
Solving Constrained Horn Clauses by
Property Directed Reachability

Arie Gurfinkel

HCVS 2017: 4th Workshop on Horn Clauses for
Verification and Synthesis

2 2

Automated Verification

Deductive Verification
• A user provides a program and a verification certificate
– e.g., inductive invariant, pre- and post-conditions, function summaries, etc.

• A tool automatically checks validity of the certificate
– this is not easy! (might even be undecidable)

• Verification is manual but machine certified

Algorithmic Verification (My research area)
• A user provides a program and a desired specification
– e.g., program never writes outside of allocated memory

• A tool automatically checks validity of the specification
– and generates a verification certificate if the program is correct
– and generates a counterexample if the program is not correct

• Verification is completely automatic – “push-button”

3 3

Algorithmic Logic-Based Verification

Program + Spec

Verification
Condition (in Logic)

Decision Procedure

Yes No

Safety
Properties

Constrained
Horn Clauses

Spacer

4 4

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
• now part of Z3
– https://github.com/Z3Prover/z3 since commit 72c4780
– use option fixedpoint.engine=spacer

• development version at http://bitbucket.org/spacer/code
Supported SMT-Theories
• Best-effort support for many SMT-theories
– data-structures, bit-vectors, non-linear arithmetic

• Linear Real and Integer Arithmetic
• Quantifier-free theory of arrays
• Universally quantified theory of arrays + arithmetic (work in progress)

Support for Non-Linear CHC
• for procedure summaries in inter-procedural verification conditions
• for compositional reasoning: abstraction, assume-guarantee, thread modular,

etc.

5 5

Contributors

Arie Gurfinkel
Anvesh Komuravelli

Nikolaj Bjorner
(Krystof Hoder)
Yakir Vizel
Bernhard Gleiss
Matteo Marescotti

6 6

Logic-based Algorithmic Verification

Spacer

CPR

Simulink

Lustre

Java

C/C++ concurrent
/distributed

systems

T2Termination
for C

SeaHorn

7 7

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

8 V . (Á∧ p1[X1] ∧…∧ pn[Xn] ® h[X]),
where
• A is a background theory (e.g., Linear Arithmetic, Arrays,

Bit-Vectors, or combinations of the above)
• Á is a constrained in the background theory A
• p1, …, pn, h are n-ary predicates
• pi[X] is an application of a predicate to first-order terms

8 8

CHC Satisfiability

A model of a set of clauses ¦ is an interpretation of each predicate pi
that makes all clauses in ¦ valid

A set of clauses is satisfiable if it has a model, and is unsatisfiable
otherwise

Given a theory A, a model M is A-definable, it each pi in M is definable
by a formula Ãi in A

In the context of program verification
• a program satisfies a property iff corresponding CHCs are satisfiable
• verification certificates correspond to models
• counterexamples correspond to derivations of false

9 9

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property

directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to
SMT)
• A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit

Predicate Abstraction. TACAS 2014
• J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014

10 10

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate

summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive

Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI

2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification

of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD
2015

11 11

INIT

Safety Verification Problem

Bad

Is Bad reachable?

12 12

INIT

Safety Verification Problem

Bad

Is Bad reachable?

……

Yes. There is a counterexample!

13 13

INIT

Safety Verification Problem

Bad

Is Bad reachable?

Inv

No. There is an inductive invariant

14 14

Programs, Cexs, Invariants

A program P = (V, Init, Tr, Bad)
• Notation: F(X) = 9 u . (X ∧ Tr) ⋁ Init

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN) 6) ?

Init) Inv

Inv(X) ^ Tr(X,X 0)) Inv(X 0)

Inv) ¬Bad

15 15

IC3/PDR Overview

Input: Safety problem hInit(X),Tr(X,X 0
),Bad(X)i

F0 Init ;N 0 repeat
G PdrMkSafe([F0, . . . , FN],Bad)
if G = [] then return Reachable;
80  i  N · Fi G[i]

F0, . . . , FN PdrPush([F0, . . . , FN])

if 90  i < N · Fi = Fi+1 then return Unreachable;

N N + 1 ; FN ;
until 1;

bounded
safety

strengthen
result

16 16

IC3/PDR In Pictures: MkSafe MkSafe

𝑥 = 1, 𝑦 = 0𝑥 = 3, 𝑦 = 0

𝑥 ≠ 3 ∨ 𝑦 ≠ 0

17 17

Inductive

IC3/PDR in Pictures: Push Push

Algorithm Invariants
Fi → ¬ Bad Init → Fi

Fi → Fi+1 Fi∧ Tr → Fi+1

18 18

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
• terminate the algorithm when a solution is found

Unfold
• increase search bound by 1

Candidate
• choose a bad state in the last frame

Decide
• extend a cex (backward) consistent with the current frame
• choose an assignment s s.t. (s ⋀ Ri ⋀ Tr ⋀ cex’) is SAT

Conflict
• construct a lemma to explain why cex cannot be extended
• Find a clause L s.t. L⇒¬cex , Init⇒ L , and L ⋀ Ri ⋀ Tr⇒ L’

Induction
• propagate a lemma as far into the future as possible
• (optionally) strengthen by dropping literals

19 19

Decide Rule: Generalizing Predecessors

Decide rule chooses a (generalized) predecessor m0 of m that is
consistent with the current frame

Simplest implementation is to extract a predecessor mo from a
satisfying assignment of M ⊧ Fi ⋀ Tr ⋀ m’
• m0 cab be further generalized using ternary simulation by dropping literals

and checking that m’ remains forced

An alternative is to let m0 be an implicant (not necessarily prime) of
Fi ⋀ 9 X’.(Tr ⋀ m’)
• finding a prime implicant is difficult because of the existential quantification
• we settle for an arbitrary implicant. The side conditions ensure it is not trivial

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0

, then add hm0, ii to Q .

20 20

Conflict Rule: Inductive Generalization

A clause φ is inductive relative to F iff
• Init → φ (Initialization) and φ ⋀ F ⋀ Tr → φ (Inductiveness)

Implemented by first letting φ = ¬m and generalizing φ by iteratively
dropping literals while checking the inductiveness condition

Theorem: Let F0, F1, …, FN be a valid IC3 trace. If φ is inductive relative
to Fi, 0 · i < N, then, for all j · i, φ is inductive relative to Fj.
• Follows from the monotonicity of the trace
– if j < i then Fj → Fi

– if Fj → Fi then (φ ⋀ Fi ⋀ Tr → φ) → (φ ⋀ Fj ⋀ Tr → φ’)

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that ' ! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0
, then

add ' to Fj , for j  i+ 1.

21 21

From Propositional PDR to Solving CHC

Infinite Theories
• infinitely many satisfying assignments
• can’t simply enumerate (in decide)
• can’t block one assignment at a time (in conflict)

Non-Linear Horn Clauses
• multiple predecessors (in decide)

The problem is undecidable in general, but we want an algorithm that
makes progress
• don’t get stuck in a decidable fragment

22 22

PDR FOR ARITHMETIC CHC

23 23

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
• terminate the algorithm when a solution is found

Unfold
• increase search bound by 1

Candidate
• choose a bad state in the last frame

Decide
• extend a cex (backward) consistent with the current frame
• choose an assignment s s.t. (s ⋀ Ri ⋀ Tr ⋀ cex’) is SAT

Conflict
• construct a lemma to explain why cex cannot be extended
• Find a clause L s.t. L⇒¬cex , Init⇒ L , and L ⋀ Ri ⋀ Tr⇒ L’

Induction
• propagate a lemma as far into the future as possible
• (optionally) strengthen by dropping literals

Theory
dependent

24 24

ARITHMETIC CONFLICT
Looking for φ’

((Fi ^ Tr) _ Init 0)) '0

'0) ¬c0

25 25

Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A) ¬B, then
there exists a FO formula I, denoted ITP(A, B), such that

A) I I) ¬B
atoms(I) 2 atoms(A) ∩ atoms(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a
resolution proof of unsatisfiability of A∧B

In Model Checking, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

26 26

A

Craig Interpolant

B

I

27 27

Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]
• I 2 ITP (A, B) then ¬I 2 ITP (B, A)
• if A is syntactically convex (a monomial), then I is convex
• if B is syntactically convex, then I is co-convex (a clause)
• if A and B are syntactically convex, then I is a half-space

A = F(Ri)

I = interpolant

28 28

Arithmetic Conflict

Counterexample is blocked using Craig Interpolation
• summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
• weaker than IC3/PDR
• inductive generalization for arithmetic is still an open problem

Notation: F(A) = (A(X) ^ Tr) _ Init(X 0
).

Conflict For 0  i < N , given a counterexample hP, i+ 1i 2 Q s.t.

F(Fi) ^ P 0
is unsatisfiable, add P "

= Itp(F(Fi), P 0
) to Fj for j  i+ 1.

29 29

IC3/PDR In Pictures: MkSafe MkSafe

𝑥 = 1, 𝑦 = 0𝑥 = 3, 𝑦 = 0

𝑥 ≠ 3 ∨ 𝑦 ≠ 0𝑥 < 𝑦

30 30

Computing Interpolants for IC3/PDR

Much simpler than general interpolation problem for A ∧ B
• B is always a conjunction of literals
• A is dynamically split into DNF by the SMT solver
• DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a
DPLL(T) proof produced by the solver
• every theory-lemma that mixes B-pure literals with other literals is interpolated

to produce a single literal in the final solution
• interpolation is restricted to clauses of the form (∧Bi⇒ ⋁ Aj)

Interpolating (UNSAT) Cores (ongoing work with Bernhard Gleiss)
• improve interpolation algorithms and definitions to the specific case of PDR
• classical interpolation focuses on eliminating non-shared literals
• in PDR, the focus is on finding good generalizations

31 31

ARITHMETIC DECIDE
Computing a predecessor s of a counterexample c

s ✓ pre(c)

⌘ s) 9X 0 . T r ^ c0

32 32

Model Based Projection

Definition: Let φ be a formula, U a set of variables, and M a
model of φ. Then Ã = MBP (U, M, φ) is a Model Based
Projection of U, M and φ iff
1. Ã is a monomial
2. Vars(Ã) µ Vars(φ) \ U
3. M ⊧ Ã
4. Ã) 9 U . φ

Model Based Projection under-approximates existential quantifier
elimination relative to a given model (i.e., satisfying assignment)

33 33

Loos-Weispfenning Quantifier Elimination

φ is LRA formula in Negation Normal Form
E is set of x=t atoms, U set of x < t atoms, and L set of s < x atoms
There are no other occurrences of x in φ[x]

where

The case of lower bounds is dual
• using –∞ and t+𝜖

(x < t

0)[t� ✏] ⌘ t  t

0 (s < x)[t� ✏] ⌘ s < t (x = e)[t� ✏] ⌘ false

9x.'[x] ⌘ '[1] _
_

x=t2E

'[t] _
_

x<t2U

'[t� ✏]

34 34

1. Find model M of φ (x,y)

 (y) ⌘ 9x · '(x, y)Expensive to find a quantifier-free

9x · '(x, y)Models of 2. Compute a partition containing M

Model Based Projection

M

35 35

MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model
• Use the Model to uniquely pick a substitution term for x

MBP techniques have been developed for
• Linear Rational Arithmetic, Linear Integer Arithmetic
• Theories of Arrays, and Recursive Data Types

Mbp

x

(M,x = s ^ L) = L[x s]

Mbp

x

(M,x 6= s ^ L) = Mbp

x

(M, s < x ^ L) if M(x) > M(s)

Mbp

x

(M,x 6= s ^ L) = Mbp

x

(M,�s < �x ^ L) if M(x) < M(s)

Mbp

x

(M,

^

i

s

i

< x ^
^

j

x < t

j

) =
^

i

s

i

< t0 ^
^

j

t0  t

j

where M(t0) M(t
i

), 8i

36 36

Arithmetic Decide

Compute a predecessor using an under-approximation of quantifier
elimination – called Model Based Projection

To ensure progress, Decide must be finite
• finitely many possible predecessors when all other arguments are fixed

Alternatives
• Completeness can follow from the Conflict rule only
– for Linear Arithmetic this means using Fourier-Motzkin implicants

• Completeness can follow from an interaction of Decide and Conflict

Notation: F(A) = (A(X) ^ Tr(X,X 0
) _ Init(X 0

).

Decide If hP, i+ 1i 2 Q and there is a model m(X,X 0
) s.t. m |= F(Fi) ^ P 0

,

add hP#, ii to Q , where P# = MBP(X 0,m,F(Fi) ^ P 0
).

37 37

PDR FOR NON-LINEAR CHC

38 38

Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is
reducible to satisfiability of THREE clauses of the form

where, X’ = {x’ | x 2 X}, Xo = {xo | x 2 X}, P a fresh predicate, and Init,
Bad, and Tr are constraints

Init(X) ! P (X)

P (X) ! Bad(X)

P (X) ^ P (Xo) ^ Tr(X,Xo, X 0) ! P (X 0)

!

39 39

Generalized GPDR
counterexample

is a tree

two
predecessors

theory-aware
Conflict

Input: A safety problem hInit(X),Tr(X,Xo, X 0
),Bad(X)i.

Output: Unreachable or Reachable
Data: A cex queue Q , where a cex hc0, . . . , cki 2 Q is a tuple, each

c
j

= hm, ii, m is a cube over state variables, and i 2 N. A level N .

A trace F0, F1, . . .
Notation: F(A,B) = Init(X 0

) _ (A(X) ^B(Xo

) ^ Tr), and
F(A) = F(A,A)
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · F

i

= ;
Require: Init ! ¬Bad
repeat

Unreachable If there is an i < N s.t. F
i

✓ F
i+1 return Unreachable.

Reachable if exists t 2 Q s.t. for all hc, ii 2 t, i = 0, return Reachable.

Unfold If F
N

! ¬Bad , then set N N + 1 and Q ;.

Candidate If for some m, m! F
N

^ Bad , then add hhm,Nii to Q .

Decide If there is a t 2 Q, with c = hm, i+ 1i 2 t, m1 ! m, l0 ^mo

0 ^m0
1 is

satisfiable, and l0 ^mo

0 ^m0
1 ! F

i

^ F o

i

^Tr ^m0
then add

ˆt to Q, where

ˆt = t with c replaced by two tuples hl0, ii, and hm0, ii.

Conflict If there is a t 2 Q with c = hm, i+ 1i 2 t, s.t. F(F
i

) ^m0
is

unsatisfiable. Then, add ' = Itp(F(F
i

),m0
) to F

j

, for all 0  j  i+ 1.

Leaf If there is t 2 Q with c = hm, ii 2 t, 0 < i < N and F(F
i�1) ^m0

is

unsatisfiable, then add

ˆt to Q , where

ˆt is t with c replaced by hm, i+ 1i.

Induction For 0  i < N and a clause (' _) 2 F
i

, if ' 62 F
i+1,

F(� ^ F
i

)! �0, then add ' to F
j

, for all j  i+ 1.

until 1;

40 40

Counterexamples to non-linear CHC

A set S of CHC is unsatisfiable iff S can derive FALSE
• we call such a derivation a counterexample

For linear CHC, the counterexample is a path
For non-linear CHC, the counterexample is a tree

FALSE

s’4 2 s2∧ so
3∧ Tr

s2 2 Init s3 2 Init

s’5 2 s0∧ so
1∧ Tr

s0 2 Init s1 2 Init

41 41

GPDR Search Space

At each step, one CTI in the frontier is chosen and its two children are
expanded

Le
ve

l
Badqueue

element

42 42

GPDR: Deciding predecessors

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel
• e.g., BFS or DFS exploration order

Number of predecessors is unbounded
• incomplete even for finite problem (i.e., non-recursive CHC)

No caching/summarization of previous decisions
• worst-case exponential for Boolean Push-Down Systems

Decide If there is a t 2 Q, with c = hm, i+ 1i 2 t, m1 ! m, l0 ^mo

0 ^m0
1 is

satisfiable, and l0 ^mo

0 ^m0
1 ! F

i

^ F o

i

^Tr ^m0
then add

ˆt to Q, where

ˆt = t with c replaced by two tuples hl0, ii, and hm0, ii.

43 43

Spacer
Same queue as

in IC3/PDR

Same Conflict as
in APDR/GPDR

Three variants of
Decide

Cache Reachable
states

Input: A safety problem hInit(X),Tr(X,Xo, X 0
),Bad(X)i.

Output: Unreachable or Reachable
Data: A cex queue Q , where a cex c 2 Q is a pair hm, ii, m is a cube

over state variables, and i 2 N. A level N . A set of reachable

states Reach. A trace F0, F1, . . .
Notation: F(A,B) = Init(X 0

) _ (A(X) ^B(Xo

) ^ Tr), and
F(A) = F(A,A)
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · F

i

= ;, Reach = Init
Require: Init ! ¬Bad
repeat

Unreachable If there is an i < N s.t. F
i

✓ F
i+1 return Unreachable.

Reachable If Reach ^ Bad is satisfiable, return Reachable.

Unfold If F
N

! ¬Bad , then set N N + 1 and Q ;.

Candidate If for some m, m! F
N

^ Bad , then add hm,Ni to Q .

Successor If there is hm, i+ 1i 2 Q and a model M M |= , where
 = F(_Reach) ^m0

. Then, add s to Reach, where
s0 2MBP({X,Xo},).

DecideMust If there is hm, i+ 1i 2 Q , and a model M M |= , where
 = F(F

i

,_Reach) ^m0
. Then, add s to Q , where

s 2MBP({Xo, X 0},).

DecideMay If there is hm, i+ 1i 2 Q and a model M M |= , where
 = F(F

i

) ^m0
. Then, add s to Q , where so 2MBP({X,X 0},).

Conflict If there is an hm, i+ 1i 2 Q , s.t. F(F
i

) ^m0
is unsatisfiable. Then,

add ' = Itp(F(F
i

),m0
) to F

j

, for all 0  j  i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and F(F
i�1) ^m0

is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0  i < N and a clause (' _) 2 F
i

, if ' 62 F
i+1,

F(� ^ F
i

)! �0, then add ' to F
j

, for all j  i+ 1.

until 1;

44 44

SPACER Search Space

Unfold the derivation tree in a fixed depth-first order
• use MBP to decide on counterexamples

Learn new facts (reachable states) on the way up
• use MBP to propagate facts bottom up

Le
ve

l
Bad

45 45

Successor Rule: Computing Reachable States

Computing new reachable states by under-approximating forward image
using MBP
• since MBP is finite, guarantee to exhaust all reachable states

Second use of MBP
• orthogonal to the use of MBP in Decide
• REACH can contain auxiliary variables, but might get too large

For Boolean CHC, the number of reachable states is bounded
• complexity is polynomial in the number of states
• same as reachability in Push Down Systems

Successor If there is hm, i+ 1i 2 Q and a model M M |= , where
 = F(_Reach) ^m0

. Then, add s to Reach, where
s0 2 MBP({X,Xo},).

46 46

Decide Rule: Must and May refinement

DecideMust
• use computed summary to skip over a call site

DecideMay
• use over-approximation of a calling context to guess an approximation of the

call-site
• the call-site either refutes the approximation (Conflict) or refines it with a

witness (Successor)

DecideMust If there is hm, i+ 1i 2 Q , and a model M M |= , where
 = F(F

i

,_Reach) ^m0
. Then, add s to Q , where

s 2 MBP({Xo, X 0},).

DecideMay If there is hm, i+ 1i 2 Q and a model M M |= , where
 = F(F

i

) ^m0
. Then, add s to Q , where so 2 MBP({X,X 0},).

47 47

Conclusion and Future Work

Spacer: an SMT-based procedure for deciding CHC modulo theories
• extends IC3/PDR from SAT to SMT
• interpolation to over-approximate a possible model
• model-based projection to summarize derivations

The curse of interpolation
• interpolation is fantastic at quickly discovering good lemmas
• BUT it is highly unstable: small changes to input (or code) drastically change

what is discovered
• what is easy today might be difficult tomorrow L

Harnessing the power of parallelism (see FMCAD’17)
• Spacer is highly non-deterministic: many sound choices for bounded

exploration and lemma generation
• Lemmas (invariants) are easy to share between multiple instances
• Problems are naturally partitioned in Decide rule

48 48

49 49

Farkas Lemma

Let M = t1 ¸ b1∧… ∧ tn ¸ bn, where ti are linear terms and bi are
constants M is unsatisfiable iff 0 ¸ 1 is derivable from M by resolution

M is unsatisfiable iff M ` 0 ¸ 1
• e.g., x + y > 10, -x > 5, -y > 3 ` (x+y-x-y) > (10 + 5 + 3) ` 0 > 18

M is unsatisfiable iff there exist Farkas coefficients g1, …, gn such that
• gi ¸ 0
• g1£t1 + … + gn£tn = 0
• g1£b1 + … + gn£bn ¸ 1

50 50

Interpolation for Linear Real Arithmetic

Let M = A ∧ B be UNSAT, where
• A = t1 ¸ b1∧… ∧ ti ¸ bi, and
• B = ti+1 ¸ bi∧… ∧ tn ¸ bn

Let g1, …, gn be the Farkas coefficients witnessing UNSAT

Then
• g1£(t1 ¸ b1) + … + gi£(ti ¸ bi) is an interpolant between A and B
• gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn) is an interpolant between B and A

• g1£t1 +…+gi£ti = - (gi+1£ti+1 + … + gn£tn)
• ¬(gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn)) is an interpolant between A and B

51 51

Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]
• I 2 ITP (A, B) then ¬I 2 ITP (B, A)
• if A is syntactically convex (a monomial), then I is convex
• if B is syntactically convex, then I is co-convex (a clause)
• if A and B are syntactically convex, then I is a half-space

A = F(Ri)

I = lemma

