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Automated Verification

Deductive Verification
• A user provides a program and a verification certificate
– e.g., inductive invariant, pre- and post-conditions, function summaries, etc.

• A tool automatically checks validity of the certificate
– this is not easy! (might even be undecidable)

• Verification is manual but machine certified

Algorithmic Verification (My research area)
• A user provides a program and a desired specification
– e.g., program never writes outside of allocated memory

• A tool automatically checks validity of the specification
– and generates a verification certificate if the program is correct
– and generates a counterexample if the program is not correct

• Verification is completely automatic – “push-button”
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Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
• now part of Z3 
– https://github.com/Z3Prover/z3 since commit 72c4780
– use option fixedpoint.engine=spacer

• development version at http://bitbucket.org/spacer/code
Supported SMT-Theories
• Best-effort support for many SMT-theories
– data-structures, bit-vectors, non-linear arithmetic

• Linear Real and Integer Arithmetic
• Quantifier-free theory of arrays
• Universally quantified theory of arrays + arithmetic (work in progress)

Support for Non-Linear CHC
• for procedure summaries in inter-procedural verification conditions
• for compositional reasoning: abstraction, assume-guarantee, thread modular, 

etc.



5 5

Contributors

Arie Gurfinkel
Anvesh Komuravelli

Nikolaj Bjorner
(Krystof Hoder)
Yakir Vizel
Bernhard Gleiss
Matteo Marescotti



6 6
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Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL 
formula of the form

8 V . (Á∧ p1[X1] ∧…∧ pn[Xn] ® h[X]),
where
• A is a background theory (e.g., Linear Arithmetic, Arrays, 

Bit-Vectors, or combinations of the above)
• Á is a constrained in the background theory A
• p1, …, pn, h are n-ary predicates
• pi[X] is an application of a predicate to first-order terms
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CHC Satisfiability

A model of a set of clauses ¦ is an interpretation of each predicate pi
that makes all clauses in ¦ valid

A set of clauses is satisfiable if it has a model, and is unsatisfiable
otherwise 

Given a theory A, a model M is A-definable, it each pi in M is definable 
by a formula Ãi in A

In the context of program verification
• a program satisfies a property iff corresponding CHCs are satisfiable
• verification certificates correspond to models
• counterexamples correspond to derivations of false
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IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property 

directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to 
SMT)
• A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit 

Predicate Abstraction. TACAS 2014
• J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014
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IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate 

summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive 

Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 

2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification 

of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 
2015
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INIT

Safety Verification Problem

Bad

Is Bad reachable?
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INIT

Safety Verification Problem

Bad

Is Bad reachable?

……

Yes. There is a counterexample!
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INIT

Safety Verification Problem

Bad

Is Bad reachable?

Inv

No. There is an inductive invariant
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Programs, Cexs, Invariants

A program P = (V, Init, Tr, Bad)
• Notation: F(X) = 9 u . (X ∧ Tr) ⋁ Init

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^
 

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN ) 6) ?

Init ) Inv

Inv(X) ^ Tr(X,X 0) ) Inv(X 0)

Inv ) ¬Bad
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IC3/PDR Overview

Input: Safety problem hInit(X),Tr(X,X 0
),Bad(X)i

F0  Init ;N  0 repeat
G PdrMkSafe([F0, . . . , FN ],Bad)
if G = [ ] then return Reachable;
80  i  N · Fi  G[i]

F0, . . . , FN  PdrPush([F0, . . . , FN ])

if 90  i < N · Fi = Fi+1 then return Unreachable;

N  N + 1 ; FN  ;
until 1;

bounded 
safety

strengthen 
result
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IC3/PDR In Pictures: MkSafe MkSafe

𝑥 = 1, 𝑦 = 0𝑥 = 3, 𝑦 = 0

𝑥 ≠ 3 ∨ 𝑦 ≠ 0
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Inductive

IC3/PDR in Pictures: Push Push

Algorithm Invariants
Fi → ¬ Bad Init → Fi

Fi → Fi+1 Fi∧ Tr → Fi+1
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IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
• terminate the algorithm when a solution is found

Unfold
• increase search bound by 1

Candidate
• choose a bad state in the last frame

Decide
• extend a cex (backward) consistent with the current frame
• choose an assignment s s.t. (s ⋀ Ri ⋀ Tr ⋀ cex’) is SAT

Conflict
• construct a lemma to explain why cex cannot be extended
• Find a clause L s.t. L⇒¬cex ,  Init⇒ L , and L ⋀ Ri ⋀ Tr⇒ L’

Induction
• propagate a lemma as far into the future as possible
• (optionally) strengthen by dropping literals 
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Decide Rule: Generalizing Predecessors

Decide rule chooses a (generalized) predecessor m0 of m that is 
consistent with the current frame

Simplest implementation is to extract a predecessor mo from a 
satisfying assignment of M ⊧ Fi ⋀ Tr ⋀ m’
• m0 cab be further generalized using ternary simulation by dropping literals 

and checking that m’ remains forced

An alternative is to let m0 be an implicant (not necessarily prime) of       
Fi ⋀ 9 X’.(Tr ⋀ m’)
• finding a prime implicant is difficult because of the existential quantification
• we settle for an arbitrary implicant. The side conditions ensure it is not trivial

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0

, then add hm0, ii to Q .
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Conflict Rule: Inductive Generalization

A clause φ is inductive relative to F iff
• Init → φ (Initialization)       and    φ ⋀ F ⋀ Tr → φ (Inductiveness)

Implemented by first letting φ = ¬m and generalizing φ by iteratively 
dropping literals while checking the inductiveness condition

Theorem: Let F0, F1, …, FN be a valid IC3 trace. If φ is inductive relative 
to Fi, 0 · i < N, then, for all j · i, φ is inductive relative to Fj.
• Follows from the monotonicity of the trace
– if j < i then Fj → Fi

– if Fj → Fi then (φ ⋀ Fi ⋀ Tr → φ) → (φ ⋀ Fj ⋀ Tr → φ’)

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that ' ! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0
, then

add ' to Fj , for j  i+ 1.
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From Propositional PDR to Solving CHC

Infinite Theories
• infinitely many satisfying assignments
• can’t simply enumerate (in decide)
• can’t block one assignment at a time (in conflict)

Non-Linear Horn Clauses
• multiple predecessors (in decide)

The problem is undecidable in general, but we want an algorithm that 
makes progress
• don’t get stuck in a decidable fragment
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PDR FOR ARITHMETIC CHC
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IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
• terminate the algorithm when a solution is found

Unfold
• increase search bound by 1

Candidate
• choose a bad state in the last frame

Decide
• extend a cex (backward) consistent with the current frame
• choose an assignment s s.t. (s ⋀ Ri ⋀ Tr ⋀ cex’) is SAT

Conflict
• construct a lemma to explain why cex cannot be extended
• Find a clause L s.t. L⇒¬cex ,  Init⇒ L , and L ⋀ Ri ⋀ Tr⇒ L’

Induction
• propagate a lemma as far into the future as possible
• (optionally) strengthen by dropping literals 

Theory 
dependent
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ARITHMETIC CONFLICT
Looking for φ’

((Fi ^ Tr) _ Init 0) ) '0

'0 ) ¬c0
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Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A ) ¬B, then 
there exists a FO formula I, denoted ITP(A, B), such that

A ) I        I ) ¬B    
atoms(I) 2 atoms(A) ∩ atoms(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a 
resolution proof of unsatisfiability of A∧B

In Model Checking, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states
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A

Craig Interpolant

B

I
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Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]
• I 2 ITP (A, B)  then ¬I 2 ITP (B, A)
• if A is syntactically convex (a monomial), then I is convex
• if B is syntactically convex, then I is co-convex (a clause)
• if A and B are syntactically convex, then I is a half-space

A = F(Ri)

I = interpolant
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Arithmetic Conflict

Counterexample is blocked using Craig Interpolation
• summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
• weaker than IC3/PDR
• inductive generalization for arithmetic is still an open problem

Notation: F(A) = (A(X) ^ Tr) _ Init(X 0
).

Conflict For 0  i < N , given a counterexample hP, i+ 1i 2 Q s.t.

F(Fi) ^ P 0
is unsatisfiable, add P "

= Itp(F(Fi), P 0
) to Fj for j  i+ 1.
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IC3/PDR In Pictures: MkSafe MkSafe

𝑥 = 1, 𝑦 = 0𝑥 = 3, 𝑦 = 0

𝑥 ≠ 3 ∨ 𝑦 ≠ 0𝑥 < 𝑦
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Computing Interpolants for IC3/PDR

Much simpler than general interpolation problem for A ∧ B
• B is always a conjunction of literals
• A is dynamically split into DNF by the SMT solver
• DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a 
DPLL(T) proof produced by the solver
• every theory-lemma that mixes B-pure literals with other literals is interpolated 

to produce a single literal in the final solution
• interpolation is restricted to clauses of the form (∧Bi⇒ ⋁ Aj)

Interpolating (UNSAT) Cores (ongoing work with Bernhard Gleiss)
• improve interpolation algorithms and definitions to the specific case of PDR
• classical interpolation focuses on eliminating non-shared literals
• in PDR, the focus is on finding good generalizations
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ARITHMETIC DECIDE
Computing a predecessor s of a counterexample c

s ✓ pre(c)

⌘ s ) 9X 0 . T r ^ c0
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Model Based Projection

Definition: Let φ be a formula, U a set of variables, and M a 
model of φ. Then Ã = MBP (U, M, φ) is a Model Based 
Projection of U, M and φ iff
1. Ã is a monomial            
2. Vars(Ã)   µ Vars(φ) \ U
3. M ⊧ Ã
4. Ã) 9 U . φ

Model Based Projection under-approximates existential quantifier 
elimination relative to a given model (i.e., satisfying assignment)
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Loos-Weispfenning Quantifier Elimination

φ is LRA formula in Negation Normal Form
E is set of x=t atoms, U set of x < t atoms, and L set of s < x atoms
There are no other occurrences of x in φ[x]

where 

The case of lower bounds is dual 
• using –∞ and t+𝜖

(x < t

0)[t� ✏] ⌘ t  t

0 (s < x)[t� ✏] ⌘ s < t (x = e)[t� ✏] ⌘ false

9x.'[x] ⌘ '[1] _
_

x=t2E

'[t] _
_

x<t2U

'[t� ✏]



34 34

1. Find  model M of φ (x,y)

 (y) ⌘ 9x · '(x, y)Expensive to find a quantifier-free

9x · '(x, y)Models of 2. Compute a partition containing M

Model Based Projection

M
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MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model
• Use the Model to uniquely pick a substitution term for x

MBP techniques have been developed for 
• Linear Rational Arithmetic, Linear Integer Arithmetic
• Theories of Arrays, and Recursive Data Types

Mbp

x

(M,x = s ^ L) = L[x s]

Mbp

x

(M,x 6= s ^ L) = Mbp

x

(M, s < x ^ L) if M(x) > M(s)

Mbp

x

(M,x 6= s ^ L) = Mbp

x

(M,�s < �x ^ L) if M(x) < M(s)

Mbp

x

(M,

^

i

s

i

< x ^
^

j

x < t

j

) =
^

i

s

i

< t0 ^
^

j

t0  t

j

where M(t0) M(t
i

), 8i
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Arithmetic Decide

Compute a predecessor using an under-approximation of quantifier 
elimination – called Model Based Projection

To ensure progress, Decide must be finite
• finitely many possible predecessors when all other arguments are fixed

Alternatives
• Completeness can follow from the Conflict rule only
– for Linear Arithmetic this means using Fourier-Motzkin implicants

• Completeness can follow from an interaction of Decide and Conflict

Notation: F(A) = (A(X) ^ Tr(X,X 0
) _ Init(X 0

).

Decide If hP, i+ 1i 2 Q and there is a model m(X,X 0
) s.t. m |= F(Fi) ^ P 0

,

add hP#, ii to Q , where P# = MBP(X 0,m,F(Fi) ^ P 0
).
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PDR FOR NON-LINEAR CHC
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Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is 
reducible to satisfiability of THREE clauses of the form

where, X’ = {x’ | x 2 X}, Xo = {xo | x 2 X}, P a fresh predicate, and Init, 
Bad, and Tr are constraints

Init(X) ! P (X)

P (X) ! Bad(X)

P (X) ^ P (Xo) ^ Tr(X,Xo, X 0) ! P (X 0)

!
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Generalized GPDR
counterexample 

is a tree

two 
predecessors

theory-aware 
Conflict

Input: A safety problem hInit(X),Tr(X,Xo, X 0
),Bad(X)i.

Output: Unreachable or Reachable
Data: A cex queue Q , where a cex hc0, . . . , cki 2 Q is a tuple, each

c
j

= hm, ii, m is a cube over state variables, and i 2 N. A level N .

A trace F0, F1, . . .
Notation: F(A,B) = Init(X 0

) _ (A(X) ^B(Xo

) ^ Tr), and
F(A) = F(A,A)
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · F

i

= ;
Require: Init ! ¬Bad
repeat

Unreachable If there is an i < N s.t. F
i

✓ F
i+1 return Unreachable.

Reachable if exists t 2 Q s.t. for all hc, ii 2 t, i = 0, return Reachable.

Unfold If F
N

! ¬Bad , then set N  N + 1 and Q ;.

Candidate If for some m, m! F
N

^ Bad , then add hhm,Nii to Q .

Decide If there is a t 2 Q, with c = hm, i+ 1i 2 t, m1 ! m, l0 ^mo

0 ^m0
1 is

satisfiable, and l0 ^mo

0 ^m0
1 ! F

i

^ F o

i

^Tr ^m0
then add

ˆt to Q, where

ˆt = t with c replaced by two tuples hl0, ii, and hm0, ii.

Conflict If there is a t 2 Q with c = hm, i+ 1i 2 t, s.t. F(F
i

) ^m0
is

unsatisfiable. Then, add ' = Itp(F(F
i

),m0
) to F

j

, for all 0  j  i+ 1.

Leaf If there is t 2 Q with c = hm, ii 2 t, 0 < i < N and F(F
i�1) ^m0

is

unsatisfiable, then add

ˆt to Q , where

ˆt is t with c replaced by hm, i+ 1i.

Induction For 0  i < N and a clause (' _  ) 2 F
i

, if ' 62 F
i+1,

F(� ^ F
i

)! �0, then add ' to F
j

, for all j  i+ 1.

until 1;
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Counterexamples to non-linear CHC

A set S of CHC is unsatisfiable iff S can derive FALSE
• we call such a derivation a counterexample

For linear CHC, the counterexample is a path 
For non-linear CHC, the counterexample is a tree

FALSE

s’4 2 s2∧ so
3∧ Tr

s2 2 Init s3 2 Init

s’5 2 s0∧ so
1∧ Tr

s0 2 Init s1 2 Init
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GPDR Search Space

At each step, one CTI in the frontier is chosen and its two children are 
expanded

Le
ve

l
Badqueue 

element
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GPDR: Deciding predecessors

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel
• e.g., BFS or DFS exploration order

Number of predecessors is unbounded
• incomplete even for finite problem (i.e., non-recursive CHC)

No caching/summarization of previous decisions
• worst-case exponential for Boolean Push-Down Systems 

Decide If there is a t 2 Q, with c = hm, i+ 1i 2 t, m1 ! m, l0 ^mo

0 ^m0
1 is

satisfiable, and l0 ^mo

0 ^m0
1 ! F

i

^ F o

i

^Tr ^m0
then add

ˆt to Q, where

ˆt = t with c replaced by two tuples hl0, ii, and hm0, ii.
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Spacer
Same queue as 

in IC3/PDR

Same Conflict as 
in APDR/GPDR

Three variants of 
Decide

Cache Reachable 
states

Input: A safety problem hInit(X),Tr(X,Xo, X 0
),Bad(X)i.

Output: Unreachable or Reachable
Data: A cex queue Q , where a cex c 2 Q is a pair hm, ii, m is a cube

over state variables, and i 2 N. A level N . A set of reachable

states Reach. A trace F0, F1, . . .
Notation: F(A,B) = Init(X 0

) _ (A(X) ^B(Xo

) ^ Tr), and
F(A) = F(A,A)
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · F

i

= ;, Reach = Init
Require: Init ! ¬Bad
repeat

Unreachable If there is an i < N s.t. F
i

✓ F
i+1 return Unreachable.

Reachable If Reach ^ Bad is satisfiable, return Reachable.

Unfold If F
N

! ¬Bad , then set N  N + 1 and Q ;.

Candidate If for some m, m! F
N

^ Bad , then add hm,Ni to Q .

Successor If there is hm, i+ 1i 2 Q and a model M M |=  , where
 = F(_Reach) ^m0

. Then, add s to Reach, where
s0 2MBP({X,Xo}, ).

DecideMust If there is hm, i+ 1i 2 Q , and a model M M |=  , where
 = F(F

i

,_Reach) ^m0
. Then, add s to Q , where

s 2MBP({Xo, X 0}, ).

DecideMay If there is hm, i+ 1i 2 Q and a model M M |=  , where
 = F(F

i

) ^m0
. Then, add s to Q , where so 2MBP({X,X 0}, ).

Conflict If there is an hm, i+ 1i 2 Q , s.t. F(F
i

) ^m0
is unsatisfiable. Then,

add ' = Itp(F(F
i

),m0
) to F

j

, for all 0  j  i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and F(F
i�1) ^m0

is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0  i < N and a clause (' _  ) 2 F
i

, if ' 62 F
i+1,

F(� ^ F
i

)! �0, then add ' to F
j

, for all j  i+ 1.

until 1;
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SPACER Search Space

Unfold the derivation tree in a fixed depth-first order
• use MBP to decide on counterexamples

Learn new facts (reachable states) on the way up
• use MBP to propagate facts bottom up

Le
ve

l
Bad
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Successor Rule: Computing Reachable States

Computing new reachable states by under-approximating forward image 
using MBP
• since MBP is finite, guarantee to exhaust all reachable states

Second use of MBP
• orthogonal to the use of MBP in Decide
• REACH can contain auxiliary variables, but might get too large

For Boolean CHC, the number of reachable states is bounded
• complexity is polynomial in the number of states
• same as reachability in Push Down Systems

Successor If there is hm, i+ 1i 2 Q and a model M M |=  , where
 = F(_Reach) ^m0

. Then, add s to Reach, where
s0 2 MBP({X,Xo}, ).
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Decide Rule: Must and May refinement

DecideMust
• use computed summary to skip over a call site

DecideMay
• use over-approximation of a calling context to guess an approximation of the 

call-site
• the call-site either refutes the approximation (Conflict) or refines it with a 

witness (Successor)

DecideMust If there is hm, i+ 1i 2 Q , and a model M M |=  , where
 = F(F

i

,_Reach) ^m0
. Then, add s to Q , where

s 2 MBP({Xo, X 0}, ).

DecideMay If there is hm, i+ 1i 2 Q and a model M M |=  , where
 = F(F

i

) ^m0
. Then, add s to Q , where so 2 MBP({X,X 0}, ).
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Conclusion and Future Work

Spacer: an SMT-based procedure for deciding CHC modulo theories
• extends IC3/PDR from SAT to SMT
• interpolation to over-approximate a possible model
• model-based projection to summarize derivations

The curse of interpolation
• interpolation is fantastic at quickly discovering good lemmas
• BUT it is highly unstable: small changes to input (or code) drastically change 

what is discovered
• what is easy today might be difficult tomorrow L

Harnessing the power of parallelism (see FMCAD’17)
• Spacer is highly non-deterministic: many sound choices for bounded 

exploration and lemma generation
• Lemmas (invariants) are easy to share between multiple instances
• Problems are naturally partitioned in Decide rule
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Farkas Lemma

Let M = t1 ¸ b1∧… ∧ tn ¸ bn, where ti are linear terms and bi are 
constants M is unsatisfiable iff 0 ¸ 1 is derivable from M by resolution 

M is unsatisfiable iff M ` 0 ¸ 1
• e.g., x + y > 10, -x > 5, -y > 3 ` (x+y-x-y) > (10 + 5 + 3) ` 0 > 18

M is unsatisfiable iff there exist Farkas coefficients g1, …, gn such that 
• gi ¸ 0
• g1£t1 + … + gn£tn = 0
• g1£b1 + … + gn£bn ¸ 1
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Interpolation for Linear Real Arithmetic

Let M = A ∧ B be UNSAT, where
• A = t1 ¸ b1∧… ∧ ti ¸ bi, and 
• B = ti+1 ¸ bi∧… ∧ tn ¸ bn

Let g1, …, gn be the Farkas coefficients witnessing UNSAT

Then
• g1£(t1 ¸ b1) + … + gi£(ti ¸ bi) is an interpolant between A and B
• gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn) is an interpolant between B and A

• g1£t1 +…+gi£ti = - (gi+1£ti+1 + … + gn£tn)
• ¬(gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn)) is an interpolant between A and B
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Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]
• I 2 ITP (A, B)  then ¬I 2 ITP (B, A)
• if A is syntactically convex (a monomial), then I is convex
• if B is syntactically convex, then I is co-convex (a clause)
• if A and B are syntactically convex, then I is a half-space

A = F(Ri)

I = lemma


