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Abstract. Bounded Model Checking (BMC) is well known for its sim-
plicity and ability to find counterexamples. It is based on the idea of
symbolically representing counterexamples in a transition system and
then using a SAT solver to check for their existence or their absence.
State-of-the-art BMC algorithms combine a direct translation to SAT
with circuit-aware simplifications and work incrementally, sharing infor-
mation between different bounds. While BMC is incomplete (it can only
show existence of counterexamples), it is a major building block of several
complete interpolation-based model checking algorithms. However, tradi-
tional interpolation is incompatible with optimized BMC. Hence, these
algorithms rely on simple BMC engines that significantly hinder their
performance. In this paper, we present a Fast Interpolating BMC (Fib)
that combines state-of-the-art BMC techniques with interpolation. We
show how to interpolate in the presence of circuit-aware simplifications
and in the context of incremental solving. We evaluate our implementa-
tion of Fib in AVY, an interpolating property directed model checker,
and show that it has a great positive effect on the overall performance.
With the Fib, AVY outperforms ABC implementation of Pdr on both
HWMCC’13 and HWMCC’14 benchmarks.

1 Introduction

Bounded Model Checking (BMC) [5,4] has emerged as an efficient bug-finding
model checking algorithm. It is based on an exploration of bounded paths in a
transition system with respect to a property. The main idea behind it is to unroll
the transition system up to a given bound k. Unrolling is done by duplicating
the transition system k times, attaching the k copies together, and creating
a formula, called the BMC or the unrolling formula, representing all paths of
length k. The formula is then constrained by the checked property and is passed
to a SAT-solver. If the formula is found to be satisfiable, a counterexample of
length k exists. Otherwise, the formula is unsatisfiable, thus no counterexample
of length k exists.

State-of-the-art BMC engines are able to find a long counterexample or prove
properties up to a large bound. We call such engines fast. Their efficiency lies in a
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variety of optimizations that use advances in SAT-solving, such as incrementality
and assumptions [14,15] as well as circuit-aware simplifications [1]. Circuit-aware
simplifications, such as SAT-sweeping [21], use high-level structure of the design
to simplify the unrolling formula before sending it to the SAT-solver.

While BMC is incomplete, it is the basis of many complete SAT-based model
checking algorithms, such as Interpolation-based Model Checking (Imc) [22,27,28],
and k-induction, and others (e.g., [25,23]). We focus on the applications of BMC
in Imc. Imc engines use a simple, non-optimized, BMC. This is largely due to
the complexity of interpolation in the presence of circuit-aware simplifications
and incremental SAT. For instance, simplifications destroy the structure of the
unrolling formula, making interpolation difficult. Using simple BMC engines sig-
nificantly hinders the performance of Imc.

In this paper, we present a Fast Interpolating BMC (Fib). Fib combines
the state-of-the-art circuit-aware simplifications, incremental solving, and inter-
polation. The key insight is to apply simplifications in a way that enables to
reconstruct the interpolants from the simplified formula to interpolants for the
original formula. To deal with incremental SAT, we extend clausal proofs [18]
and their interpolation [17] to the incremental setting.

To elaborate, let F = A(X,Y )∧B(Y,Z) be an unsatisfiable formula. A Craig
interpolant I(Y ) is a formula such that A(X,Y )→ I(Y ) and I(Y )∧B(Y,Z)→
⊥. An interpolant is dependent on the structure of F and its partitioning into A
and B. A simplification procedure is not aware of the interpolation partitioning
of F , and, thus, might destroy it, eliminating the ability to interpolate. For
example, consider a case where a simplification procedures finds the variables
y1, y2 ∈ Y to be equivalent. The simplified formula is F ′ = F [y2 ← y1], i.e., y2 is
substituted with y1. An interpolant I ′(Y ) with respect to F ′ it is not necessarily
an interpolant with respect to F since I ′ does not have the information about
y1 being equal to y2. This equality is a consequence of F , but after substitution,
it is implicitly embedded in the simplified formula F ′, and thus lost.

In Fib, we simplify different partitions of the formula separately, explic-
itly propagating facts between partitions. This compactly logs the simplification
steps. Since Fib takes control from the simplifier by managing the generated
consequences, it can then use this information to reconstruct the interpolant
I ′(Y ) of the simplified formula F ′ to an interpolant that matches F .

Furthermore, since interpolation requires a proof-logging SAT-solver, we de-
velop an incremental SAT-solver that logs proofs [18] incrementally. Unlike a
regular incremental SAT-solver, a proof-logging solver must efficiently manage
the proof and learned clauses. In the incremental setting, the proof grows with
each call to the solver. This dramatically increases the memory requirements
of the solver. We, therefore, introduce a heuristic to keep the proof as small as
possible while maintaining the benefits of an incrementality.

We evaluate Fib on the benchmarks from the Hardware Model Checking
Competitions (HWMCC’13 and ’14). We show that the performance of Fib lies
between that of a highly optimized (we use &bmc command of ABC [8]) and sim-
ple BMC engines. More importantly, to evaluate the impact of Fib in the context



of Imc, we have integrated it in Avy [28], an advanced interpolation-based algo-
rithm that was shown to be on-par with Pdr. We compareAvy+Fib toAvy and
to the implementation of Pdr in ABC (pdr command). Our results show that
Avy+Fib solves more instances on both HWMCC’13 and HWMCC’14 than ei-
ther Avy or Pdr. Additionally, when comparing run-time, Avy+Fib is the most
efficient. Our experiments show the importance of a fast BMC engine in Imc.

We make the following contributions: (1) we show how to combine interpola-
tion and an optimized BMC engine; (2) we implement our technique in a BMC
engine called Fib and evaluate its performance and impact in the context of an
advanced interpolation-based model checker Avy; and (3) our implementation
is publicly available and can be used by others in future research.

Related Work. There is a large body of work on structure-aware formula simplifi-
cation and the interaction between simplifications and SAT-solvers (e.g., [6,1,24,13]).
However, these works do not deal with proofs or interpolation.

The closest work that deals with proofs, simplifications, and logic synthesis
is [9]. Their goal is to certify correctness of combinatorial equivalence checking
(CEC). The key insight is that the proof of simplification steps naturally corre-
sponds to extended resolution [26]. While this procedure can be used to construct
an extended resolution proof that tracks both simplifications and SAT-solving,
interpolation over extended resolution is difficult. For example, the interpolant
is worst-case exponential in the size of the proof [7].

Alternatively, advanced SAT-preprocessing can be used to simulate circuit-
aware simplifications directly on CNF [20]. For example, Blocked Clauses Elim-
ination (BCE) [19] simulates Cone-Of-Influence (COI) reduction. Recently, a
proof format, called DRAT, that can log such preprocessing efficiently, was intro-
duced in [29]. However, since DRAT simulates extended resolution, interpolation
is not trivial and the same problem as in [9] arises. In contrast, our approach
uses existing simplification and interpolation procedures and guarantees that the
interpolants are linear in the size of resolution proofs involved.

2 Preliminaries

In this section we describe the needed background for the reminder of the paper.

Propositional Satisfiability. Given a set U of Boolean variables, a literal ℓ is a
variable u ∈ U or its negation. A clause is a disjunction of literals. A proposi-
tional formula F in Conjunctive Normal Form (CNF) is a conjunction of clauses.
It is often convenient to treat a clause as a set of literals, and a CNF as a set of
clauses. For example, given a CNF formula F , a clause c and a literal ℓ, we write
ℓ ∈ c to mean that ℓ occurs in c, and c ∈ F to mean that c occurs in F . A CNF
is satisfiable if there exists a satisfying assignment such that every clause in it is
evaluated to ⊤. Otherwise, it is unsatisfiable. A SAT-solver is a complete decision
procedure that determines whether a given CNF is satisfiable. If the clause set is
satisfiable then the SAT solver returns a satisfying assignment for it. Otherwise,



if the solver is proof-logging, it produces a proof of unsatisfiability [30,16,23,17].
In this work we use DRUP-proofs [18]. A DRUP-proof π is a sequence of all
clauses learned and deleted during the execution of the SAT-solver, in the order
in which the learning and deletion happen.

We assume that the reader is familiar with the basic interface of an incre-
mental SAT-solver [14]. We use the following API: (a) Sat Add(ϕ) adds clauses
corresponding to the formula ϕ to the solver; (b) Sat DB is the set of all currently
added clauses; (c) Sat Reset resets the solver to the initial state; (d) To Cnf(F )
converts a formula F to CNF; (e) Sat Solve(A) returns true if Sat DB is sat-
isfiable; Note that Sat Solve(A) optionally takes a set of literals A, called as-
sumptions. If A is not empty, then Sat Solve(A) determines whether A and
Sat DB are satisfiable together. We also use Is Sat(ϕ) for deciding whether ϕ
is satisfiable, and Sat Mus(F ) for a Minimal Unsatisfiable Subset (MUS) [11] of
a CNF F . The MUS is computed relative to the clauses already added to the
solver.

Modeling Hardware Circuits. A hardware circuit can be described by a propo-
sitional formula where state variables (registers), and primary inputs are rep-
resented by Boolean variables V and Z, respectively, and the logical operators
correspond to the gates. Let V ′ be a set of primed Boolean variables representing
a successor value of state variables V . For each variable v ∈ V , let fv(V,Z) be
the next-state function (NSF) of v. The operation of the circuit is captured by
a transition relation Tr(V,Z, V ′) ≡

∧

v′∈V ′ v′ = fv(V,Z).
For example, a counter circuit shown in Fig. 1(a) can be modeled by a tran-

sition system Tr({v0, v1, v2}, ∅, {v
′

0, v
′

1, v
′

3}) defined as a conjunction of the fol-
lowing NSFs:

v′0 = ¬v0 v′1 = v0 6= v1 v′2 = v2

A state s is an assignment to the state variables V . It can be represented
as a conjunction of literals that is satisfied in s. More generally, a formula over
V represents the set of states that satisfy it. A transition system is a tuple
T = 〈V,Z, Init ,Tr , P 〉, where the formulas Init(V ) and P (V ) over V represent
the set of initial states and safe states of a circuit, respectively. We call ¬P (V )
the set of bad states. For simplicity, we assume that Init(V ) =

∧

v∈V ¬v and
P (V ) is a literal. Tr(V,Z, V ′) is a transition relation associating a state s to
its successor state s′ under a given assignment of the inputs Z. For simplicity,
we often omit the primary inputs Z from the transition relation, and omit V
and Z from the signature of the transition system when they are clear from the
context. We write V i is to denote the variables in V after i steps of the transition
relation. Thus, V 0 ≡ V and V 1 ≡ V ′.

Every propositional formula can be represented by a combinational circuit or
a graph. One such representation is And Inverted Graph (AIG) [3]. A formula
ϕ(X) over a set of variables X corresponds to a circuit with a set of inputs X,
internal nodes corresponding to logical operators, and an output Oϕ that is set
to 1 for all assignments to the input X that satisfy ϕ. Note that a circuit with
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(b) Unrolling of the counter to k = 2

Fig. 1: A counter and its unrolling.

Input: A transition system T = (Init ,Tr ,¬P ), and a number N
1 if Is Sat(Init ∧ ¬P ) then return CEX
2 for k ← 1 to N do

3 Gk ← Init(V 0) ∧ (
∧k−1

i=0
Tr(V i, V i+1)) ∧ ¬P (V k)

4 if Is Sat(Gk) then return CEX

5 end

6 return No CEX of length ≤ N

Fig. 2: A Simple BMC.

multiple outputs represents multiple, independent, propositional formulas – one
per output.

Bounded Model Checking. A transition system T is unsafe iff there exists a path
from the initial state in Init to a bad state in ¬P that satisfies the transition
relation. This path is called a counterexample. T is unsafe iff there exists a
number k such that the following k-unrolling formula is satisfiable:

Init(V 0) ∧

(

k−1
∧

i=0

Tr(V i, V i+1)

)

∧ ¬P (V k) (1)

It is useful to view (1) as a combinatorial circuit with inputs V 0 and a single
output representing the value of ¬P (V k). For example, a circuit corresponding
to two unrollings of the counter in Fig. 1(a) is shown in Fig. 1(b). Each step of
the unrolling (indicated by dashed lines in the figure) is called a frame.

SAT-based Bounded Model Checking (BMC) [5] determines whether a tran-
sition system is unsafe by deciding satisfiability of the unrolling formula (1) for
increasing values of k. A simple BMC algorithm in shown in Fig. 2.

In practice, fast state-of-the-art BMC implementations combine the simple
reduction of BMC to SAT with circuit-aware simplifications of the unrolling
formula. Furthermore, they use an incremental SAT interface to share learned
clauses between checks for different values of k. To give a general account of



Input: A transition system T = (Init ,Tr ,¬P ), a number N
1 if Is Sat(Init ∧ ¬P ) then return CEX

2 G← Init(V 0) ∧
(

∧N

i=0
Tr(V i, V i+1)

)

3 (G′, E)← Simplify(G, ∅)
4 for k ← 1 to N do

5 Cone← Get Coi(G′,¬P (V k))
6 Sat Add(Cone)

7 if Sat Solve({¬P (V k)}) then return CEX

8 end

9 return No CEX of length ≤ N

Fig. 3: Fast BMC.

circuit aware simplifications, we abstract them using a function

G′(X,Y ), E′(Y ) = Simplify(G(X,Y ), E(X)) (2)

that takes a formula G(X,Y ) and a set of input constraints E overX and returns
a simplified formula G′(X,Y ) and a set of output constraints E′(Y ) such that:

E(X)→(G′(X,Y ) ≡ G(X,Y )) (E(X) ∧G(X,Y ))→ E′(Y ) (3)

The form of admissible constraints in E depends on the simplification. For ex-
ample, constant propagation (CP) or ternary simulation requires that E(X) is of
the form

∧

i xi = ci, where xi ∈ X and ci ∈ {0, 1}. The output constraints E
′(Y )

for CP are also of the same form. Another, more general simplification, is SAT-
sweeping [21] which, restricts the constraints to be equalities between inputs.
For our purposes, the inner workings of the simplifications are not important,
and we refer an interested reader to ample literature on this subject.

A pseudo-code of a fast BMC is shown in Fig. 3. Unlike simple BMC (Fig. 2),
it first constructs a complete unrolling (line 2), then applies circuit-aware sim-
plifications (line 3), and enters the main loop. In each iteration of the loop, it
uses a function Get Coi to find the cone-of-influence of the output at depth
k (line 5), adds the clauses corresponding to the cone to the solver (line 6,
and checks whether the current set of clauses is unsatisfiable together with as-
sumption ¬P (V k) (line 7). For simplicity, we assume that conversion to CNF is
deterministic and that Sat Add silently ignores clauses that are already known
to the solver. A fast BMC is significantly faster than simple BMC and can get
much deeper into the circuit.

Craig interpolation. Given a pair of inconsistent formulas (A,B) (i.e., A ∧B |=
⊥), a Craig interpolant [10] for (A,B) is a formula I such that:

A→ I I → ¬B L(I) ⊆ L(A) ∩ L(B) (4)

where L(A) denotes the set of all variables in A. A sequence (or path) interpolant
extends interpolation to a sequence of formulas. We write F = [F1, . . . , FN ] to



denote a sequence with N elements, and Fi for the ith element of the sequence.
Given an unsatisfiable sequence of formulas A = [A1, . . . , AN ], (i.e., A1 ∧ · · · ∧
AN |= ⊥) a sequence interpolant I = seqItp(A) for A is a sequence of formulas
I = [I1, . . . , IN−1] such that:

A1 → I1 ∀1 < i < N · Ii−1 ∧Ai → Ii IN−1 ∧AN → ⊥ (5)

and for all 1 ≤ i ≤ N , L(Ii) ⊆ L(A1 ∧ · · · ∧Ai) ∩ L(Ai+1 ∧ · · · ∧AN ).

3 Simplification-Aware Interpolation

We begin with an illustration of the difficulties of interpolation in the presence
of circuit-aware simplifications. Consider the counter circuit and its unrolling
G shown in Fig. 1. Recall, initially all registers are zero. Assume that we want
an interpolant between the first and second frames G0 and G1, respectively,
where G = G0 ∧G1, under the assumption ¬P 2 = ¬(v20 ∧ v

2
1 ∧ v

2
2). Simplifying

G using constant propagation, which replaces outputs of gates with constants
based on the values of its inputs, reduces it to v20 = 0 ∧ v21 = 1 ∧ v22 = 0 that
is trivially unsatisfiable together with ¬P 2. However, the simplification destroys
the partitioning structure of G, making interpolation meaningless. Alternatively,
assume that the simplification does not eliminate intermediate values of the
registers. Then, the simplification might reduce G to G′ = G′

0 ∧G
′

1, where

G′

0 ≡ v
1
0 = 1 ∧ v11 = 0 ∧ v12 = 0 G′

1 ≡ v
2
0 = 0 ∧ v21 = 1 ∧ v22 = 0

While the partitioning structure is preserved, not every interpolant of (G′

0, G
′

1 ∧
¬P 2) is an interpolant of (G0, G1∧¬P

2). For example, ⊤ is an interpolant in the
first case, but not in the second. Such problems are even more severe for more
complicated simplifications such as SAT-sweeping, in which case additionally
variables that are local to a partition before the simplification might become
shared between partitions after.

The source of the problems is that the reasoning done by the simplification
is hidden from the interpolation procedure. One way to expose it is to use proof-
logging simplifications. Let G be a circuit, and G′ a simplified version of G such
that G → G′ and G′ → ⊥. Then, there exists a resolution proof π1 of G → G′

and a resolution proof π2 of G′ → ⊥. If we require a simplification to produce
π1 while constructing G′, and require a SAT-solver to produce π2 while deciding
satisfiability of G′, then, we can construct a complete resolution proof π = π1 ;π2
of G→ ⊥ and apply interpolation to π. In fact, this approach is used in [17] for
interpolation in the presence of SAT pre-processing [12].

While there are suggestions in literature (e.g., [9]) on how to extract reso-
lution proofs out of circuit-aware simplifications, this is non-trivial. It requires
significant changes to existing simplifiers, and is particularly difficult for sim-
plifications that are done as a by-product of using efficient data-structures such
as AIGs and BDDs. Furthermore, as shown in [9], circuit-aware simplifications
correspond naturally to extended resolution proofs. However, interpolation over



Input: G = G0 ∧G1 ∧ · · · ∧Gk

1 Initialize 〈E0 ← ∅, . . . , Ek+1 ← ∅〉
2 for i← 0 to k do

3 (G′

i, Ei+1)← Simplify(Gi, Ei)
4 end

5 return (G′

0 ∧ · · · ∧G
′

k, 〈E1, · · · , Ek+1〉)

Fig. 4: Localized simplification (Loc Simp(G)).

extended resolution is difficult, and the interpolants are worst-case exponen-
tial in the size of the proof. Furthermore, the proof logging is likely to incur a
non-trivial overhead and is likely to be much more detailed than necessary for
interpolation in our target applications.

In this section, we suggest an alternative light-weight approach. Instead of
applying the simplifications to the complete unrolling, we apply them to each
individual frame (or partition), and propagate constraints between frames. In-
stead of requiring simplifications to be proof-logging, we log the constraints that
are exchanged. In our setting, simplifications preserve the partitioning of the
original formula. We show how to use the logged constraints to reconstruct a
sequence interpolant of the simplified formula to a sequence interpolant of the
original formula. Finally, we propose a minimization algorithm to ensure that
the final interpolant does not contain redundant constraints.

Constraint-Logging Simplifications LetG = G0(V
0, V 1)∧· · ·∧Gk(V

k, V k+1) be a
formula divided into k partitions. Note that variables are shared between two ad-
jacent partitions only. Our constraint-logging simplification algorithm Loc Simp

is shown in Fig. 4. It processes the formula G left-to-right. In each step, it simpli-
fies Gi using constraints Ei of the prefix, and generates new consequences Ei+1

to be used by the next step. For example, if G is an unrolling formula, then Ei

is a set of consequences that are implied by the states reachable in (i+1) states
from the initial state. Note that in this case, the initial state is embedded in G0.

LetG′ = G′

0∧· · ·∧G
′

k be a formula obtained by Loc Simp(G) and E1, . . . , Ek+1

be the corresponding trail of constraints. Assume that G′ is unsatisfiable, and let
I = 〈I1, . . . , Ik〉 be a sequence interpolant of G′. Recall that I is an interpolant
w.r.t. the simplified formula G′ and, therefore, may not be an interpolant w.r.t.
the original formula G. The reason is that some of the consequences that were
generated by the simplification are present implicitly in the simplified formula
and, thus, are missing from the interpolant. This requires a post-processing step
that adds the missing information to the sequence-interpolant.

Theorem 1. Let G = G0(V
0, V 1) ∧ · · · ∧ Gk(V

k, V k+1) be a formula parti-
tioned into k parts, and let (G′ = G′

0 ∧ · · · ∧G
′

k, 〈E1, . . . , Ek+1〉) be the result of
Loc Simp(G). If G′ is unsatisfiable and 〈I ′1, . . . , I

′

k〉 is a sequence-interpolant of
G′ then

– G is unsatisfiable, and



– 〈I ′1 ∧ E1, . . . , I
′

k ∧ Ek〉 is a sequence-interpolant of G.

Proof. Since 〈I ′1, . . . , I
′

k〉 is a sequence-interpolant of G′ we know that:

G′

0 → I ′1 ∀1 ≤ i < k · (I ′i ∧G
′

i)→ I ′i+1 I ′k ∧G
′

k → ⊥ (6)

By construction, the trail 〈E0, . . . , Ek+1〉 satisfies:

G0 → E1 ∀1 ≤ i ≤ k · (Ei ∧Gi)→ Ei+1 (7)

Finally, by the properties of Simplify, we have:

G0 → G′

0 ∀1 ≤ i < k · (Ei ∧Gi)→ G′

i (8)

Combining the above together, we get:

G0 → I ′1 ∧ E1 ∀1 ≤ i < k · (I ′i ∧ Ei ∧Gi)→ (I ′i+1 ∧ Ei+1) I ′k ∧ Ek ∧G
′

k → ⊥
(9)

Theorem 1 gives a simple way to reconstruct a sequence-interpolant of the
simplified formula to the original formula. However, the resulting interpolant
is likely not to be minimal. Each Ei may contain many constraints that are
not necessary for the validity of the sequence-interpolant. Thus, we propose an
algorithm to minimize sequence interpolants. First, we formally define what we
mean by minimality.

Definition 1. Let Ī = 〈I1, . . . , Ik〉 be a sequence-interpolant where each element
Ii is a conjunction (or a set) of constraints. The sequence Ī is minimal if any
other sequence obtained by removing at least one constraint from any of the Ii
is not a sequence-interpolant.

Our algorithm, Min Itp, is shown in Fig. 5. It takes a partitioned formula G and
a sequence interpolant I as input, and returns a minimal sequence interpolant
I
′. It applies an iterative backward search for the necessary constraints from Ik

to I1. In each iteration, it computes the needed constraints I ′i ⊆ Ii that ensures
that I ′i∧Gi → I ′i+1. This is accomplished by asserting Gi∧¬I

′

i+1 and computing
an MUS of Ii relative to those background constraints. The soundness of Min Itp

follows from the loop invariant described above. The minimality follows from the
minimality of the MUS computation.

Lemma 1. Let G = G0(V
0, V 1) ∧ · · · ∧ Gk(V

k, V k+1) be an unsatisfiable for-
mula partitioned into k parts, and I be its sequence interpolant. Then, I

′ =
Min Itp(G, I) is a minimal sequence interpolant for G.

Recall that in the traditional interpolation techniques the size of the in-
terpolant is linear in the size of the resolution proof. In the presence of the
simplifications, the size of the interpolant is linear in the size of the resolution
proof of the simplified formula and the number of constraints introduced by the
simplification, whichever is greater. Let F = A(X,Y ) ∧ B(Y,Z) be an unsat-
isfiable formula and F ′ = A′(X,Y ) ∧ B′(Y,Z) be a simplified formula, where



Input: G = G0 ∧ · · · ∧Gk, I = 〈I1, . . . , Ik〉
1 Ik+1 = ⊥
2 for i← k to 1 do

3 Sat Reset()
4 Sat Add(¬Ii+1)
5 Sat Add(Gi)
6 I ′i = Sat Mus(Ii)

7 end

8 return 〈I ′1, . . . , I
′

k〉

Fig. 5: Minimal sequence-interpolant Min Itp(G, I).

(A′, E) = Simplify(A, ∅), and B′ = Simplify(B,E). An interpolant I ′, com-
puted with respect to F ′, is linear in the size of the resolution proof for F ′.
Let the size of E be bounded by ψ(A) (i.e. |E| ≤ ψ(A)), and let I = I ′ ∧ E
be the interpolant constructed by our method. Since I is generated by adding
constraints from E to I ′, its size is bounded by max{|I ′|, ψ(A)}. Interestingly,
for common simplifications like CP and SAT-sweeping, ψ(A) = |Y |, it can only
generate as many consequences as the number of interface variables. Thus, in
this case the size of interpolant is bounded by the number of shared variables or
the size of the simplified proof, whichever is greater.

Fast interpolating BMC. Using the machinery of simplification-aware interpola-
tion, we now present our fast interpolating BMC (Fib) algorithm. The pseudo-
code of Fib is shown in Fig. 6. Structurally, it is similar to the fast BMC shown
in Fig. 3. The first difference is that the unrolling formula G is partitioned into
frames Gi. Second, instead of simplifying the unrolling, we use Loc Simp to sim-
plify each frame and collect the trail of side-constraints. Then, in each iteration
of the main loop, the cone of influence of the current ¬P (V k) is computed and
added to the SAT-solver. If the result is UNSAT, Fib computes an interpolant
of the current simplified k-unrolling, extends it with the side-conditions, and
minimizes using Min Itp. The result is made available to the user using a call
to yield. Thus, in addition to detecting counterexamples, Fib computes a trail
of sequence interpolants. One sequence for each safe bound.

Note that we assume that it is possible to compute interpolants (see the call
to Sat Itp) in an incremental SAT-solver. That is, we expect interpolants to be
available after the SAT-solver is called with assumptions, and during repeated
calls to Sat Solve with new clauses added in between. While in theory support-
ing interpolation in an incremental SAT-solver is straight-forward, it is difficult
to do efficiently in practice. We address this issue in the next section.

4 Interpolating Incremental SAT Solver

In this section, we describe our implementation of an interpolating incremental
solver that supports both an incremental addition of clauses and solving with as-
sumptions. The keys to our approach are DRUP [18] and DRUP-interpolation [17].



Input: T = (Init ,Tr , P ), a number N ≥ 0
1 if Is Sat(Init ∧ ¬P ) then return CEX
2 else yield 〈P 〉
3 G0 ← Init(V 0) ∧ Tr(V 0, V 1)
4 for i← 1 to N − 1 do Gi ← Tr(V i, V i+1)
5 (G′, 〈E1, . . . , EN 〉) = Loc Simp(G0 ∧ · · · ∧GN−1)
6 for k ← 1 to N do

7 Cone← Get Coi(G′,¬P (V k))
8 Sat Add(Cone)

9 if Sat Solve(¬P (V k)) then return CEX
10 〈I ′1, . . . , I

′

k〉 ← Sat Itp(k)
11 〈I1, . . . , Ik〉 ← 〈I

′

1 ∧ E1, . . . , I
′

k ∧ Ek〉
12 yield Min Itp(G, 〈I1, . . . , Ik〉)

13 end

14 return No CEX of length ≤ N

Fig. 6: Fast Interpolating BMC (Fib).

DRUP proofs were introduced in [18] in the context of SAT-solver certifica-
tion. Since we use them for interpolation, we begin by reviewing DRUP-proofs
and interpolation as they appear in [17]. Let F be an unsatisfiable propositional
formula in CNF. A DRUP-proof π is a sequence of all clauses learned and deleted
during the execution of the SAT-solver, in the order in which the learning and
deletion happen. Meaning, the first clause in π is the first learned clause, and
the last clause is the empty clause. Let π = 〈c0, . . . , cn〉 be a DRUP-proof, then
a non-deleted clause ci is derivable by trivial resolution [2] from F and from all
non-deleted clauses cj for 0 ≤ j < i. The interpolation procedure in [17] labels
each clause in ci ∈ π with a sequence of propositional formule Ī(ci), where the
label of the last clause, i.e. Ī(cn), is the sequence-interpolant.

Fib uses the SAT-solver incrementally in two ways: (1) the solver is called
with assumptions, and (2) new clauses are added. The two steps are iterated
repeatedly. Because of multiple calls, the learned clauses that are currently part
of the SAT-solver’s database are being used in a consecutive calls to the solver.

We first address the problem of interpolation under assumptions. In the pres-
ence of assumptions, the final learned clause produced by the solver, provided
that the instance is unsatisfiable, is not the empty clause, but a clause contain-
ing negated assumption literals. We claim that whenever the assumptions are
local to each interpolation-partition the formula that marks the final clause is
the sequence-interpolant.

Proposition 1. Let F = F1(X1, Y1, X2) ∧ · · · ∧ Fk(Xk, Yk, Xk+1) be a propo-
sitional formula in CNF. Assume that F is unsatisfiable under assumptions
{a1, . . . , ak}. Let π = {c0, . . . , cn} be a corresponding DRUP-proof. If for all

1 ≤ i ≤ k, ai ∈ Yi, then a Ī(cn) is a sequence-interpolant of
∧k

i=1
(Fi ∧ ai).



Incremental addition of new clauses and multiple calls to Sat Solve create
new challenges to a proof-logging SAT solver. First, the solver must ensure that
the DRUP-proof remains consistent. More precisely, every learned clause in a
DRUP-proof must be derivable by trivial resolution [2] using original clauses and
learned clauses that were part of Sat DB when it was learned. This is tricky in an
incremental setting because original clauses might be added after learned clauses.
For example, assume that initially Sat DB contained the set of original clauses F1

and after some time the DRUP-proof is a sequence of two clauses (c1, c2). Then,
by the DRUP property, c2 follows from F1∧c1 by trivial resolution. Next, assume
that additional original clauses F2 were added to the solver via Sat Add. After
some time, the DRUP-proof might be (c1, c2, c3). At this point, the fact that c2
is derivable only from F1 and c1 is lost. This makes it difficult to reconstruct
(or even approximate) the original resolution proof produced by the SAT-solver
to derive c2. While this might be an issue if the goal is to validate the solver,
it is not in our case. The database of clauses Sat DB is growing monotonically.
Thus, if a clause was derivable by a trivial resolution at one point, it remains
derivable if new clauses are added to the database. Hence, in our implementation,
we disregard the order in which the original clauses are added to the database.
Thus, the proof that is found during interpolation might be significantly different
from the original proof used implicitly by the SAT-solver.

Another challenge is memory requirement. In an incremental solver, learned
clauses are re-used between the calls to Sat Solve and the number of learned
clauses grows monotonically. This is not an issue for non-interpolating solvers
since they prune learned clauses even in a non-incremental mode. However, an
interpolating solver that logs the DRUP-proof must keep all clauses ever learned
in memory because even though a clause is deleted at one time, it might have
participated in the proof at prior time. To address this, we use the following
heuristic. Recall that DRUP-interpolation first finds the core clauses and then
traverses them, rebuilding the proof and generating the interpolant. We change
it to also mark as core the unit clauses that are on the trail during the last
conflict. The intuition is that units are very strong consequences and are likely
to be useful in other Sat Solve calls. Finally, between every call to Sat Solve,
we prune the DRUP proof and the learned clauses from all non-core clauses.
Thus, the only learned clauses that remain between Sat Solve calls are clauses
that appear in the last resolution proof, units on the trail, and clauses that are
necessary to derive the units from Sat DB.

5 Experiments

We have implemented Fib inside our model checking frameworkAvy3. We evalu-
ate our implementation of Fib in two ways. First, we evaluate Fib as a BMC en-
gine by comparing it with both a simple BMC and a fast BMC (&bmc) of ABC [8].
Second, we integrate Fib in Avy, an Interpolation-based Model Checker, and
show the impact it has on performance, both in run-time and the number of

3 Source code is available at: https://bitbucket.org/arieg/extavy
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(b) Fib vs. ABC’s BMC

Fig. 7: Runtime comparison between Fib, ABC’s BMC (&bmc) and Simple BMC.
Points above the line are in favor of Fib. Square represents a timeout.

solved instances. We use all of HWMCC’13 and ’14 benchmarks, an Intel Xeon
2.4GHz processor with 128GB of memory, and a timeout of 900 seconds.

BMC evaluation. We compare Fib to a simple BMC implementation, and then
to a fast BMC of ABC. We expect Fib to perform in between the fast and simple
BMCs. Fig. 7 shows a comparison of runtime when running all the different BMC
algorithms until depth 40 on the benchmarks in which at least one tool ran to
completion. That is, at least one tool either finds a counterexample or proves
no counterexamples of depth up to 40. As expected, Fib is more efficient than
a simple BMC on most cases and ABC BMC is more efficient than Fib. Some
of the difference are due to the way simplification is applied in Fib. We believe
that with a more careful implementation this gap can be closed.

Fig. 8 shows a comparison of the depth reached during an execution of the
algorithms for bound 40 in the presence of a predefined time limit. Clearly, Fib
reaches deeper bounds compared to the simple BMC engine. Compared to ABC
BMC, Fib is mostly on par with a few cases in favor of ABC. Note that the
problem is exponential in the depth, so even a small increase is significant.

On a few test cases, we have noticed that Fib performs worse than a sim-
ple BMC engine. Analyzing those cases revealed that sometime the simplified
formula, even though having less clauses and less variables, is harder for the
SAT-solver. While this is not a common case, it may happen. Our intuition is
that this is most likely due to the solver spending more time in a harder part of
the search space.

Model Checking evaluation. For these sets of experiments, we have integrated Fib

in Avy and called it Avy+Fib. We compared Avy+Fib with the original Avy
and with ABC implementation of Pdr (pdr). Table 1 summarizes the number
of solved instances by each algorithm and total runtime on the entire bench-
mark. Avy+Fib solves the most cases in both HWMCC’13 and HWMCC’14.
On HWMCC’13 it solves 5 more cases than Avy and 32 more cases than Pdr,
and it cannot solve 4 cases solved by Avy and 12 cases solved by Pdr. On
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(b) Fib vs. ABC’s BMC

Fig. 8: Depth comparison between Fib, ABC’s BMC and Simple BMC. Triangles
are cases solved to completion by at least one tool. Points below the line are in
favor of Fib. Triangle represents timeout.

Table 1: Summary of solved instances on HWMCC’13 and HWMCC’14.

Benchmark Status Avy+Fib Avy Pdr VBS(Avy+Fib) VBS(Avy)

HWMCC’13
SAFE 67 66 50 76 74

UNSAFE 19 19 16 22 22

Runtime (s) 151,302 156,806 167,302 – –

HWMCC’14
SAFE 60 56 49 64 60

UNSAFE 28 24 20 31 30
Runtime (s) 126,293 139,336 150,586 – –

HWMCC’14 it solves 8 more than Avy and 26 more than Pdr, and it cannot
solve 1 case solved by Avy and 7 cases solved by Pdr.

Table 1 also shows two Virtual Best (VBS) results. The first corresponds
to combining Avy+Fib and Pdr, the second to combining Avy and Pdr. As
expected, the addition of Avy+Fib to Pdr is the better option.

As we describe in Section 3, during the computation of an interpolant, the
set of constraints generated by the simplifier is minimized. We measured the
time minimization takes. The median value are 5.6 seconds and 4.78 seconds for
HWMCC’13 and ’14, respectively. This shows that in most cases this process is
efficient.

Even though Avy+Fib uses a faster BMC engine than Avy, there are still
cases solved by Avy and not by Avy+Fib. Analyzing those showed that some-
times simplification creates “noise” and forces a proof that is very dependent on
the initial state. Since Fib propagates the initial values as far as it can, it might
also increase the convergence bound of Avy. This behavior may hurt perfor-
mance, yet we rarely observe it in practice. Moreover, in some cases, even when
the convergence bound is increased, Avy+Fib is still faster than Avy.

Considering total runtime, Avy+Fib is more efficient than both Avy and
Pdr. Fig. 9 shows run-time comparison per test case for each HWMCC’13 and
’14. Analyzing individual runtimes shows that Avy+Fib (just like Avy) is very
different from Pdr. Each of them performs better than the other on a different
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(b) Avy+Fib vs. Avy

Fig. 9: Runtime comparison of Avy+Fib, Avy+BMC and Pdr on HWMCC’13
(green) and HWMCC’14 (blue) benchmarks. Rhombus represents a timeout.

class of benchmarks. This is evident in Fig. 9(a) where most of the points are on
the extremes (axis) of the plots. Fig. 9(b) shows that Avy+Fib is more efficient
than Avy on most of the benchmarks. We also analyzed the median value w.r.t.
runtime on solved instances. Avy’s median values on HWMCC’13 and ’14 are
94.2 and 35.9, respectively. While for Avy+Fib, the values are 53.4 and 23.4
respectively.

6 Discussion and Conclusions

The paper presents a novel method for interpolation over BMC formulas when
circuit-aware simplifications are applied. Our approach is based on the observa-
tion that for the purpose of interpolation, only the consequences generated by
the simplifier need to be logged. These consequences can then be used to recon-
struct an interpolant w.r.t. to the original formula from an interpolant computed
w.r.t. the simplified formula. This approach is simpler than trying to reconstruct
the proof itself.

We implemented our approach in an engine called Fib and evaluated its
impact on model checking by incorporating it intoAvy. The experimental results
show that Fib improves the performance of Avy significantly.

Fib puts some restrictions on the way the simplifier operates. This can be seen
in the gap between Fib and ABC’s BMC engine. We believe that most of these
restrictions can be removed and that interpolation is possible even when using
an unrestricted simplifier. Enabling this may further close the gap between Fib

and state-of-the-art BMC engines. We leave this challenge for future research.
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