Solving Constrained Horn Clauses by
Property Directed Reachability

Arie Gurfinkel

HCVS 2017: 4t Workshop on Horn Clauses for
Verification and Synthesis

2 WATERLOO

Automated Verification

Deductive Verification
e A user provides a program and a verification certificate
— e.g., inductive invariant, pre- and post-conditions, function summaries, etc.
» A tool automatically checks validity of the certificate
— this is not easy! (might even be undecidable)
 Verification is manual but machine certified

mgorithmic Verification (My research area) \
e A user provides a program and a desired specification

— e.g., program never writes outside of allocated memory
e A tool automatically checks validity of the specification

— and generates a verification certificate if the program is correct

— and generates a counterexample if the program is not correct
K-Verification is completely automatic — “push-button” /

UNIVERSITY OF

WATERLOO 5

Algorithmic Logic-Based Verification
Safety }

Properties

Program + Spec

Constrained
Horn Clauses

Verification
Condition (in Logic) Spacer J

2
J I5\

Decision Procedure

Yes No

IIIIIIIIIIII

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses

e now part of Z3
— https://qgithub.com/Z3Prover/z3 since commit 72c4780
— use option fixedpoint.engine=spacer

e development version at http://bitbucket.org/spacer/code
Supported SMT-Theories

o Best-effort support for many SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
e Linear Real and Integer Arithmetic
e Quantifier-free theory of arrays
o Universally quantified theory of arrays + arithmetic (work in progress)
Support for Non-Linear CHC
e for procedure summaries in inter-procedural verification conditions

 for compositional reasoning: abstraction, assume-guarantee, thread modular,
etc.

UNIVERSITY OF

WATERLOO

Contributors

Arie Gurfinkel
Anvesh Komuravelli

Nikolaj Bjorner
(Krystof Hoder)
Yakir Vizel
Bernhard Gleiss
Matteo Marescotti

eXA feater

er 6th
800 ¥Show 8:00

in: iRexStory

%) WATERLOO

Logic-based Algorithmic Verification

Simulink

""‘; concurrent
cose® /distributed
Qi systems
[Lustre g CPR

Termination
for C v
(4
Spacer
m

IIIIIIIIIIII

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

VV . (@ A palXi] A /A plXi] = hIX]),

where

e A is a background theory (e.g., Linear Arithmetic, Arrays,
Bit-Vectors, or combinations of the above)

e ¢ Iis a constrained in the background theory A

* P4, ..., P, N @re n-ary predicates
* p[X] is an application of a predicate to first-order terms

IIIIIIIIIIII

CHC Satisfiability

A model of a set of clauses II is an interpretation of each predicate p;
that makes all clauses in I valid

A set of clauses is satisfiable if it has a model, and is unsatisfiable
otherwise

Given a theory A, a model M is A-definable, it each p, in M is definable
by a formula v, in A

In the context of program verification

e a program satisfies a property iff corresponding CHCs are satisfiable
e verification certificates correspond to models

e counterexamples correspond to derivations of false

UNIVERSITY OF

WATERLOO

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
e Incremental Construction of Inductive Clauses for Indubitable Correctness
* A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

* Property Directed Reachability

 N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property
directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to
SMT)

e A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit
Predicate Abstraction. TACAS 2014

« J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). CAV 2014

UNIVERSITY OF

WATERLOO

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints

» Generalized Property Directed Reachability
o K. Hoder and N. Bjgrner: Generalized Property Directed Reachability. SAT 2012

@ACER: Non-Linear CHC with Arithmetic \

» fixes an incompleteness issue in GPDR and extends it with under-approximate
summaries

* A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive
Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
e simulating Numeric Abstract Interpretation with PDR
. glo%'(arner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI
ArrayPDR: CHC with constraints over Airthmetic + Arrays

e Required to model heap manipulating programs
e A. Komuravelli, N. Bjgrner, A. Gurfinkel, K. L. McMillan:Compositional Verification
ggli’gocedural Programs using Horn Clauses over Integers and Arrays. FMCAD

%) WATERLOO 10

Safety Verification Problem

Is Bad reachable?

IIIIIIIIIIII

11

Safety Verification Problem

Is Bad reachable?

Yes. There is a counterexample!

IIIIIIIIIIII

12

Safety Verification Problem

Is Bad reachable?

» 7)) @

No. There is an inductive invariant

IIIIIIIIIIII

13

Programs, Cexs, Invariants

A program P = (V, Init, 77, Bad)
e Notation: A(X)=3du . (X A Tr)V Init
P is UNSAFE if and only if there exists a number N s.t.
N—-1
Init(Xo) A (N Tr(Xi, Xm)) A Bad(Xn) #& L
1=0
P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init = Inv
Inductive
Inv(X)A Tr(X, X" = Inv(X')
Inv = —Bad Safe

IIIIIIIIIIII

%) WATERLOO

IC3/PDR Overview

bounded
safety

Input: Safety problem (Init(X), Tr(X, X'), Bad

Fo < Init ; N < O repeat
| G <+ PDRMKSAFE([Fy, . .., F], Bad) “ }
if G = || then return Reachable;

| F,...,EFy < PDRPUSH([Fp, ..., Fy]) }
if 30 <1 < N - F; = F; 11 then return Unreg hable;
N N+1:Fy 10 strengthen
until oo: —

IIIIIIIIIIII

%) WATERLOO 15

IC3/PDR In Pictures: MkSafe

O€

x=3,y=0

MkSafe

| |

I S

x*+3Vy+0

IIIIIIIIIIII

16

Push

IC3/PDR in Pictures: Push

<€ @) O\@(
< O O

Algorithm Invariants
F,»>-Bad Init->F,

Fi 2 Fiuq F; A Tr > Fiyy

Inductiv

IIIIIIIIIIII

%) WATERLOO 17

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
 terminate the algorithm when a solution is found

Unfold
* increase search bound by 1

Candidate
* choose a bad state in the last frame

/Decide
e extend a cex (backward) consistent with the current frame
e choose an assignment s s.t. (s AR, ATrAcex’)is SAT

Conflict

e construct a lemma to explain why cex cannot be extended
_* Find a clause L s.t. L==cex, Init=>L,and LAR A Tr= L

/

Induction
e propagate a lemma as far into the future as possible
 (optionally) strengthen by dropping literals

UNIVERSITY OF

WATERLOO

18

Decide Rule: Generalizing Predecessors

Decide If (m,i+ 1) € @ and there are my and my s.t. m; — m, mg A mj is
satisfiable, and mg A m} — F; A Tr Am/, then add (mg,) to Q.

Decide rule chooses a (generalized) predecessor m, of m that is
consistent with the current frame

Simplest implementation is to extract a predecessor m, from a
satisfying assignmentof M *F. A TrA m’

* m, cab be further generalized using ternary simulation by dropping literals
and checking that m’ remains forced

An alternative is to let my be an implicant (not necessarily prime) of
FAIX.(TrAm)

e finding a prime implicant is difficult because of the existential quantification
e we settle for an arbitrary implicant. The side conditions ensure it is not trivial

UNIVERSITY OF

WATERLOO

19

Conflict Rule: Inductive Generalization

Conflict For 0 <i < N: given a candidate model (m,i + 1) € @ and clause
@, such that ¢ — —m, if Init — @, and o A F; A Tr — ', then
add ¢ to Fj, for j <4+ 1.

A clause ¢ is inductive relative to F iff
e Init — @ (Initialization) and @AFATr— @ (Inductiveness)

Implemented by first letting ¢ = —m and generalizing ¢ by iteratively
dropping literals while checking the inductiveness condition

Theorem: Let Fy, F,, ..., F be a valid IC3 trace. If ¢ is inductive relative
toF,, 0-i<N,then, forallj-i, ¢ is inductive relative to Fj.
e Follows from the monotonicity of the trace
—ifj<ithen F,— F,
—ifF;— Fithen (¢ AF,ATr— @) = (@ AFATr— @)

UNIVERSITY OF

WATERLOO

From Propositional PDR to Solving CHC

Infinite Theories
« infinitely many satisfying assignments
e can’t simply enumerate (in decide)
e can’t block one assignment at a time (in conflict)

Non-Linear Horn Clauses
e multiple predecessors (in decide)

The problem is undecidable in general, but we want an algorithm that
makes progress

e don’t get stuck in a decidable fragment

UNIVERSITY OF

WATERLOO

21

PDR FOR ARITHMETIC CHC

IIIIIIIIIIII

22

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
e terminate the algorithm when a solution is found

Unfold
* increase search bound by 1
Candidate
_ Theory
e choose a bad state in the last frame
: dependent
/Decide
e extend a cex (backward) consistent with the current frame
e choose an assignment s s.t. (s AR, ATrAcex’)is SAT
Conflict
e construct a lemma to explain why cex cannot be extended
_* Find a clause L s.t. L==cex, Init=>L,and LAR A Tr= L -
Induction

e propagate a lemma as far into the future as possible
 (optionally) strengthen by dropping literals

UNIVERSITY OF

WATERLOO

23

(E5 A Tr) V Init'") = ¢

N
QY = TC

Looking for ¢’

ARITHMETIC CONFLICT

IIIIIIIIIIII

/

24

Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A = —B, then

there exists a FO formula I, denoted ITP(A, B), such that

A=l | = —-B
atoms(l) € atoms(A) n atoms(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a
resolution proof of unsatisfiability of A/AB

In Model Checking, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

%) WATERLOO o5

Craig Interpolant

IIIIIIIIIIII

26

Craig Interpolation for Linear Arithmetic

~ I=interpolant

Useful properties of existing interpolation algorithms [CGS10] [HB12]
« | €ITP (A, B) then -1 € ITP (B, A)
 if A'is syntactically convex (a monomial), then | is convex
o if B is syntactically convex, then | is co-convex (a clause)
 if A and B are syntactically convex, then | is a half-space

IIIIIIIIIIII

WATERLOO

27

Arithmetic Conflict

Notation: F(A) = (A(X) A Tr) V Init(X').

Conflict For 0 <i < N, given a counterexample (P,i+ 1) € @ s.t.
F(F;) A P’ is unsatisfiable, add PT = ITp(F(F;), P') to F; for j < i+ 1.

Counterexample is blocked using Craig Interpolation
e summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
e weaker than IC3/PDR
 inductive generalization for arithmetic is still an open problem

UNIVERSITY OF

WATERLOO

28

IC3/PDR In Pictures: MkSafe

MkSafe

x=3,y=0
Ce—Oe -
| | |
.
x <y

IIIIIIIIIIII

29

Computing Interpolants for IC3/PDR

Much simpler than general interpolation problem for A /\ B
* B is always a conjunction of literals
* A is dynamically split into DNF by the SMT solver
e DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a
DPLL(T) proof produced by the solver

e every theory-lemma that mixes B-pure literals with other literals is interpolated
to produce a single literal in the final solution
» interpolation is restricted to clauses of the form (/AB; = V A)
Interpolating (UNSAT) Cores (ongoing work with Bernhard Gleiss)
e improve interpolation algorithms and definitions to the specific case of PDR
e classical interpolation focuses on eliminating non-shared literals
e in PDR, the focus is on finding good generalizations

UNIVERSITY OF

WATERLOO

s C pre(c)

= s=3dX'.Tr Nc

Computing a predecessor s of a counterexample ¢

ARITHMETIC DECIDE

IIIIIIIIIIII

31

Model Based Projection

Definition: Let ¢ be a formula, U a set of variables, and M a
model of ¢. Then ¢y = MBP (U, M, ¢) is a Model Based

Projection of U, M and ¢ iff

1. 1 Is a monomial
2. Vars(y) C Vars(p) \ U

3. Mt
4. vy=3dU.0Q

Model Based Projection under-approximates existential quantifier
elimination relative to a given model (i.e., satisfying assignment)

IIIIIIIIIIII

%) WATERLOO 32

Loos-Weispfenning Quantifier Elimination

¢ is LRA formula in Negation Normal Form
E is set of x=t atoms, U set of x <t atoms, and L set of s < x atoms

There are no other occurrences of x in Q[X]

Ja.plz] = ploo] vV \/ elt]v) oft — ¢

(x<tHt—e=t<t (s<a)t—e=s<t (z=c¢)ft— ¢ = false

The case of lower bounds is dual
e using — and t+¢

IIIIIIIIIIII

%) WATERLOO 33

Model Based Projection

L Expensive to find a quantifier-free ¢ (y) = 3T - o(T, @)}

1. Find model M of ¢ (x,y)

2. Compute a partition containing M

IIIIIIIIIIII

%) WATERLOO 34

MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model
e Use the Model to uniquely pick a substitution term for x

Mbp,(M,z = s N\ L)= L|x < s]
Mbp,(M,x # sNL)= Mbp,(M,s <xAL)if M(x)> M(s)

Mbp,(M,x # sNL)= Mbp,(M,—s < —x ANL)if M(x) < M(s)

Mbpw(M,/\Si < CU/\/\.%’ <tj) = /\Si <t0/\/\t0 < tj where M(to) < M(tz),Vz

MBP techniques have been developed for
e Linear Rational Arithmetic, Linear Integer Arithmetic
e Theories of Arrays, and Recursive Data Types

UNIVERSITY OF

WATERLOO

35

Arithmetic Decide

Notation: F(A) = (A(X) A Tr(X, X") V Init(X").

Decide If (P,i+ 1) € @ and there is a model m(X, X') s.t. m = F(F;) A P/,
add (Py,i) to @, where P, = MBP (X', m, F(F;) A P’).

Compute a predecessor using an under-approximation of quantifier
elimination — called Model Based Projection

To ensure progress, Decide must be finite
e finitely many possible predecessors when all other arguments are fixed

Alternatives
e Completeness can follow from the Conflict rule only
— for Linear Arithmetic this means using Fourier-Motzkin implicants
 Completeness can follow from an interaction of Decide and Conflict

UNIVERSITY OF

WATERLOO

36

PDR FOR NON-LINEAR CHC

IIIIIIIIIIII

37

Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is
reducible to satisfiability of THREE clauses of the form

Init(X) — P(X)
P(X) —'Bad(X)
P(X)AP(X)A Tr(X,X° X") — P(X)

where, X' = {X’ | x € X}, X° = {x° | x € X}, P a fresh predicate, and Init,
Bad, and Tr are constraints

IIIIIIIIIIII

38

Generalized GPDR

Input: A safety problem (Init(X), Tr(X, X°, X'), Bad(X)).
Output: Unreachable or Reachable Counterexample
Data: A cex queue Q., where a cex (cg, ..., ck> €Qisa fcuple, each |S a tree
¢; = (m,1), m is a cube over state variables, and i € N. A level N.
A trace Fy, Fy,...
Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and
F(A)=F(AA)
Initially: Q =0, N =0, Fy = Init,Vi >0-F; =0
Require: Init — - Bad

repeat
Unreachable If there is an ¢ < N s.t. F; C F; 41 return Unreachable.

Reachable if exists t € @ s.t. for all (c,i) € t, i = 0, return Reachable.

Unfold If Fy — —Bad, then set N < N + 1 and Q + 0.
Candidate If for some m, m — Fn A Bad, then add ((m, N)) to Q. two

Decide If there is a ¢ € Q, with ¢ = (m,i + 1) € £, my — m, I Am§ A} is predecessors
satisfiable, and lo A mg Am) — F; A F? A Tr Am/ then add t to Q, where
t = t with ¢ replaced by two tuples (lg,), and (mg,).

Conflict If thereis a t € Q with ¢ = (m,i+ 1) € ¢, s.t. F(F;)) Am' is theory'aware
unsatisfiable. Then, add ¢ = ITP(F(F;), m’) to Fj, for all 0 < j <i+ 1. .
: Conflict

Leaf If there is t € @ with ¢ = (m,i) € ¢, 0 <i <N and F(F;_1) Am/ is
unsatisfiable, then add ¢ to @, where ¢ is ¢ with ¢ replaced by (m,i+ 1).

Induction For 0 <i < N and a clause (¢ V) € F;, if o & Fi 11,
F(p N F;) — ¢, then add ¢ to Fj, for all j < i+ 1.

until oo;

%) WATERLOO 39

Counterexamples to non-linear CHC

A set S of CHC is unsatisfiable iff S can derive FALSE
e we call such a derivation a counterexample

For linear CHC, the counterexample is a path

For non-linear CHC, the counterexample is a tree

l FALSE

S4s€8, \Nsoy ATr S5 €8y /sy ATr

I I
I | I |
l S, € Init l S5 € Init l Sp € Init l S; € Init

%) WATERLOO

GPDR Search Space

Bad
queue)
element

I @ ()
>

Q

- ‘

@
® @ g

v O O O O O O O

At each step, one CTI in the frontier is chosen and its two children are
expanded

41

GPDR: Deciding predecessors

Decide If there is a t € Q, with ¢ = (m,i+ 1) € t, my — m, lo Amd Am] is
satisfiable, and g A mJ Am’ — F; A F2 A Tr Am’ then add ¢ to @), where
t = t with ¢ replaced by two tuples (ly,), and (mg, 7).

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel
e e.g., BFS or DFS exploration order

Number of predecessors is unbounded
e incomplete even for finite problem (i.e., non-recursive CHC)

No caching/summarization of previous decisions
o worst-case exponential for Boolean Push-Down Systems

UNIVERSITY OF

WATERLOO

42

Input: A safety problem (Init(X), Tr(X,X°, X'), Bad(X)).
S Output: Unreachable or Reachable
pace r Data: A cex queue @, where a cex ¢ € @ is a pair (m,i), m is a cube
over state variables, and 7 € N. A level N. A set of reachable
states REACH. A trace Fy, F1, ...

Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and
Same queue as Fon A
|n IC3/PDR Initially: Q =0, N =0, Fy = Init, Vi > 0- F; = (), REACH = Init
Require: Init — —Bad
repeat

Unreachable If there is an i« < N s.t. F; C F; 1 return Unreachable.

Reachable If REACH A Bad is satisfiable, return Reachable.

Cache Reachable
states

Unfold If Fy — —Bad, then set N < N + 1 and Q «+ 0.

Candidate If for some m, m — Fy A Bad, then add (m, N) to Q.

Successor If there is (m,i+ 1) € @ and a model M M = 1), where
b = F(VREACH) A'm/. Then, add s to REACH, where
s’ € MBP({X, X°},).
Th ree va r|antS Of DecideMust If there is (m,i+ 1) € @, and a model M M |= 1, where

. Y = F(F;, VREACH) A'm/. Then, add s to @, where
Decide s € MBP({X°, X"},).

DecideMay If there is (m,i+ 1) € @ and a model M M |= v, where
= F(F;) Am/. Then, add s to @, where s° € MBP({X, X'},).

Conflict If there is an (m,i+ 1) € @, s.t. F(F;) Am’ is unsatisfiable. Then,

' add ¢ = ITP(F(F;),m’) to Fj, for all 0 < j < i+ 1.
Same Conflict as Leaf If (m,i) € @, 0 <i < N and F(F;_1) A m/ is unsatisfiable, then add
. (m,i+1) to Q.
in APDR/GPDR . | |
Induction For 0 <i < N and a clause (¢ V) € F;, if o & Fi41,

F(p N F;) — ¢, then add ¢ to Fj, for all j <i+ 1.

until oo;

%) WATERLOO 43

SPACER Search Space

Bad

Level

v O O O O

Unfold the derivation tree in a fixed depth-first order
e use MBP to decide on counterexamples

Learn new facts (reachable states) on the way up
e use MBP to propagate facts bottom up

44

Successor Rule: Computing Reachable States

Successor If there is (m,i+ 1) € @) and a model M M |= 1, where
Y = F(VREACH) A m/. Then, add s to REACH, where
s’ € MBP({X, X°},).

Computing new reachable states by under-approximating forward image
using MBP

» since MBP is finite, guarantee to exhaust all reachable states

Second use of MBP

e orthogonal to the use of MBP in Decide
« REACH can contain auxiliary variables, but might get too large

For Boolean CHC, the number of reachable states is bounded
e complexity is polynomial in the number of states
e same as reachability in Push Down Systems

UNIVERSITY OF

WATERLOO

45

Decide Rule: Must and May refinement

DecideMust If there is (m,7+ 1) € @, and a model M M = ¢, where
Y = F(F;, VREACH) A m’. Then, add s to @, where
s € MBP({X°, X'}, v).

DecideMay If there is (m,i + 1) € @ and a model M M |= v, where
Y = F(F;) Am’. Then, add s to @, where s° € MBP({X, X'},).

DecideMust
e use computed summary to skip over a call site
DecideMay

e use over-approximation of a calling context to guess an approximation of the
call-site

e the call-site either refutes the approximation (Conflict) or refines it with a
witness (Successor)

UNIVERSITY OF

WATERLOO

46

Conclusion and Future Work

Spacer: an SMT-based procedure for deciding CHC modulo theories
e extends IC3/PDR from SAT to SMT
e interpolation to over-approximate a possible model
e model-based projection to summarize derivations
The curse of interpolation
e interpolation is fantastic at quickly discovering good lemmas

e BUT it is highly unstable: small changes to input (or code) drastically change
what is discovered

e what is easy today might be difficult tomorrow ®
Harnessing the power of parallelism (see FMCAD’17)

e Spacer is highly non-deterministic: many sound choices for bounded
exploration and lemma generation

 Lemmas (invariants) are easy to share between multiple instances
* Problems are naturally partitioned in Decide rule

UNIVERSITY OF

WATERLOO 47

&

48

Farkas Lemma

LetM=t,>b, A ... A t,> b, wheret are linear terms and b, are
constants M is unsatisfiable iff 0 > 1 is derivable from M by resolution

M is unsatisfiable iff M 0 > 1
eeg,x+y>10,-x>5,-y>3F (xty-x-y)>(10+5+3) 0> 18

M is unsatisfiable iff there exist Farkas coefficients g, ..., g, such that
°*g; >0

e gxt;+...+g,xt, =0
e gixby+ ... +g,xb, > 1

%) WATERLOO 49

Interpolation for Linear Real Arithmetic

Let M = A A B be UNSAT, where
eA=t,>b, A ... ANt >Db,and
.B=t|+12b|/\/\tn2bn

Let g4, ..., g, be the Farkas coefficients withessing UNSAT

Then
e g.x(t; > by) + ... + g x(t; > by) is an interpolant between A and B

® g X(tiyy > b)) + ... +g,x (t, > b,) is an interpolant between B and A
© gixty +o HGixt = - (Gug xtiug .+ gxty)
(g, x(tyq > b)) + ... +g,x (t, > b)) is an interpolant between A and B

50

Craig Interpolation for Linear Arithmetic

~menma

Useful properties of existing interpolation algorithms [CGS10] [HB12]
« | €ITP (A, B) then -1 € ITP (B, A)
 if A'is syntactically convex (a monomial), then | is convex
o if B is syntactically convex, then | is co-convex (a clause)
 if A and B are syntactically convex, then | is a half-space

IIIIIIIIIIII

WATERLOO

51

