Algorithmic Logic-Based Verification:
Parameterized Systems

Arie Gurfinkel
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada

http://ece.uwaterloo.ca/~agurfink

2 WATERLOO

Algorithmic Logic-Based Verification
Safety }

Properties

Program + Spec

Constrained
Horn Clauses

Verification

Condition (in Logic)

Decision Procedure

Yes No

IIIIIIIIIIII

Symbolic Reachability Problem
P = (V, Init, 77, Bad)

P is UNSAFE if and only if there exists a number N s.t.
N—-1

Init(Xg) A (/\ Tr(Xz,Xz+1)> A Bad(Xy) #& L

1=0
P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init = Inv
Inductive
Inv(X)A Tr(X, X" = Inv(X')
Inv = = Bad Safe

IIIIIIIIIIII

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the forms

VV. (¢ A\ p1[x1] AWYA pn[xn] - pn+1[x])
V'V . (oA pq[X] AN PRIX,] = false)

where
* ¢ Iis a constrained in a background theory A

—of combined theory of Linear Arithmetic, Arrays, Bit-
Vectors, ...

° P4, ..., Pnsq @re n-ary predicates
e pi[X] is an application of a predicate to first-order terms

IIIIIIIIIIII

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
e stand-alone implementation in a fork of Z3
o http://bitbucket.org/spacer/code

Support for Non-Linear CHC
* model procedure summaries in inter-procedural verification conditions
 model assume-guarantee reasoning
e uses MBP to under-approximate models for finite unfoldings of predicates
e uses MAX-SAT to decide on an unfolding strategy

Supported SMT-Theories

» Best-effort support for arbitrary SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
e Full support for Linear arithmetic (rational and integer)
» Quantifier-free theory of arrays
— only quantifier free models with limited applications of array equality

UNIVERSITY OF

WATERLOO

Abstraction-Refinement in Spacer

/ Program /

v
Abstract A - Refine
Approximate
A

No Prooftraction

Feasible

M

EGA No

Feasible

Safety Proof ounterexample

IIIIIIIIIIII

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker

e Incremental Construction of Inductive Clauses for Indubitable Correctness
* A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

* Property Directed Reachability

 N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property
directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to
SMT)

e A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit
Predicate Abstraction. TACAS 2014

 J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). CAV 2014

UNIVERSITY OF

WATERLOO

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
e Generalized Property Directed Reachability
o K. Hoder and N. Bjgrner: Generalized Property Directed Reachability. SAT 2012

KPACER: Non-Linear CHC with Arithmetic \
 fixes an incompleteness issue in GPDR and extends it with under-approximate

summaries
o A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive
Programs. CAV 2014
PolyPDR: Convex models for Linear CHC

e simulating Numeric Abstract Interpretation with PDR
. glo%'(arner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI

ArrayPDR: CHC with constraints over Airthmetic + Arrays

* Required to model heap manipulating programs

e A. Komuravelli, N. Bjgrner, A. Gurfinkel, K. L. McMillan:Compositional Verification
\of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD/

2015

%) WATERLOO 9

SpcrMkSafe

Spacer In Pictures

< O x=3,y=0 x=1y=0

T e

x>y

IIIIIIIIIIII

%) WATERLOO 10

Logic-based Algorithmic Verification

‘Simulink\

""*; concurrent
W /distributed
systems

[Lustre L

VAN
Termination
MTZ

CPR

IIIIIIIIIIII

%) WATERLOO 11

&

&«

i Apps

SeaHorn | A Verification Fr- %
A L. =

C fn seahorn.github.io

U Getting Started Google Bookmark Note in Reader Add to Wish List + Pocket Google Bookmark » || Other Bookmarks
s
.%o,

SeaHorn e AR
Home About Download Publications People ™ O0,™
o OQ‘-
%,
)

A fully automated verification framework for LLVM-based
languages.

http://seahorn.github.io

12

SeaHorn Usage

Example: in test.c, check that x is always greater than or equal to y
test.c

extern int nd();
extern void __ VERIFIER error() __attribute__((noreturn));
void assert (int cond) { if (!cond) __ VERIFIER error (); }
int main(){
int x,y;
x=1; y=0;
while (nd ())
{
X=X+Y ;
y++;
}

return 0;

}

_ SeaHorn result:
SeaHorn command: SEAHORN

sea pf test.c PROPERTY (line 12) | TRUE

%) WATERLOO

SeaHorn Architecture

&

 a

LLVM bit

(&

~

LLVM Opt

~N

J

~

(S

Devirt/Exc Elim

~

J

~

(S

Property Instr

~

J

-

Lifting Assert

~

\&

~/

Front-end

IIIIIIIIII

%) WATERLOO

code
)

Middle-end

(o \

Template Inv

Back-end

14

W Dr.Seuss....

PARAMETRIZED SYMBOLIC
REACHABILITY

Arie Gurfinkel, Sharon Shoham, and Yuri Meshman. SMT-
WATERLOO Based Verification of Parameterized Systems. FSE 2016.

What we want to do ...

local
pc : {CHOOSE, TRY, WAIT, MOVE} ;
curr, next, desired : Location
def proc(i) :
do
pcli] = CHOOSE : desired[i] < * ; pc[i] < TRY;
pcli]l = TRY AVj.i < j = curr|j] # desired|i] Anext|j] # desired|i]

next|i| < desired|i] ; pcli] « WAIT ;
pclil = WAIT AVj . j < i = nextli] # curr|j] A next[i]| # next[j]
pcli] «+ MOVE ;
pclil = MOVE :
curr(i] < next[i] ; pc|i] + CHOOSE;
def init(i,7j) :
pcli] = CHOOSE A curr(i] = next[i] A (i # j = curr|i] # curr|j])
def bad(i,j) :
i # j A currli] = curr|j]

%) WATERLOO 16

Parameterized Symbolic Reachability Problem

T=(v, Init(N,v), Tr(i, N, v, v'), Bad (N,v))
v is a set of state variables
— each v, € v is a map Nat-> Rat
— Vv is partitioned into Local(v) and Global(v)
 Init(N,v) and Bad(N,v) are initial and bad states, respectively

o Tr(i, N, v, V') is a transition relation, parameterized by a process identifier i
and total number of processes N

All formulas are over the combined theories of arrays and LRA
Init(N,v) and Bad(N,v) contain at most 2 quantifiers

o Init(N,v) =V x,y . ¢oinit(N, X, y, V), where @, is quantifier free (QF)

e Bad(N,v) =V x,y . ®gaq(N, X, y, V), where @gaqis QF
Tr contains at most 1 quantifier

o Tr(i, N, v, V)=V j.p(i,J, N, v, V)

UNIVERSITY OF

WATERLOO 17

A State of a Parameterized System

PID Local

V4 | V5 | Vg | V7
0
1

IIIIIIIIIIII

18

Parameterized Symbolic Reachability
T = (v, Init, 7%, Bad)

T'is UNSAFE if and only if there exists a number K s.t.

Init(vg) A (/\ Tr(is, N,vs,vs11)) A Bad(vg) & L
s€[0,K)

T'is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init(v) = Inv(v))
Inv(v) A Tr(i, N,v,v") = Inv(v’) > VC(T)
Inv(v) = —Bad(v)

/

IIIIIIIIIIII

19

Parameterized vs Non-Parameterized

Reachability
Init(v) = Inv(v))

Inv(v) A Tr(i, N,v,v") = Inv(v’) >
Inv(v) = —Bad(v)

/

Init, Bad, and Tr might contain quantifiers
e e.g., "ALL processes start in unique locations”
e e.g., “only make a step if ALL other processes are ok”
e e.g9., "EXIST two distinct process in a critical section”
Inv cannot be assumed to be quantifier free
e QF /nv is either non-parametric or trivial

Decide existence of quantified solution for CHC
o stratify search by the number of quantifiers
e solutions with 1 quantifier, 2 quantifiers, 3 quantifiers, etc...

UNIVERSITY OF

WATERLOO

VC(T)

20

S __ e
d fish
s red fis
“(.-‘.: .
= a
Lo/ blue fish

e\ | —
e NP ——

)

ONE QUANTIFIER
TWO QUANTIFIER

IIIIIIIIIIII

21

One Quantifier (Solution)

Init(i,i,v) = Invy(i,v)
Invy(i,v) A Tr(i,v,v") = Invy(i,v") > VC,(T)

7 # i A Invy(i,v) A Invi(j,v) A Tr(j,v,v") = Invy(i,v")
Invy(i,v) A Invy(j,v) = —Bad(i,j,v) _J

Claim
e If VC4(T) is QF-SAT then VC(T) is SAT

o |If Tr does not contain functions that range over PIDs, then VC,(T) is QF-SAT
only if VC(T) admits a solution definable by a simple single quantifier formula

— simple == quantified id variables do not appear as arguments to functions

VC,(T) is essentially Owicki-Gries for 2 processes i and j

If there are no global variables then (3) is unnecessary
 VC4(T)is linear

UNIVERSITY OF

WATERLOO 99

How do we get it

1. Restrict Inv to a fixed number of quantifiers
e e.g., replace Inv(N, v) with Vk.Inv4(k, N, V)

2. Case split consecution Horn clause based on the process that makes
the move

e w+1 cases for w-quantifiers
— one for each quantified id variable
— one for interference by “other” process (only for global variables)

3. Instantiate the universal quantifier in Vk.Inv,(k, N, v)
e use symmetry to reduce the space of instantiations

4. Other instantiations might be needed for quantifiers if
e id variables appear as arguments to functions

UNIVERSITY OF

WATERLOO 3

How do we get it

Inv(v) A Tr(j,v,v") = Inv(v')

(Vk - Invi(k,v)) A Tr(j,v,v") = Inv(i,v")

(Vk - Invy(k,v)) A Tr(i,v,v") = Invl(

Restrict

Cases

(VEk - Invi(k,v)) Nj# i A Tr(j,v,v") = Invi(i

Instantiate

Invy(i,v) A Tr(i,v,v") = Invi(i,v")
)

Invy(i,v) A Inv1(J,v) AN j#i N Tr(j,v,v") = Inv(i,v

%) WATERLOO

24

Two Quantifier Solution

Init(i, j,v) A Init(j,i,v) A Init(i, i, v) A Init(j, j,v) = I2(i, j,v)
Ir(i,7,v) A Tr(i,v,v") = I5(i,7,v")
I(i,7,v) A Tr(j,v,v") = I(3, 7,
I (i,7,v) N13(1,z,v) N I2(j, z,v) N Tr(z,v,v") ANz £ i Nz # j = I3, 7,
I5(i, j,v) = —Bad(i, j,v)

/
v
(¥

)
)

Claim
e If VC,(T) is QF-SAT then VC(T) is SAT

o |If Tr does not contain functions that range over PIDs, then VC,(T) is QF-SAT
only if VC(T) admits a solution definable by a simple two quantifier formula

e At least 2 quantifiers are “needed” for systems with global guards

Extends to k-quantifiers

UNIVERSITY OF

WATERLOO o5

Ticket Protocol

self.t:=ticket
=ticket+1

[self.t=serving]

serving:=self.t+1

INIT: pc=Thinking, ticket=0, serving=0
BAD: self.pc=Eating, other.pc=Eating

UNIVERSITY OF

WATERLOO

26

[NON Emacs-x86_64-10_9 Prelude - /tmp/ticket.log
(define-fun Inv ((id@ Int) (idl Int) (pc (Array Int Int)) (t (Array Int Int)) (s=2
serving Int) (ticket Int)) Bool
(let ((a!l1 (<= (+ (select t idl) (* (- 1) (select t ide))) (- 1)))
(al2 (<= (+ (select t id@) (* (- 1) (select t idl1l))) (- 1)))
(a!3 (or (<= (select pc idl) 1) (<= (+ serving (* (- 1) ticket)) (- 1))))
(a!4 (or (<= (select pc ide) 0)

(- (3 (cnolart+ + 340N (% 1\ +5-lkbkat+NY £ 13530

Vi, j,i # j = (ipc # E) V (j.pc # E)
Vi,i.pc = E = serving < ticket

)))

(or (<= (select pc idl) @) (<= (select pc id9) @) a!l a!2)
al3
ald

als

alé

(or al7 (<= (select pc idl) 1) a!8 (<= (select pc ide) 9))
all19)))

Putting it all together

Solve for Inductive
ki=1: Invariant

while true do
Invg (i1, ..., i, v) == Solve(UX(VC¥(T))) ;
if Invg(iq,..., ik, v) # null then
return “inductive tnvariant found:
Vig,... i - Inv(iy, ..., 0k, v)"

res := ModelCheck(T}) =

if res = cex then
return “counterexample found for k processes”

k=k+1

— Look for bugs]

IIIIIIIIIIII

%) WATERLOO 28

Finite vs Infinite Number of Processes

Init b[i] and
def proc(?) : [move to pc=D Move to pc=E}
do when all
pclt] =1 : pcli] := D;bli] := 1; distinctly init
pcli] =1 : pcli] := D;bli] := 0;

;b1
(Vj # i.pcli] = D Apclj] # I ANblj| #bli]) : pcli] := E;
def init(i,j) : pcli] =
def bad(i,j) : @ # j Apcli] = E A pclj| = E;
Tr does not depend on N (number of processes)
Safe for infinitely many processes. Invariant is:

Inv = (Vi,j.i # j = (pcli] # EV pclj] # E)) A
(Vi . pcli]| # I = bli] € [0,1]) A
(Vi,j - (pcli] = ENi# j) = (pelj] # T Abli] 7 0lj]))-

~ o

Unsafe for N = 2!

IIIIIIIIIIII

%) WATERLOO 29

Evaluation and Implementation

Python-based Implementation
e Simple language for specifying concurrent protocols
e Local and Universally guarded transitions
e Constraints over arrays and integer arithmetic
e Reduce to CHC using the rules and solve using Spacer

Evaluated on Simple/Tricky Well-Know Protocols
e Dining philosophers, bakery1, bakery2, collision avoidance, ticket
 Models are pretty close to an implementation
— limit abstraction in modeling, try to make verification hard
e Safe inductive invariants computed within seconds

UNIVERSITY OF

WATERLOO

30

Related Work

Kedar Namjoshi et al.
 Local Proofs for Global Safety Properties, and many other papers
» systematic derivation of proof rules for concurrent systems
e finite state and fixed number of processes
Andrey Rybalchenko et al.
e Compositional Verification of Multi-Threaded Programs, and others
e compositional proof rules for concurrent systems are CHC
e infinite state and fixed number of processes
Lenore Zuck et al.
e Invisible Invariants
e finite state and parametric number of processes
e finite model theorem for special classes of parametric systems
Nikolaj Bjgrner, Kenneth L. McMillan, and Andrey Rybalchenko
e On Solving Universally Quantified Horn Clauses. SAS 2013:

UNIVERSITY OF

WATERLOO

31

Conclusion

Parameterized Verification == Quantified solutions for CHC

Quantifier instantiation to systematically derive proof rules for verification
of safety properties of parameterized systems

o Parameterized systems definable with SMT-LIB syntax

Lazy vs Eager Quantifier Instantiation
e eager instantiation in this talk
» would be good to extend to lazy / dynamic / model-based instantiation

Connections with other work in parameterized verification
o complete instantiation = decidability ?
e relative completeness

UNIVERSITY OF

WATERLOO 32

IIIIIIIIIIII

33

&

34

