program instrumented with 
memory read/store hooks that 
control access to external memory

1http://linuxtesting.org/ldv
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Virtual External Memory

Accesses to external “virtual” memory are mapped to real memory
• opportunistically allocate memory for new accesses
• ignore invalid stores, return a default value for an invalid load

Program Memory

Internal 
Memory 
Access

External 
Memory
Access
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SMT-BASED DECISION 
PROCEDURE FOR DECIDING 
CHC

Spacer
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INIT

Safety Verification Problem

Bad

Is Bad reachable?
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INIT

Safety Verification Problem

Bad

Is Bad reachable?

……

Yes. There is a counterexample!
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INIT

Safety Verification Problem

Bad

Is Bad reachable?

Inv

No. There is an inductive invariant
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Symbolic Reachability Problem

P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^
 

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN ) 6) ?

Init ) Inv

Inv(X) ^ Tr(X,X 0) ) Inv(X 0)

Inv ) ¬Bad
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Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL formula of 
the form

8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → h[X]),
where
• A is a background theory (e.g., Linear Arithmetic, Arrays, Bit-

Vectors, or combinations of the above)
• Á is a constrained in the background theory A
• p1, …, pn, h are n-ary predicates
• pi[X] is an application of a predicate to first-order terms

A model of a set of clauses is an interpretation of the 
predicates pi and h that makes all clauses valid
A set of clauses is satisfiable iff it has a model



24 24

From Programs to Logic

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y) 

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0) 
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4  (x � y), p3(x, y).
h7i perr  (x < y), p3(x, y).
h8i p4  p4.
h9i ?  perr.

Program CFG CHC
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Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
• stand-alone implementation in a fork of Z3
• http://bitbucket.org/spacer/code

Support for Non-Linear CHC
• model procedure summaries in inter-procedural verification conditions
• model assume-guarantee reasoning
• uses MBP to under-approximate models for finite unfoldings of predicates
• uses MAX-SAT to decide on an unfolding strategy

Supported SMT-Theories
• Best-effort support for arbitrary SMT-theories
– data-structures, bit-vectors, non-linear arithmetic

• Full support for Linear arithmetic (rational and integer)
• Quantifier-free theory of arrays
– only quantifier free models with limited applications of array equality
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Verification by Evolving Approximations

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?
No No No

solver solver solver

approx. 1 approx. 2 approx. 3
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IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property 

directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to 
SMT)
• A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit 

Predicate Abstraction. TACAS 2014
• J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014
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IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate 

summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive 

Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 

2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification 

of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 
2015
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Algorithm Overview

Input: Safety problem hInit(X),Tr(X,X 0
),Bad(X)i

F0  Init ;N  0 repeat
G PdrMkSafe([F0, . . . , FN ],Bad)
if G = [ ] then return Reachable;
80  i  N · Fi  G[i]

F0, . . . , FN  PdrPush([F0, . . . , FN ])

if 90  i < N · Fi = Fi+1 then return Unreachable;

N  N + 1 ; FN  ;
until 1;

bounded 
safety

strengthen 
result
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IC3/PDR In Pictures: MkSafe MkSafe

𝑥 = 1, 𝑦 = 0𝑥 = 3, 𝑦 = 0

𝑥 ≠ 3 ∨ 𝑦 ≠ 0𝑥 < 𝑦
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Inductive

IC3/PDR in Pictures: Push Push

Algorithm Invariants
Ri → ¬ Bad Init → Ri

Ri → Ri+1 Ri Æ ½ → Ri+1
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Logic-based Algorithmic Verification

Spacer

CPR

Simulink

Lustre

Java

C/C++ concurrent 
/distributed 

systems

T2Termination 
for C

SeaHorn
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SV-COMP 2015

4th Competition on Software Verification held at TACAS 2015
Goals
• Provide a snapshot of the state-of-the-art in software verification to the 

community. 
• Increase the visibility and credits that tool developers receive. 
• Establish a set of benchmarks for software verification in the community. 

Participants:
• Over 22 participants, including most popular Software Model Checkers and 

Bounded Model Checkers
Benchmarks:
• C programs with error location (programs include pointers, structures, etc.)
• Over 6,000 files, each 2K – 100K LOC
• Linux Device Drivers, Product Lines, Regressions/Tricky examples
• http://sv-comp.sosy-lab.org/2015/benchmarks.php

http://sv-comp.sosy-lab.org/2015/
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Results for DeviceDriver category
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Applications of SeaHorn at NASA

Absence of Buffer Overflows
• Open source auto-pilots
– paparazzi and mnav autopilots

• Automatically instrument buffer accesses with runtime checks
• Use SeaHorn to validate that run-time checks never fail
– slower than pure abstract interpretation
– BUT, much more precise!

Verify Level 5 requirements of the LADEE software stack
• Manually encode requirements in Simulink model
• Verify that the requirements hold in auto-generated C

Memory safety of C++ controller code
• ongoing…
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Conclusion

SeaHorn (http://seahorn.github.io)
• a state-of-the-art Software Model Checker
• LLVM-based front-end
• CHC-based verification engine
• a framework for research in logic-based verification

The future
• making SeaHorn useful to the consumers of verification technology
– counterexamples, build integration, property specification, proofs, 

• Concurrent / distributed / embedded systems
– cyber-physical systems
– very challenging but there are many opportunities

• richer properties
– termination[TACAS’16], liveness, synthesis
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IC3/PDR
Input: A safety problem hInit(X),Tr(X,X 0

),Bad(X)i.
Output: Unreachable or Reachable
Data: A cex queue Q , where c 2 Q is a pair hm, ii, m is a cube over

state variables, and i 2 N. A level N . A trace F0, F1, . . .
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · Fi = ;.
repeat

Unreachable If there is an i < N s.t. Fi ✓ Fi+1 return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q return Reachable.

Unfold If FN ! ¬Bad , then set N  N + 1.

Candidate If for some m, m! FN ^ Bad , then add hm,Ni to Q .

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0

, then add hm0, ii to Q .

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that '! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0
, then add ' to

Fj , for j  i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and Fi�1 ^ Tr ^m0
is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0  i < N and a clause (' _  ) 2 Fi, if ' 62 Fi+1, Init ! '
and ' ^ Fi ^ Tr ! '0

, then add ' to Fj , for each j  i+ 1.

until 1;
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IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
• terminate the algorithm when a solution is found

Unfold
• increase search bound by 1

Candidate
• choose a bad state in the last frame

Decide
• extend a cex (backward) consistent with the current frame
• choose s s.t. (s ⋀ Ri ⋀ Tr ⋀ cex’) is SAT

Conflict
• Find a lemma that explains why cex cannot be extended
• Find L s.t. L⇒¬cex and  L ⋀ Ri ⋀ Tr⇒ L’

Induction
• Propositional generalization (drop literals from the lemma)

Theory 
dependent
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ARITHMETIC CONFLICT
Looking for φ’

((Fi ^ Tr) _ Init 0) ) '0

'0 ) c0
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Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A ) ¬B, then 
there exists a FO formula I, denoted ITP(A, B), such that

A ) I        I ) ¬B    
atoms(I) 2 atoms(A) Å atoms(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a 
resolution proof of unsatisfiability of A Æ B

In Model Cheching, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states
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A

Craig Interpolant

42

B

I
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Examples of Craig Interpolation for Theories

Boolean logic

Equality with Uniterpreted Functions (EUF)

Linear Real Arithmetic (LRA)

A = (¬b ^ (¬a _ b _ c) ^ a) B = (¬a _ ¬c)

ITP (A,B) = a ^ c

A = (f(a) = b ^ p(f(a))) B = (b = c ^ ¬p(c))

ITP (A,B) = p(b)

A = (z + x+ y > 10 ^ z < 5) B = (x < �5 ^ y < �3)

ITP (A,B) = x+ y > 5
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Alternative Definition of an Interpolant

Let F = A(x, z) Æ B(z, y) be UNSAT, where x and y are distinct
• Note that for any assignment v to z either
– A(x, v) is UNSAT, or
– B(v, y) is UNSAT

An interpolant is a circuit I(z) such that for every assignment v to z
• I(v) = A only if A(x, v) is UNSAT
• I(v) = B only if B(v, y) is UNSAT

A proof system S has a feasible interpolation if for every refutation ¼ of F 
in S, F has an interpolant polynomial in the size of ¼
• propositional resolution has feasible interpolation
• extended resolution does not have feasible interpolation
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Farkas Lemma

Let M = t1 ¸ b1 Æ … Æ tn ¸ bn, where ti are linear terms and bi are 
constants M is unsatisfiable iff 0 ¸ 1 is derivable from M by resolution 

M is unsatisfiable iff M ` 0 ¸ 1
• e.g., x + y > 10, -x > 5, -y > 3 ` (x+y-x-y) > (10 + 5 + 3) ` 0 > 18

M is unsatisfiable iff there exist Farkas coefficients g1, …, gn such that 
• gi ¸ 0
• g1£t1 + … + gn£tn = 0
• g1£b1 + … + gn£bn ¸ 1
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Interpolation for Linear Real Arithmetic

Let M = A Æ B be UNSAT, where
• A = t1 ¸ b1 Æ … Æ ti ¸ bi, and 
• B = ti+1 ¸ bi Æ … Æ tn ¸ bn

Let g1, …, gn be the Farkas coefficients witnessing UNSAT

Then
• g1£(t1 ¸ b1) + … + gi£(ti ¸ bi) is an interpolant between A and B
• gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn) is an interpolant between B and A

• g1£t1 +…+gi£ti = - (gi+1£ti+1 + … + gn£tn)
• ¬(gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn)) is an interpolant between A and B
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Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]
• I 2 ITP (A, B)  then ¬I 2 ITP (B, A)
• if A is syntactically convex (a monomial), then I is convex
• if B is syntactically convex, then I is co-convex (a clause)
• if A and B are syntactically convex, then I is a half-space

A = F(Ri)

I = lemma
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Arithmetic Conflict

Counterexample is blocked using Craig Interpolation
• summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
• weaker than IC3/PDR
• inductive generalization for arithmetic is still an open problem

Notation: F(A) = (A(X) ^ Tr) _ Init(X 0
).

Conflict For 0  i < N , given a counterexample hP, i+ 1i 2 Q s.t.

F(Fi) ^ P 0
is unsatisfiable, add P "

= Itp(F(Fi), P 0
) to Fj for j  i+ 1.
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ARITHMETIC DECIDE
Computing a predecessor s of a counterexample c

s ✓ pre(c)

⌘ s ) 9X 0 . T r ^ c0
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Model Based Projection

Definition: Let φ be a formula, U a set of variables, and M a 
model of φ. Then Ã = MBP (U, M, φ) is a Model Based 
Projection of U, M and φ iff
1. Ã is a monomial            (optional)
2. Vars(Ã) µ Vars(φ) \ U
3. M ² Ã
4. Ã) 9 U . φ

For a fixed set of variables U and a formula φ, MBP is a 
function from models to formulas

MBP is finite if its range (as a function defined above) is 
finite
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1. Find  model M of φ (x,y)

 (y) ⌘ 9x · '(x, y)Expensive to find a quantifier-free

9x · '(x, y)Models of 2. Compute a partition containing M

Model Based Projection

M
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Loos Weispfenning Quantifier Elimination

φ is LRA formula in Negation Normal Form
E is set of x=t atoms, U set of x < t atoms, and L set of s < x atoms
There are no other occurrences of x in φ[x]

where 

The case of lower bounds is dual 
• using –∞ and t+𝜖

(x < t

0)[t� ✏] ⌘ t  t

0 (s < x)[t� ✏] ⌘ s < t (x = e)[t� ✏] ⌘ false

9x.'[x] ⌘ '[1] _
_

x=t2E

'[t] _
_

x<t2U

'[t� ✏]
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LW-Quantifier Elimination Example

9x . '[x]
⌘ 9x . (x = e ^  1) _ (s < x ^ x < t) _ (x < t ^  2)

⌘ '[e] _ '[t� ✏] _ '[1]

⌘ ( 1 _ (s < e ^ e < t) _ (e < t ^  2)) _

(s < t ^ t  t) _ (t  t ^  2) _

false



54 54

MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model
• Use the Model to uniquely pick a substitution term for x

MBP techniques have been developed for 
• Linear Rational Arithmetic, Linear Integer Arithmetic
• Theories of Arrays, and Recursive Data Types

Mbp

x

(M,x = s ^ L) = L[x s]

Mbp

x

(M,x 6= s ^ L) = Mbp

x

(M, s < x ^ L) if M(x) > M(s)

Mbp

x

(M,x 6= s ^ L) = Mbp

x

(M,�s < �x ^ L) if M(x) < M(s)

Mbp

x

(M,

^

i

s

i

< x ^
^

j

x < t

j

) =
^

i

s

i

< t0 ^
^

j

t0  t

j

where M(t0) M(t
i

), 8i
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Arithmetic Decide

Compute a predecessor using an under-approximation of quantifier 
elimination – called Model Based Projection

To ensure progress, Decide must be finite
• finitely many possible predecessors when all other arguments are fixed

Alternatives
• Completeness can follow from the Conflict rule only
– for Linear Arithmetic this means using Fourier-Motzkin implicants

• Completeness can follow from an interaction of Decide and Conflict

Notation: F(A) = (A(X) ^ Tr(X,X 0
) _ Init(X 0

).

Decide If hP, i+ 1i 2 Q and there is a model m(X,X 0
) s.t. m |= F(Fi) ^ P 0

,

add hP#, ii to Q , where P# = MBP(X 0,m,F(Fi) ^ P 0
).
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PROPERTY-DIRECTED TEST 
CASE GENERATION
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Property-Directed Test-Case Generation

program

property

executable

Software 
Model 

Checker

Directed 
Symbolic 
Execution

trace
executable 

harness

precise 
abstract traces

efficient complete 
traces

PDTG

interaction between 
SMC and SE
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A Counterexample Harness

if (get_input() == 0x1234 &&
get_input() == 0x8765) {

__VERIFIER_error();
} else {

return 0;
}

void __get_input() {
static int x = 0;
switch (x++) {

case 0: return 0x1234;
case 1: return 0x8765;
default: return 0; }

}

get_input() is an external 
function
Program considered buggy if and 
only if __VERIFIER_error() is 
reachable

Implementation of external 
functions linked to original source 
code
Causes program to execute 
__VERIFIER_error()
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Generating Harnesses for Linux Device Drivers

void *ldv_ptr(void)
{
void *tmp;
tmp = __c();
return tmp;

}

…

void *is_got = ldv_ptr();
if (is_got <= (long)2012) 
{ ... }

• Sample from Linux Device 
Verification (LDV) project1

• Harness functions returning 
pointers are tricky
– May not be reasonable 

addresses
– Might return “new” memory

• Original program instrumented with 
memory read/store hooks that 
control access to external memory

1http://linuxtesting.org/ldv
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Virtual External Memory

Accesses to external “virtual” memory are mapped to real memory
• opportunistically allocate memory for new accesses
• ignore invalid stores, return a default value for an invalid load

Program Memory

Internal 
Memory 
Access

External 
Memory
Access


