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Abstract—We present a method for interpolation based on
DRUP proofs. Interpolants are widely used in model checking,
synthesis and other applications. Most interpolation algorithms
rely on a resolution proof produced by a SAT-solver for un-
satisfaible formulas. The proof is traversed and translated into
an interpolant by replacing resolution steps with AND and
OR gates. This process is efficient (once there is a proof) and
generates interpolants that are linear in the size of the proof. In
this paper, we address three known weakness of this approach:
(i) performance degradation experienced by the SAT-solver and
the extra memory requirements needed when logging a resolution
proof; (ii) the proof generated by the solver is not necessarily
the “best” proof for interpolantion, and (iii) combining proof
logging with pre-processing is complicated. We show that these
issues can be remedied by using DRUP proofs. First, we show
how to produce an interpolant from a DRUP proof, even when
pre-processing is enabled. Second, we give a novel interpolation
algorithm that produces interpolants partially in CNF. Third,
we show how DRUP proof can be restructured on-the-fly to
yield better interpolants. We implemented our DRUP-based
interpolation framework in MiniSAT, and evaluated its affect
using AVY — a SAT-based model checking algorithm.

I. INTRODUCTION

SAT-based Model-Checking, i.e., reducing Model Check-
ing to one or several instances of Boolean satisfiability (SAT),
has emerged as the most effective approach for scaling model
checking to industrial designs. Bounded Model Checking
(BMC) [1] is reduced to a single satisfiabilty problem that
checks for existence of a counterexample of a given length.
Safety verification (or Unbounded Model Checking) is re-
duced to an iterative process by repeatedly: (a) solving BMC
problems with increasing bound, (b) constructing a proof π
of bounded safety, and (c) attempting to generalize π to an
inductive invariant. The bounded safety proof π is extracted
from the resolution refutation proof of unsatisfiability of a
BMC instance by the process of Craig interpolation. Thus,
safety verification requires that a SAT-solver can produce
interpolants in addition to deciding satisfiability.

Formally, given an UNSAT formula G ≡ A∧B partitioned
into A and B, a Craig interpolant is a formula I such that A
implies I , I is inconsistent with B, and I is defined over
the variables common to A and B. In model checking, G
is a BMC instance, A is some prefix that contains the initial
condition, and B a suffix that contains the bad states [2]. Thus,
the interpolant I is an over-approximation of the set of states
reachable by the prefix A that does not contain any bad states.
It is convenient to generalize Craig interpolants to a sequence.
In this case, G ≡ G1 ∧ · · · ∧ GN is partitioned into N parts,
and an interpolant is a sequence I1, . . . , IN−1 such that Ii is a
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Craig interpolant between G1∧ · · ·∧Gi and Gi+1∧ · · ·∧GN .
That is, Ii over-approximates the set of states reachable after
i steps. The sequence corresponds to an inductive invariant
if for some i, Ii implies

∨
1≤j<i Ij . Most SAT-based model

checking algorithms (e.g., [2]–[7]) are based in some way on
sequence interpolants, although, they vary widely in interpolant
computation and in many additional details.

Interpolants can be extracted directly from a resolution
proof of unsatisfiability. There are several such proof-based
procedures that convert a resolution refutation into a circuit by
replacing resolution steps by AND and OR gates [2], [8], [9].
They are simple to implement and produce interpolants that are
linear in the size of the proof. Their variations (for strength [9],
[10], structure [11]–[13], and size [13]) and model checking
specific properties (e.g., [9], [14]) are widely studied. However,
they require a SAT-solver to log the resolution proof. While
this is not technically difficult [15], it significantly increases
the memory usage of the solver [16]. Furthermore, it appears
that combining proof-logging and common pre-processing is
difficult. Most solvers (e.g., [17]) treat proof-logging and pre-
processing as mutually exclusive.

Alternatively, interpolants can be constructed by parti-
tioning the clauses of G ≡ A ∧ B into two groups and
restricting the SAT-solver to work with either A or B clauses,
but not with both at the same time. The solver is allowed
to communicate implicants of B to A, and consequences
of A to B. The interpolant is the set of all communicated
A-consequences. This proof-less approach was pioneered by
IC3 [5] (together with many other improvements), has been
applied for interpolation by Chockler et al. [18], and has been
further refined by Bayless et al. [19] by allowing additional
communication between partitions. Such algorithms compute
interpolants in CNF (which is often desired) and do not need
proof-logging. However, partitioning the clauses and restricting
the solver significantly degrades performance. This is less of
an issue when these techniques are a part of a tightly integrated
verification loop, as in IC3. Finally, partitioning negatively
affects pre-processing.

Goldberg and Novikov [20] suggest a low-overhead proof
logging technique by showing that the sequence of all learnt
clauses, in the order learnt by a CDCL SAT-solver – the clausal
proof – is both easy to log and sufficient to reconstruct the
complete resolution proof. Recently, Heule et al. [16] intro-
duced a trimmed variant, called DRUP-proofs, that additionally
account for the clauses deleted by the solver. They show that
DRUP-proofs can be expanded (or validated) into a resolution
proof efficiently, and suggest them for solver certification,
UNSAT core extraction, and interpolation.

In this paper, we propose a novel interpolation algorithm
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based on DRUP-proofs. We are motivated by the fact that
logging DRUP-proofs is easy even in the presence of pre-
processing. The naı̈ve approach is to expand a DRUP-proof
into a resolution proof (e.g., [15]) and apply existing interpo-
lation techniques. While this is reasonable, we take a different,
more flexible, approach.

Our contributions are as follows. We present a framework
for computing sequence interpolants from DRUP-proofs im-
plemented on top of MiniSAT. The approach consists of two
phases. The first traverses the DRUP-proof backward, trim-
ming it, and identifying the core. Unlike [16], our traversal is
geared towards interpolation and not proof minimization. The
second traverses the trimmed proof forward constructing an
interpolant on-the-fly. During this phase, local transformations
are applied to the proof to guide it to a better interpolant.
It is important to note that our framework is focused on
interpolation and not solver certification. Hence, it is made
efficient through reuse of many of the solver’s data-structures
and procedures, and through reuse of the final state of the trail
when the final conflict is reached. Note that while it seems
theoretically trivial to expand a DRUP-proof into a resolution
proof, such expansion may take as much time as solving the
original SAT instance [16]. Thus, our careful implementation
and reuse of the solver’s final state is beneficial.

Furthermore, we present a novel interpolation algorithm
that computes an interpolant as a pair of formulas p ∧ g such
that g is in CNF. In some cases this results in a pure CNF
interpolant. To our knowledge, this is unique. Finally, our local
proof restructuring, mentioned above, aims at maximizing the
CNF component of the interpolant. This restructuring proce-
dure is possible partially due to the flexibility our framework
enables when constructing an interpolant.

We evaluated our framework in the context of model check-
ing using AVY [7], a SAT-based model checking algorithm
that heavily relies on sequence interpolants. We show the
effect our DRUP-based interpolation framework has on AVY’s
performance when compared to a proof-logging SAT-solver.
In addition, we evaluate our different heuristics and show
their effect on the computed interpolants. Our experiments
show that DRUP-based interpolation is efficient and improves
the underlying model checking algorithm. In addition, our
new interpolation technique, together with our local proof
restructuring result in a significant number of clauses in the
CNF component of the computed interpolants.

II. PRELIMINARIES

Given a set U of Boolean variables, a literal ` is a variable
u ∈ U or its negation ¬u, a clause is a disjunction of literals,
and a formula in Conjunctive Normal Form, or a CNF for
short, is a conjunction of clauses. It is convenient to treat a
clause as a set of literals, and a CNF as a set of clauses. We
write � to denote the empty clause, Var(α) for variables of
a clause α, and Var(G) for variables of a set of clauses G.

The resolution rule states that given clauses α1 = β1 ∨ v
and α2 = β2∨¬v, where β1 and β2 are clauses and v and ¬v
are literals, one can derive the clause α3 = β1∨β2. Application
of the resolution rule is denoted by α1, α2 `vRES α3, and v is
called the pivot variable. We omit v when it is clear from the
context or irrelevant.

A resolution derivation of a clause α from a CNF formula
G is a sequence π = (α1, α2, . . . , αn ≡ α), where each clause
αk is either an initial clause of G or is derived by applying the
resolution rule to clauses αi, αj with i, j < k. A resolution
derivation of the empty clause � from G is called a refutation
or a proof, and shows that G is unsatisfiable.

A resolution derivation (α1, . . . , αk) is trivial [21] if all
variables resolved upon are distinct, and each αi, for i ≥ 3,
is either an initial clause or is derived by resolving αi−1
with an initial clause. It is convenient to capture a trivial
resolution derivation by a rule. A chain resolution rule,
written α1, . . . , αk `~xTVR α, states that α can be derived
from α1, . . . , αk by trivial resolution derivation. We call
α1, . . . , αk the chain and α1 – the anchor, and variables ~x =
(x1, . . . , xk−1) the chain pivots. Without loss of generality,
we assume that the chain and chain pivots are resolved in the
order given. That is, first α1 is resolved with α2 on x1, then
the resolvent is resolved with α3 on x2, etc. A chain derivation
is a sequence π ≡ (α1, . . . , αn) where each αk is either an
initial clause or is derived by chain resolution from preceding
clauses. A derivation witness of a chain derivation π is a total
function D from clauses of π to sub-sequences of π such that

D(α) = [ ]⇒ α is initial D(α) 6= [ ]⇒ D(α) `TVR α (1)

Note that a derivation witness is not unique. As usual, a
derivation of an empty clause is called a proof. Chain proofs
capture concisely the proofs produced by CDCL SAT-solvers
by logging learned clauses only. For example, the TraceCheck
proof format [22] is based on chain derivation.

A Craig interpolant [23] of a pair of inconsistent formulas
A and B is a formula I such that

A⇒ I I ⇒ ¬B Var(I) ⊆ Var(A) ∩Var(B) (2)

where Var(A) is the set of all variables of A. It is well known
that an interpolant can be computed in polynomial time from
a resolution proof of unsatisfiability of A ∧B [2], [8].

For interpolation, it is convenient to partition clauses of a
CNF as belonging to A or B. More generally, an N -colored
CNF is a pair (G, κ) of a CNF formula G and a coloring
function κ : G→ [1, .., N ] that assigns to every clause α ∈ G
a color between 1 and N . We omit the coloring function κ
when it is clear from the context or irrelevant and write G for
(G, κ). For a colored CNF (G, κ), we write Gi = κ−1(i) for
the set of all clauses colored i. The coloring extends naturally
to variables. For each v ∈ Var(G), we define its minimum
and maximum color as follows:

κ↓(v) = min{i | ∃α ∈ Gi · v ∈ α} (3)
κ↑(v) = max{i | ∃α ∈ Gi · v ∈ α} (4)

A variable v is called local (to partition i) if κ↓(v) = κ↑(v) =
i, and shared otherwise. A clause α is shared if for all v ∈
Var(α), v is shared and κ(α) < κ↑(v). A colored CNF G
is striped if for all v ∈ Var(G), κ↑(v) − κ↓(v) ≤ 1. That is,
every variable is either local, or shared between partitions with
adjacent colors. Note that every non-striped CNF can be made
striped by adding fresh variables and equality constraints. In
the rest of the paper, for simplicity, we assume that all colored
CNFs are striped. Given a chain refutation π of a colored



CNF (G, κ) and a derivation witness D of π, we define the
maximum color for the clauses of π inductively as follows:

κ↑(α) =

{
κ(α) if α ∈ G
max{κ↑(β) | β ∈ D(α)} otherwise

(5)

Minimum color κ↓(α) is defined similarly.

A sequence (or path) interpolant for an N -colored un-
satisfiable striped CNF (G, κ) is a sequence of formulas
(> ≡ I0, . . . , IN ≡ ⊥) such that for all 1 ≤ i ≤ N :

Ii−1 ∧Gi ⇒ Ii ∀v ∈ Var(Ii) · κ↓(v) = i ∧ κ↑(v) = i+ 1

We assume that the reader is familiar with the basic CDCL
SAT algorithm, as presented in [24]. We assume that the solver
maintains all currently implied and decided (i.e., assigned)
literals in a queue, called the trail, in the order they are
assigned. We assume that the solver provides the following
API:

• UnitPropagation exhaustively applies unit propaga-
tion (UP) rule by resolving all unit clauses;

• ConflictAnalysis analyzes the most recent conflict
and learns a new clause;

• IsOnTrail checks whether a clause is in antecedent of
a literal on the trail;

• Enqueue enqueues one or more literals on the trail;
• IsDeleted, Delete, Revive checks whether a

clause is deleted, deletes a clause, and adds a previously
deleted clause, respectively;

• SaveTrail,RestoreTrail save and restore the state
of the trail.

III. TRIMMING CLAUSAL PROOFS

Clausal proofs were introduced by Goldberg and
Novikov [20] who showed that the sequence of all the learned
clauses, in the order they are learned by a CDCL solver, forms
a chain derivation. They show that the chain derivation can
be validated using UP facilities of the solver. The correctness
is based on the following lemma that shows the connection
between UP and trivial resolution.

Lemma 1 ( [21]) Given a CNF G and a clause c, c is
deducible from G by unit propagation iff c is deducible from
G by trivial resolution. That is, F `UP c iff F `TVR c.

Two algorithms are suggested in [20], one for backward and
one for forward validation. The forward validation replays the
proof forward, checking that each clause is subsumed (using
UP) by prior clauses. Dually, backward validation walks the
proof backwards, removing clauses, and checking that each
removed clause is subsumed by the remaining ones.

Recently, backward validation has been improved by Heule
et al. [16] who noticed that (a) CDCL solvers aggressively
delete unnecessary clauses, and (b) keeping track of clause
deletion significantly reduces the number of clauses used by
UP during validation. They define a DRUP-proof as a sequence
π ≡ ((α0, d0), . . . , (αn, dn) ≡ (�,⊥)), where each dk is a
Boolean flag indicating whether the clause is deleted, and αk
is either an initial clause or is derived by chain resolution from
the set of k-active clauses {αj | j < k ∧ dj = ⊥ ∧ (∀j < i <

k · αi 6= αj)}. Validation of DRUP-proofs is efficient because
validation of a clause αk depends only on the k-active clauses.

Forward validation walks the proof from the leaves to
the empty clause. Thus, it is well suited for interpolation.
However, clausal proofs produced by a CDCL solver contain
many useless clauses making forward validation inefficient.
Heule et al. [16] suggest that in this case, backward validation
should be used to trim a clausal proof by removing all clauses
that do not contribute to the derivation of the empty clause.

In this section, we present an efficient trimming proce-
dure, called Trim and shown in Alg. 1, based on backward
validation. Unlike Heule et al., our goal is not to certify a
solver, but to trim the proof. Thus, we trust the solver and
reuse its intermediate state (namely, the final state of the
trail and deletion status of clauses) and routines (namely, unit
propagation and conflict analysis). This makes our procedure
efficient and easy to implement.

The input to Trim is a CDCL solver S in a conflicting
state, and a corresponding DRUP-proof πo. The output is a
chain derivation π such that all clauses of π participate in a
derivation of the empty clause. In the terminology of Heule et
al., all clauses of π are core. The algorithm maintains a set C
of core clauses. It walks the input DRUP-proof πo backwards.
Deleted clauses are revived (line 3). If the current clause αi is
on the trail, UndoTrailCore is used to pop the literals of
the trail up to and including the literal whose antecedent is αi.
In the process, antecedents of any core literal on the trail are
marked core as well. Next, αi is removed from the solver, and,
if it is not initial, validated using UP. For that, the negation
of the literals is put on a trail and UnitPropagate is used
to derive the conflict. Note that this always succeeds since we
assume that the solver S and the proof πo are valid. Finally,
ConflictAnalysisCore is used to analyze the conflict,
and, in the process, marks all clauses in the implication graph
of the conflict as core. When the main loop terminates, π is a
chain proof in reversed order.

We use Trim to trim a DRUP-proof before interpolation
using forward validation. In the rest of the paper, we assume
that all chain proofs are trimmed. The interpolation procedure
is described in Section IV. Trim provides two degrees of
freedom. First, different UP strategies result in different proofs.
For example, Heule et al. prefer core clauses during UP
to minimize the total size of the trimmed proof. Second,
ConflictAnalysisCore can introduce additional clauses
corresponding to different cuts of the implication graph. We
propose strategies that result in better interpolants in Section V.

IV. INTERPOLATION ALGORITHM

In this section, we present our interpolation algorithm.

Let (G, κ) be an N -colored striped CNF formula. Through-
out this section, we assume, for simplicity, that N = 3.
However, our results easily extend to an arbitrary number of
colors. We denote shared variables of partition j by Vj =
V ar(Gj) ∩ Var(Gj+1). For a clause α ∈ G, we write α|[k,l]
for a clause obtained from α by removing all variables v with
color less than k (κ↑(v) < k) or greater than l (κ↑(v) > l).
We write α|≤l for α|[1,l] and α|≥k for α|[k,N ]. Recall that a
clause α is shared w.r.t. j if Var(α) ⊆ Vj and κ(α) = j.



Algorithm 1: Trim(S, πo)

Input: A SAT-solver instance S with � on the trail and
the corresponding DRUP-proof
πo = ((α0, d0), . . . , (αn,⊥) ≡ (�,⊥))

Output: A chain derivation (β0, . . . , βm ≡ �)

1 π = [ ] ; C = {αn}
2 for i = n to 0 do
3 if S.IsDeleted(αi) then S.Revive(αi)
4 else
5 if S.IsOnTrail(αi) then
6 S.UndoTrailCore(αi, C)
7 S.Delete(αi)
8 if αi ∈ C then
9 if αi is not initial then

10 S.SaveTrail()
11 S.Enqueue(¬αi)
12 c = S.UnitPropagation()
13 S.ConflictAnalysisCore(c, C)
14 S.RestoreTrail()
15 π.Append(αi)

16 Reverse(π)

Our procedure, called ChainItp, is shown in Alg. 2. The
inputs are a N -colored CNF (G, κ) and a (trimmed) chain
derivation π. The output is a sequence interpolant I0, . . . , IN .
ChainItp walks π forward from α0 to αn and computes
partial interpolants for each partition (or color) separately. For
partition i and a clause αj , a partial interpolant is a conjunction
of a pair of formulas pi(αj)∧gi. gi contains the CNF part of the
interpolant, and pi(αj) contains the rest. The final interpolant
is obtained as a partial interpolant of the empty clause αn ≡ �.

For a fixed color k, we partition the clauses of π into two
groups: leaf and non-leaf. A clause is a leaf (for color k) if it
is either initial, or derived only using clauses with color less
than or equal to k. Otherwise, it is non-leaf. The leaf and non-
leaf clauses are interpolated using helper functions Leaf and
Tvr, respectively. Before going into detail, let us introduce
the following notion:

Definition 1 Let (G, κ) be an N -colored striped CNF for-
mula, π a chain refutation of G, D a derivation witness for π,
and k a natural number 1 ≤ k ≤ N . A shared leaf α ∈ π is
shared-derivable w.r.t. k and D if for all β ∈ D(α), κ↓(β) = k
or β is shared-derivable w.r.t. k − 1 and D.

Clearly, for initial shared clauses, this definition holds
trivially. Intuitively, α is shared-derivable w.r.t. k if it is derived
using only clauses from Gk and shared-derivable clauses w.r.t.
k − 1. Let us assume that our stripped CNF formula is
G1 ∧ G2 ∧ G3. All shared clauses w.r.t. G1 are also shared-
derivable. A shared clause w.r.t. G2 is shared-derivable w.r.t.
2 iff it is derived using clauses from G2 and clauses that are
shared-derivable w.r.t. G1. Note that we maintain a derivation
witness D as part of the definition due to the fact that a chain
derivation represent a space of possible resolution steps that
may lead to a derived clause. Thus, in order for our recursive
definition to apply, we must make sure a specific derivation
witness is used.

Lemma 2 Let (G, κ) be an N -colored striped CNF formula.
Given a chain derivation π, let D be a derivation witness of π.

Let (g0 = >, g1, . . . , gN ) be a sequence such that gi is a CNF
containing all shared-drivable clauses w.r.t. a color i and D,
then gi−1 ∧Gi ⇒ gi for 1 ≤ i ≤ N .

The proof is immediate from the definition of shared-
derivable clauses.

We now go into more detail about the mechanics of Leaf
and Tvr. The function Leaf is applied to initial clauses
(line 4) and to derived leaf clauses (line 15). The input is
a clause α, a color j and a derivation witness D. The output
is a pair (p, g) such that p∧ g is a partial interpolant of α for
color j, and g is in CNF. It works according to the following
rules:

• if α is shared-derivable w.r.t. j and D: p = > and g = α.
• otherwise, if κ(α) ≤ j then p = α|≥j+1 and g = >
• otherwise, p = g = >

The function Tvr is applied to derived clauses. The input
is a clause α, a corresponding chain derivation ~β `~xTVR α, and
a color j. The chain ~β = (β0, . . . , βb) is obtained by UP and
conflict analysis (lines 8-10) as described in Section III. The
output is a formula qb, where

ql =

{
pj(β0) if l = 0

ql−1 1jxl
pj(βl) ow

1jx =

{
∧ if κ↑(x) ≤ j
∨ ow

That is, Tvr walks up the chain ~β, and, at each resolution
step, either conjoins or disjoins the partial interpolants of the
chain clauses. Tvr is effectively a direct extension of the
interpolation rules of [2] from resolution to chain resolution.

It is important to note that the derivation witness D is not
stored explicitly in our implementation of the algorithm, and it
is used implicitly by Leaf. We only mention it in Algorithm 2
for clarity.

Our interpolation algorithm is somewhat unorthodox since
it treats some of the derived clauses as leaves. Furthermore,
it keeps a CNF part of the interpolant separately (using gj).
We show that none-the-less, it still produces a valid sequence
interpolant.

Definition 2 Given an unsatisfiable N -colored striped CNF
(G, κ) and a chain derivation π. A sequence of partial in-
terpolants (>, p1, . . . pN−1,⊥) and a set of CNF formulas
{gj}N−11 are valid iff for every 1 ≤ k ≤ N , and for every
α ∈ π, (pk(α) ∧ gk ∧Gk+1)⇒ (pk+1(α) ∨ α|≥k+1) ∧ gk+1.

Note that a valid partial interpolant sequence results in
a valid sequence interpolant. We show that the partial inter-
polants of ChainItp satisfy validity requirement of Def 2.

Theorem 1 Given an N -colored striped CNF (G, κ) and
a chain derivation π, the sequence of partial interpolants
(>, p1, . . . pN−1,⊥) and the set of CNF formulas {gj}N−11
computed by ChainItp are valid.

Proof: For simplicity, we show the proof for the case
N = 3. The proof for the general case is similar. Furthermore,
we rely on the fact that without our special leaf handling,
ChainItp is a straightforward extension of McMillan’s pro-
cedure [2] to chain resolution. We use qj(α) to denote the
partial interpolant of [2].



Algorithm 2: ChainItp
Input: A SAT-solver instance S, colored CNF (G, κ),

κ : G→ [1..N ], and a chain derivation
π = (α0, . . . , αn ≡ ⊥)

Output: An interpolation sequence
(> ≡ I0, I1, . . . , IN ≡ ⊥)

1 for i = 0 to n do
2 if αi ∈ G then
3 for j = 1 to N − 1 do
4 (pj(αi), g)← Leaf(αi, j)
5 gj ← gj ∧ g
6 else
7 S.UnitPropagate(), S.SaveTrail()
8 S.Enqueue(¬αi)
9 β0 = S.UnitPropagate()

10 ~β = S.ConflictAnalysisTvr(β0, αi)

/* ~β = (β0, . . . , βb) is a subsequence
of π s.t. ~β `~xTVR αi */

11 D(αi)← ~β

12 κ(αi)← max{κ(c) | c ∈ ~β}
13 for j = 1 to N − 1 do
14 if κ(αi) ≤ j then
15 (pj(αi), g)← Leaf(αi, j)
16 gj ← gj ∧ g
17 else
18 pj(αi)← Tvr(~β, αi, j)

19 S.RestoreTrail()
20 S.Revive(αi)

21 I0 ← >, IN ← ⊥
22 for j = 1 to N − 1 do Ij ← pj(αn) ∧ gj

The proof is by induction on the graph induced by π and
D. The base case follows from [14] since for an initial clause α
pj(α) ∧ gj = qj(α). For the inductive step, we only consider
the case of a single resolution step. Let c1 and c2 be two
clauses that resolve on v to get c. W.l.o.g., assume v ∈ c1 and
¬v ∈ c2. By inductive hypothesis:

p1(c1) ∧ g1 ∧G2 ⇒ (p2(c1) ∨ c1|≥2) ∧ g2 (6)
p1(c2) ∧ g1 ∧G2 ⇒ (p2(c2) ∨ c2|≥2) ∧ g2 (7)

Since we rely on [2], [14], we only need to prove the
correctness for our modifications, namely treating derived
clauses as leaves. Thus, there are only two cases: (1) c is
derived using only clauses from G1, or (2) c is derived using
only clauses from G1 and G2. Case (1) is immediate by
Lemma 2. For case (2), w.l.o.g., assume that c1, c2, and c
are not leaves w.r.t. 1, but are leaves w.r.t. 2. In this case, we
can substitute p2 with a partial interpolant for the leaf. The
induction hypothesis becomes:

p1(c1) ∧ g1 ∧G2 ⇒ (c1|≥2) ∧ g2 (8)
p1(c2) ∧ g1 ∧G2 ⇒ (c2|≥2) ∧ g2 (9)

By the definition of p1 we know that if v ∈ Var(G3) then
p1(c) = p1(c1) ∧ p1(c2), otherwise p1(c) = p1(c1) ∨ p1(c2).
We take care of the following two cases. Case 1, c is shared-
derivable. We need to show that (p1(c)∧g1)∧G2 ⇒ (>∨c)∧

g2. Since c is shared-derivable c ∈ g2 and g1 is unchanged.
By Lemma 2, p1(c) ∧ g1 ∧G2 ⇒ g2 holds.

Case 2, c is not shared-derivable. We need to show that
(p1(c) ∧ g1) ∧ G2 ⇒ (c|≥3 ∨ c|≥2) ∧ g2. Since c is not
shared-derivable both g1 and g2 are unchanged. Assume that
v 6∈ Var(G3), then p1(c) = p1(c1) ∨ p1(c2). Assume, to the
contrary, that p1(c) ∧ g1 ∧ G2 ⇒ c|≥2 ∧ g2 does not hold.
Then, there is an assignment s.t. (p1(c) ∧ g1) ∧ G2 evaluates
to > while c|≥2 ∧ g2 evaluates to ⊥. From Lemma 2, we
know that g2 evaluates to >, therefore, c|≥2 is ⊥. W.l.o.g.
assume that under this assignment p1(c1) evaluates to >. By
the induction hypothesis c1|≥2∧g2 evaluates to > as well. Due
to our assumption that c|≥2 evaluates to ⊥, v must evaluate
to >. but, since v ∈ c1|≥2, it must aslo be part of c|≥2. Thus,
indicating that c|≥2 evaluates to >, in contradiction to our
assumption. The other cases are proved similarly.

V. COLORS, PROOFS, AND CNF

In this section, we discuss how to combine our framework
with a light-weight proof restructuring. The goal of restructur-
ing is to increase the number of shared derived leaves in the
proof to increase the CNF component of the interpolant. We
first introduce the concept of colorable chain refutations and
show that they lead to a simple CNF interpolation procedure.
However, an ordinary chain refutation is exponentially stronger
than colorable one. Hence, restricting to colorable refutations
is not practical. Instead, we propose a polynomial algorithm
to restructure a refutation on-the-fly to increase its colaribility.

Let (G, κ) be a striped N -colored CNF, π a chain refutation
of G, and D a derivation witness for π. The witness D is called
colored if for every derived clause α ∈ π, the corresponding
derivation sequence D(α) = (β0, . . . , βn) satisfies the follow-
ing condition: for all 0 ≤ i ≤ n, κ↑(βi) = κ↓(βi) = κ↑(α)
or κ↑(βi) < κ↑(α) and βi is shared. A chain refutation π is
colorable if there exists a colored refutation witness for it.

Colorable refutations induce a simple interpolation proce-
dure. Let π = (α0, . . . , αn) be a colorable chain refutation
with N colors. Then, the sequence ~I ≡ (I0 ≡ >, . . . , IN ≡ ⊥)
defined as follows:

Ii = {α ∈ π | κ↑(α) = i ∧ α is shared} (10)

is a sequence-interpolant. Furthermore, ~I is in CNF and is
linear in the size of the chain refutation π. This is not a
coincidence. Colorable chain refutations and CNF interpolants
are closely related.

Theorem 2 For every colorable chain refutation π of N -
colored CNF G there exists a sequence interpolant ~I such
that

∑N
i=0 |Ii| < |π|. For every CNF sequence interpolant ~I

of G, there is a corresponding colorable refutation containing
the clauses of ~I .

Proof: For simplicity, we only show the case when N =
2, where there is only one non-trivial interpolant: I1. First,
we show (10) defines a sequence interpolant. By definition, I1
is the set of all shared clauses of π colored 1. By definition
of coloring, each 1-colored clause is implied by G1, hence,
G1 ⇒ I1. By colorability of π, there is a refutation of I1∧G2.



Second, for each clause α ∈ I1, let πα be a chain refutation
of G1 ∧ ¬α, and π2 be chain refutation of I1 ∧ G2. The
refutation π is obtained by concatenating those refutations.

Ordinary chain refutations are exponentially stronger than
colorable ones. For example, let k be a natural number and
consider the 2-colored CNF Gk = Gk1 ∧Gk2 , where

Gk1 = (

k∨
i=1

xi) ∧
k∧
i=1

(xi ⇒ ai) ∧ (xi ⇒ bi) G2 =

k∧
i=1

(¬ai ∨ ¬bi)

The CNF interpolant Ik1 = CNF(
∨k
i=1(ai∧ bi)) is exponential

in k. Therefore, a colorable refutation of G is exponential
in k as well. Thus, transforming a chain refutation into a
colorable one is worst-case exponential. Note that proof-
less interpolation techniques such as [18], [19] correspond to
colorable chain refutations, and hence, in the worst case are
exponentially more expensive than CDCL.

Given a proof π, if ChainItp (Alg. 2) returns the
interpolant in CNF, then π is colorable. The converse is not
true because ChainItp picks an arbitrary witness D. Thus,
it might not find a colorable witness, even if one exists. We
propose two strategies to improve ChainItp.

First, we propose to apply UP on line 9 of ChainItp
ordered by the color of the clauses. In the forward-order, UP
is first applied to 1-colored clauses, than two 1- and 2-colored
clauses, etc. Conversely, the backward-order starts with N -
colored clauses. Both strategies increase the number of clauses
that are derived within a partition boundary.

Second, we propose a new algorithm to restructure the
chain derivation produced by ConflcitAnalysisTvr
on line 10 of ChainItp. The new algorithm, called
ConflictAnalysisClr, is shown in Alg. 3. It takes a
SAT-solver in a conflicting state and a conflict clause, and
produces a sequence of chain derivation Π and a new learned
clause α. The interpolation step of ChainItp (lines 12–19)
is then applied to each chain derivation in Π. The main step
of the algorithm is done by the supporting procedure, called
Colorize, shown in Alg. 4.

The algorithms make the following assumptions about the
SAT-solver. All clauses are sorted relative to the current assign-
ment so that >-valued literals precede all ⊥-valued literals.
All implied literals are stored in the trail in the implication
order. nil indicates undefined values (literals and clauses).
Value(q) is the value of literal q in the current assignment.
Reason(q) is the unique clause that implies the literal q or
¬q. Reason(q) = nil if q is not implied by any other clause.
SetReason(q, c) sets clause c as the reason for q and ¬q.

Intuitively, Colorize walks the chain derivation from
the anchor β0, and applies only resolutions that are in the
same partition as β0. Clauses from earlier partitions are re-
cursively colorized by attempting to turn them into shared-
derived clauses. Clauses from later partitions are ignored.
ConflictAnalysisClr applies Colorize starting from
the partition of the anchor, and then as many time as nec-
essary to remove all UP-implied literals from the learned
clause. In the worst case, the set Π is linear in the num-
ber of clauses in the original chain derivation found by
ConflictAnalysisTvr.

Algorithm 3: ConflictAnalysisClr
Input: A SAT-solver S and a conflict clause confl .
Output: A learned clause α and a chain proof Π.

1 k ← κ(confl)
2 forever do
3 α← Colorize(S, confl , k)
4 let T = {q ∈ α | S.Reason(q) = nil}
5 if T = ∅ then break
6 k ← min{κ(q) | q ∈ T}

Algorithm 4: Colorize
Input: A SAT-solver S, a conflict confl and a color k
Output: A learned clause α and a chain proof Π

1 p← nil, α = [ ], β = [ ],W = ∅
2 if S.Value(confl [0]) = > then
3 p← confl [0], α.Append(p)
4 forever do
5 if κ(confl) < k then
6 confl ← Colorize(S, confl , κ(confl))
7 S.SetReason(confl [0], confl)

8 β.Append(confl)
9 foreach q ∈ confl do

10 if q = p ∨ q ∈W ∨ q ∈ α then continue
11 r ← S.Reason(q)
12 if r 6= nil ∧ κ(r) ≤ k then W ←W ∪ {¬q}
13 else α.Append(q)

14 if W = ∅ then break
15 p← q ∈W s.t. q has the largest trail index
16 W ←W \ {p}, confl ← S.Reason(p)

17 if β 6= [ ] then Π.Append((β `TVR α))

VI. EXPERIMENTS

We have implemented our DRUP-based interpolation
framework on top of MiniSAT 2.2. It is available at part of AVY
model checker at http://arieg.bitbucket.org/avy. For evaluation,
we used two sets of experiments. First, we compared the sizes
of the sequence interpolants and the time it takes to extract
them for Bounded Model Checking (BMC) problems. Second,
we evaluated the framework within our interpolation-based
model checker AVY [7]. In both cases, we use benchmarks
from HWCCC’131. For baseline, we compare against proof-
based interpolation in ABC [25]. Note that we have extended
the ABC implementation to sequences in a straight-forward
way. However, the comparison with ABC has to be taken with
a grain of salt since ABC uses a customized version of an older
version of MiniSAT, rewritten in C with some new features
back-ported. None-the-less, ABC implementation is the state-
of-the-art used by many other hardware model checkers, and
we found it to perform well (compared to MiniSAT 2.2).

Fig. 1 shows the sizes of interpolants for BMC problems
of depth 20. All problems were given a 180 seconds timeout.
In majority of cases, the DRUP-based approaches produce
smaller interpolants, measured as number of AIG nodes. Note
that for our interpolation algorithm, we conjoin the CNF into
the AIG. Clearly, without conjoining this part the interpolants

1Benchmarks are available from http://fmv.jku.at/hwmcc13.

http://arieg.bitbucket.org/avy
http://fmv.jku.at/hwmcc13
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are even smaller. Careful inspection of the results shows that
only two cases were insolvable by DRUP-based methods. On
the other hand, 9 cases were not solved by the traditional proof
logging solver. This gives us an indication about the strength
of a DRUP-based solver, which was apparent in all of our
experiments: when the SAT problem becomes hard, the DRUP-
based approach outperforms a traditional proof logging solver.
Fig. 2 shows the extraction times for the same BMC problems.
Note that the extraction time is comparable to the resolution
proof based method, but consumes less memory (since the
resolution proof is not logged)2.

Table I analyzes the performance of our model checker
AVY when using different interpolation algorithms. This is an
important analysis as it shows the affect on the runtime of
the model checker and on the depth at which convergence is
achieved. First, note that all DRUP-based approaches outper-
forms our ABC baseline w.r.t. number of solved instances. In
addition to that, AVY performs better when using DRUP on
the majority of cases. One can note that in most cases, there is
a correlation between depth of convergence and performance
where lower depth of convergence indicates better runtime.

2More comparison charts are at http://arieg.bitbucket.org/avy/drup/plots.

TABLE I: Running time for AVY using different interpolation
algorithms. ABC is for ABC’s MiniSAT, DRUP is for MiniSAT with
DRUP and ordered UP; +Clr adds our colorizing algorithm; and +Pre
adds MiniSAT’s Pre-processor. ‘t’ stands for time, ’d‘ for depth of
the solution, ‘–’ for time-out or other failure.

Name ABC DRUP DRUP+Clr DRUP+Pre DRUP+Pre+Clr
t (s) d t (s) d t (s) d t (s) d t (s) d

6s102 203 23 91 24 340 37 175 33 399 37
6s121 – – 418 50 248 34 – – – –
6s130 136 8 144 9 165 9 192 9 216 9
6s144 – – 533 25 583 24 668 26 560 22
6s189 622 21 382 21 572 26 396 21 552 23
6s206rb025 66 5 13 3 13 3 15 3 15 3
6s207rb16 46 8 96 8 96 8 127 8 110 8
6s209b1 181 24 106 24 115 24 142 24 157 24
6s215rb0 7 7 4 7 4 7 4 7 4 7
6s216rb0 21 13 12 13 11 13 13 13 13 13
6s218b1246 588 9 283 9 272 9 293 9 281 9
6s271rb045 371 11 256 10 262 10 – – – –
6s273b37 162 20 216 20 217 20 277 20 284 20
6s275rb253 4 6 7 6 7 6 8 6 10 6
6s276rb318 19 10 11 10 11 10 15 10 16 10
6s277rb342 18 10 15 13 10 10 13 10 22 13
6s282b15 103 18 99 25 106 19 184 17 209 17
6s288r – – 376 24 338 22 468 23 444 22
6s289rb00529 77 7 38 7 37 7 38 7 37 7
6s291rb18 517 78 341 74 283 73 – – 717 73
6s305rb069 270 18 139 18 128 18 133 18 136 18
6s306rb03 219 17 58 13 56 13 58 13 59 13
6s307rb06 127 13 86 13 90 13 102 13 109 13
6s311rb1 69 2 19 2 18 2 20 2 20 2
6s326rb02 34 11 14 11 15 11 17 11 17 11
6s327rb10 25 9 11 9 11 9 12 9 12 9
6s330rb11 10 3 5 3 4 3 5 3 5 3
6s335rb60 2 4 1 4 1 4 1 4 1 4
6s343b31 – – – – – – 332 15 503 15
6s349rb12 185 13 143 15 142 15 158 15 169 15
6s364rb03158 519 2 198 2 198 2 191 2 188 2
6s372rb31 358 29 322 30 162 21 295 29 276 26
6s374b029 467 9 264 9 258 9 264 9 256 9
6s380b129 226 20 109 20 109 20 131 20 122 20
6s384rb194 – – – – – – 786 22 868 30
6s385rb444 441 13 237 12 257 13 218 12 203 12
6s386rb07 – – 871 13 868 13 855 13 828 13
6s388b07 0 0 0 0 0 0 0 0 0 0
6s389b11 6 4 3 4 3 4 3 4 3 4
6s38 341 14 301 15 296 13 624 19 347 14
6s403rb0609 17 5 11 5 12 5 14 5 14 5
6s404rb4 55 4 45 4 65 5 69 4 78 4
6s405rb611 85 6 53 6 54 6 58 6 65 6
6s406rb111 735 16 521 16 612 16 544 16 662 17
6s407rb296 417 12 354 12 360 12 378 12 405 12
6s408rb191 264 8 452 8 420 8 340 8 371 8
6s410rb043 193 9 150 9 156 9 275 10 273 10
6s9 166 10 194 9 219 9 309 9 221 9

SOLVED 42 46 46 45 46

Also note that this experiment confirms the results of the above
figures which show that interpolation time is comparable with a
proof-logging SAT solver and that sizes are in favor of DRUP.

Another important analysis is the effect Colorizing has on
AVY’s performance. Clearly, using colorize results in different
interpolants. We can see from the results that there are cases
where this results in better convergence depths and thus better
performance. Note that using this feature is more demanding
than simply extracting an interpolant since it restructures
local chain derivations. Even though, when the convergence
depth is similar the performance degradation due to the extra
computation is small. It is important to note that colorizing
results in many shared-derivable leaves, which means that the
CNF component of the interpolant is meaningful. Currently,
we did not make any special use of the CNF component and
we leave this option for future research and exploration.

Finally, in Table II, we show the number of shred-derivable
leaves, i.e. number of clauses in the CNF component of the
interpolant computed by our method. Recall that DRUP is used

http://arieg.bitbucket.org/avy/drup/plots


TABLE II: Number of shared-derivable leaves using our inter-
polation algorithm when solving BMC problems using bound 20.
Algorithm names are as in Table I.

Name DRUP DRUP+Clr DRUP+Pre DRUP+Pre+Clr
6s102 0 73 0 257
6s119 0 976 0 0
6s122 0 223 0 216
6s152 0 449 0 217
6s188 0 651 0 521
6s196 0 648 0 642
6s276rb318 0 230 0 122
6s27 0 507 0 572
6s282b15 0 1684 0 270
6s291rb18 0 420 24 177
6s292rb024 0 1043 0 577
6s302rb09 0 1257 0 369
6s309b046 0 641 0 669
6s310r 0 1334 1 810
6s351rb02 0 6956 0 6910
6s384rb194 0 1144 0 408
6s44 0 1701 0 1188
6s50 0 617 0 166
6s7 0 1372 1 860
6s8 0 1123 1 615

with ordered UP while DRUP+Clr is used with ordered UP and
colorize. Here too, we use fixed bound BMC problems. It is
clear that our colorizing algorithm is very effective in finding
a large number of clauses. While we present only a selected
subset, this trend holds in all our experiments.

Note that while the underlying model checking algorithm
did not make a special use of the CNF component, we believe
that specialized usage of the CNF component will result in
better performance [5], [7], [12].

VII. RELATED WORK

To our knowledge, this paper is the first to present and
evaluate a DRUP-based interpolation framework. Moreover,
we introduce a novel algorithm that computes a sequence in-
terpolant partially in CNF. Finally, our restructuring algorithm
is not based on pivot reordering as in previous works, but tries
to keep resolution steps within a given partition (colorizing).
We have already discussed proof-based and proof-less interpo-
lation methods in Sec. I, and clausal proofs in Sec. III. Thus,
in this section, we only focus on proof restructuring for CNF.

Many works deal with generating better interpolants, either
using new interpolation algorithms or by proof restructuring.
Our work is a synergy of these two approaches. [11] and [13]
suggest local transformation rules that are based on pivots
reordering to get CNF interpolants. Rollini et al. [13] also
suggest a compression of a resolution proof as a pre-processing
step. Unlike our work, they rely on explicit resolution proofs.
Furthermore, our restructuring does not rely on pivot reorder-
ing and supports sequence interpolation natively.

Our interpolation algorithm identifies the CNF component
of an interpolant even if the interpolant itself is not in CNF.
Vizel at al. [12] introduce an interpolation procedure that also
produces (near) interpolants in CNF. However, unlike [12],
our framework does not rely on explicit resolution proofs and
produced complete interpolants. We leave extending [12] to
DRUP-proofs for future work.

VIII. CONCLUSION

In this paper, we introduce a DRUP-based interpolation
framework. We show how DRUP-proofs can be trimmed and

restructured for interpolation. We develop a novel interpolation
algorithm that computes interpolants partially in CNF. Further-
more, we show how DRUP-proofs can be locally restructured
to maximize the size of the CNF component without expo-
nentially increasing the proof. Based on previous works [5],
[7], [12], we believe that getting a CNF component for an
interpolant is beneficial for the underlying model checking
algorithm. Our framework is implemented in MiniSAT and is
publicly available. Our experiments show that the framework
is very effective in the context of both bounded and unbounded
model checking applications.
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