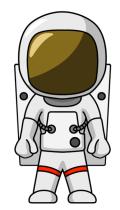
Quantified Solutions for Model Checking with Constrained Horn Clauses

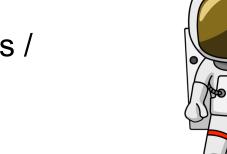
Arie Gurfinkel

BeMC: The Best of Model Checking July 13, 2019 New York, NY



joint work with Nikolaj Bjorner, Anvesh Komuraveli, Sharon Shoham, Yakir Vizel, Hari Govind, Yu-Ting (Jeff) Chen, ...

Software Model Checking of Programs / Transitions Systems / Push-down Systems



Satisfiability of Constrained Horn Logic (CHC) fragment of First Order Logic

Reduce Model Checking to FOL Satisfiability

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL formula of the form

$$\forall V \cdot (\varphi \wedge p_1[X_1] \wedge \cdots \wedge p_n[X_n]) \rightarrow h[X]$$

where

- \mathcal{T} is a background theory (e.g., Linear Arithmetic, Arrays, Bit-Vectors, or combinations of the above)
- V are variables, and X_i are terms over V
- $ullet \varphi$ is a constraint in the background theory ${\mathcal T}$
- $p_1, ..., p_n, h$ are n-ary predicates
- $p_i[X]$ is an application of a predicate to first-order terms

Horn Clauses for Program Verification

 $e_{out}(x_0, \mathbf{w}, e_o)$, which is an energy point into successor edges. with the edges are formulated as follows:

$$p_{init}(x_0, \boldsymbol{w}, \perp) \leftarrow x = x_0$$
 where x occurs in \boldsymbol{w}
 $p_{exit}(x_0, ret, \top) \leftarrow \ell(x_0, \boldsymbol{w}, \top)$ for each label ℓ , and re
 $p(x, ret, \perp, \perp) \leftarrow p_{exit}(x, ret, \perp)$
 $p(x, ret, \perp, \top) \leftarrow p_{exit}(x, ret, \top)$
 $\ell_{out}(x_0, \boldsymbol{w}', e_0) \leftarrow \ell_{in}(x_0, \boldsymbol{w}, e_i) \land \neg e_i \land \neg wlp(S, \neg(e_i = x_0))$

5. incorrect :- Z=W+1, W>0, W+1 <read(A, W, U), read(A, Z)

6. $p(I1, N, B) := 1 \le I, I < N, D = I - 1, I1 = I + 1, V = U + 1$ read(A, D, U), write(A

7. p(I, N, A) := I = 1, N > 1.

De Angelis et al. Verifying Array **Programs by Transforming** Verification Conditions, VMCAI'14 Weakest Preconditions If we apply Boogie directly we obtain a translation from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

$$\begin{aligned} \operatorname{ToHorn}(\operatorname{program}) &:= \operatorname{wlp}(\operatorname{Main}(), \top) \wedge \bigwedge_{\operatorname{decl} \in \operatorname{program}} \operatorname{ToHorn}(\operatorname{decl}) \\ \operatorname{ToHorn}(\operatorname{def}\ p(x)\ \{S\}) &:= \operatorname{wlp}\left(\underset{\mathbf{assume}}{\operatorname{havoc}}\ x_0; \underset{\mathbf{assume}}{\operatorname{assume}}\ x_0 = x; \\ \operatorname{assume}\ p_{\operatorname{pre}}(x); S, & p(x_0, \operatorname{ret}) \right) \\ wlp(x &:= E, Q) &:= \operatorname{let}\ x = E \ \operatorname{in}\ Q \\ wlp((\operatorname{if}\ E \ \operatorname{then}\ S_1 \ \operatorname{else}\ S_2), Q) &:= \operatorname{wlp}(((\operatorname{assume}\ E; S_1) \square (\operatorname{assume}\ \neg E; S_2)), Q) \\ wlp((S_1\square S_2), Q) &:= \operatorname{wlp}(S_1, Q) \wedge \operatorname{wlp}(S_2, Q) \\ wlp(S_1; S_2, Q) &:= \operatorname{wlp}(S_1, \operatorname{wlp}(S_2, Q)) \\ wlp(\operatorname{havoc}\ x, Q) &:= \forall x \ . \ Q \\ wlp(\operatorname{assert}\ \varphi, Q) &:= \varphi \wedge Q \\ wlp(\operatorname{assume}\ \varphi, Q) &:= \varphi \to Q \\ wlp((\operatorname{while}\ E \ \operatorname{do}\ S), Q) &:= \operatorname{inv}(w) \wedge \\ \forall w \ . \ \left(\underset{\wedge}{((\operatorname{inv}(w) \wedge E) \ \to \ wlp(S, \operatorname{inv}(w))))} \right) \end{aligned}$$

To translate a procedure call $\ell: y := q(E); \ell'$ within a procedure p, create he clauses:

$$p(\boldsymbol{w}_0, \boldsymbol{w}_4) \leftarrow p(\boldsymbol{w}_0, \boldsymbol{w}_1), call(\boldsymbol{w}_1, \boldsymbol{w}_2), q(\boldsymbol{w}_2, \boldsymbol{w}_3), return(\boldsymbol{w}_1, \boldsymbol{w}_3, \boldsymbol{w}_4)$$

$$q(\boldsymbol{w}_2, \boldsymbol{w}_2) \leftarrow p(\boldsymbol{w}_0, \boldsymbol{w}_1), call(\boldsymbol{w}_1, \boldsymbol{w}_2)$$

$$call(\boldsymbol{w}, \boldsymbol{w}') \leftarrow \pi = \ell, x' = E, \pi' = \ell_{q_{init}}$$

$$return(\boldsymbol{w}, \boldsymbol{w}', \boldsymbol{w}'') \leftarrow \pi' = \ell_{q_{exit}}, \boldsymbol{w}'' = \boldsymbol{w}[ret'/y, \ell'/\pi]$$

Bjørner, Gurfinkel, McMillan, and Rybalchenko: Horn Clause Solvers for Program Verification

Horn Clauses for Concurrent / Distributed / **Parameterized Systems**

For assertions
$$R_1, \ldots, R_N$$
 over V and E_1, \ldots, E_N over V, V' ,
 $CM1: init(V) \longrightarrow R_i(V)$
 $CM2: R_i(V) \land \rho_i(V, V') \longrightarrow R_i(V')$
 $CM3: (\bigvee_{i \in 1...N \setminus \{j\}} R_i(V) \land \rho_i(V, V')) \longrightarrow E_j(V, V')$
 $CM4: R_i(V) \land E_i(V, V') \land \rho_i^{\equiv}(V, V') \longrightarrow R_i(V')$
 $CM5: R_1(V) \land \cdots \land R_N(V) \land error(V) \longrightarrow false$
multi-threaded program P is safe

Rybalchenko et al. Synthesizing Software Verifiers from Proof Rules. PLDI'12

$$\left\{ R(\mathsf{g}, \mathsf{p}_{\sigma(1)}, \mathsf{I}_{\sigma(1)}, \dots, \mathsf{p}_{\sigma(k)}, \mathsf{I}_{\sigma(k)}) \leftarrow dist(\mathsf{p}_1, \dots, \mathsf{p}_k) \land R(\mathsf{g}, \mathsf{p}_1, \mathsf{I}_1, \dots, \mathsf{p}_k, \mathsf{I}_k) \right\}_{\sigma \in S_k}$$

$$R(\mathsf{g}, \mathsf{p}_1, \mathsf{I}_1, \dots, \mathsf{p}_k, \mathsf{I}_k) \leftarrow dist(\mathsf{p}_1, \dots, \mathsf{p}_k) \land Init(\mathsf{g}, \mathsf{I}_1) \land \dots \land Init(\mathsf{g}, \mathsf{I}_k)$$
(7)

$$R(g, p_1, l_1, \dots, p_k, l_k) \leftarrow dist(p_1, \dots, p_k) \wedge Init(g, l_1) \wedge \dots \wedge Init(g, l_k)$$

$$R(\mathsf{g}',\mathsf{p}_1,\mathsf{l}'_1,\ldots,\mathsf{p}_k,\mathsf{l}_k) \leftarrow dist(\mathsf{p}_1,\ldots,\mathsf{p}_k) \wedge \left((\mathsf{g},\mathsf{l}_1) \stackrel{\mathsf{p}_1}{\rightarrow} (\mathsf{g}',\mathsf{l}'_1) \right) \wedge R(\mathsf{g},\mathsf{p}_1,\mathsf{l}_1,\ldots,\mathsf{p}_k,\mathsf{l}_k) \tag{8}$$

$$R(g', p_1, l_1, \dots, p_k, l_k) \leftarrow dist(p_0, p_1, \dots, p_k) \wedge ((g, l_0) \xrightarrow{p_0} (g', l'_0)) \wedge RConj(0, \dots, k)$$

$$false \leftarrow dist(\mathsf{p}_1,\ldots,\mathsf{p}_r) \land \left(\bigwedge_{j=1,\ldots,m} (\mathsf{p}_j = p_j \land (\mathsf{g},\mathsf{l}_j) \in E_j)\right) \land RConj(1,\ldots,r) \tag{10}$$

Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invariant. S_k is the symmetric group on $\{1,\ldots,k\}$, i.e., the group of all permutations of k numbers; as an optimisation, any generating subset of S_k , for instance transpositions, can be used instead of S_k . In (10), we define $r = \max\{m, k\}$.

Hojjat et al. Horn Clauses for Communicating Timed Systems. HCVS'14

 $Init(i, j, \overline{v}) \wedge Init(j, i, \overline{v}) \wedge$

$$Init(i,i,\overline{v}) \wedge Init(j,j,\overline{v}) \Rightarrow I_2(i,j,\overline{v})$$
 (initial)
$$I_2(i,j,\overline{v}) \wedge Tr(i,\overline{v},\overline{v}') \Rightarrow I_2(i,j,\overline{v}')$$
 (3)
$$I_2(i,j,\overline{v}) \wedge Tr(j,\overline{v},\overline{v}') \Rightarrow I_2(i,j,\overline{v}')$$
 (4)
$$I_2(i,j,\overline{v}) \wedge Tr(j,\overline{v},\overline{v}') \Rightarrow I_2(i,j,\overline{v}')$$
 (4)
$$I_2(i,j,\overline{v}) \wedge Tr(j,\overline{v},\overline{v}') \Rightarrow I_2(i,j,\overline{v}')$$
 (5)
$$I_2(i,j,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(j,k,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(i,j,\overline{v}')$$
 (5)
$$I_2(i,j,\overline{v}) \wedge I_2(i,j,\overline{v}) \wedge I_2(i,j,\overline{v}') \wedge I_2(i,j,\overline{v}')$$
 (7)
$$I_2(i,j,\overline{v}) \wedge I_2(i,j,\overline{v}) \wedge I_2(i,j,\overline{v}') \wedge I_2(i,j,\overline{v}')$$
 (8)
$$I_2(i,j,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(i,j,\overline{v}') \wedge I_2(i,j,\overline{v}')$$
 (9)
$$I_2(i,j,\overline{v}) \wedge I_2(i,k,\overline{v}) \wedge I_2(i,k,\overline$$

Figure 6. Horn clause encoding for thread modularity at level k (where (ℓ_i, s, ℓ'_i) and $(\ell^{\dagger}, s, \cdot)$) refer to statement s on at from ℓ_i to ℓ'_i and, respectively, from ℓ^{\dagger} to some other location in the control flow graph)

 $Inv(q, \ell_1, x_1, \dots, \ell_k, x_k) \wedge err(q, \ell_1, x_1, \dots, \ell_m, x_m) \rightarrow false$

Gurfinkel et al. SMT-Based Verification of Parameterized Systems. FSE 2016

Figure 3: $VC_2(T)$ for two-quantifier invariants.

(safe)

Hoenicke et al. Thread Modularity at Many Levels, POPL'17

(9)

CHC Satisfiability

A \mathcal{T} -model of a set of a CHCs Π is an extension of the model M of \mathcal{T} with a first-order interpretation of each predicate p_i that makes all clauses in Π true in M

A set of clauses is **satisfiable** if and only if it has a model

This is the usual FOL satisfiability

A \mathcal{T} -solution of a set of CHCs Π is a substitution σ from predicates p_i to \mathcal{T} -formulas such that $\Pi \sigma$ is \mathcal{T} -valid

In the context of program verification

- a program satisfies a property iff corresponding CHCs are satisfiable
- solutions are inductive invariants
- refutation proofs are counterexample traces

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN

QARMC, Eldarica, ...

Maximal Inductive Subset from a finite Candidate space (Houdini)

• TACAS'18: hoice, FreqHorn

Machine Learning

• PLDI'18: sample, ML to guess predicates, DT to guess combinations

Abstract Interpretation (Poly, intervals, boxes, arrays...)

Approximate least model by an abstract domain (SeaHorn, ...)

Interpolation-based Model Checking

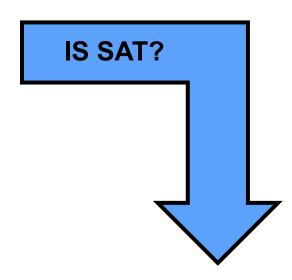
• Duality, QARMC, ...

SMT-based Unbounded Model Checking (IC3/PDR)

Spacer, Implicit Predicate Abstraction

Program Verification with HORN(LIA)

```
z = x; i = 0;
assume (y > 0);
while (i < y) {
  z = z + 1;
  i = i + 1;
}
assert(z == x + y);</pre>
```



```
z = x \& i = 0 \& y > 0 \Rightarrow Inv(x, y, z, i)

Inv(x, y, z, i) & i < y & z1=z+1 & i1=i+1 \Rightarrow Inv(x, y, z1, i1)

Inv(x, y, z, i) & i >= y & z != x+y \Rightarrow false
```


In SMT-LIB

```
(set-logic HORN)
;; Inv(x, y, z, i)
(declare-fun Inv ( Int Int Int Int) Bool)
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int))
         (=> (and (> B 0) (= C A) (= D 0))
            (Inv A B C D)))
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int) )
         (=>
          (and (Inv A B C D) (< D B) (= C1 (+ C 1)) (= D1 (+ D
1)))
          (Inv A B C1 D1)
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int))
         (=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
            false
(check-sat)
(get-model)
```

```
$ z3 add-by-one.smt2

sat

(model

  (define-fun Inv ((x!0 Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool

  (and (<= (+ x!2 (* (- 1) x!0) (* (- 1) x!3)) 0)

        (<= (+ x!2 (* (- 1) x!0) (* (- 1) x!1)) 0)

        (<= (+ x!0 x!3 (* (- 1) x!2)) 0)))

)
```

```
Inv(x, y, z, i)
z = x + i
z <= x + y</pre>
```


Spacer: Solving SMT-constrained CHC

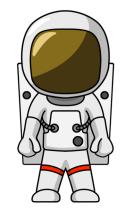
Spacer: SAT procedure for SMT-constrained Horn Clauses

- now the default CHC solver in Z3
 - https://github.com/Z3Prover/z3
 - dev branch at https://github.com/agurfinkel/z3

- Linear Real and Integer Arithmetic
- Quantifier-free theory of arrays
- Universally quantified theory of arrays + arithmetic
- Best-effort support for many other SMT-theories
 - data-structures, bit-vectors, non-linear arithmetic

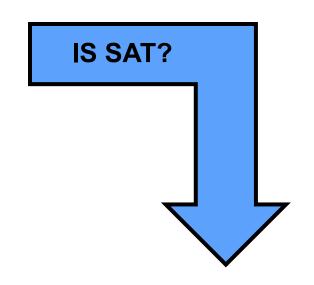
Support for Non-Linear CHC

- for procedure summaries in inter-procedural verification conditions
- for compositional reasoning: abstraction, assume-guarantee, thread modular, etc.



HORN(ALIA): Arrays + LIA

```
int A[N];
for (int i = 0; i < N; ++i)
    A[i] = 0;
int j = nd();
assume(0 <= j < N);
assert(A[j] == 0);</pre>
```

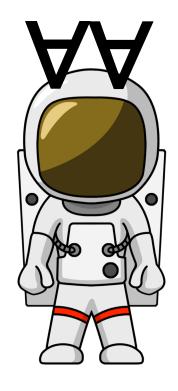


```
Inv(A, N, 0)
Inv(A, N, i) & i < N \rightarrow Inv(A[i := 0], N, i+1)
Inv(A, N, i) & i >= N & 0 <= j < N & A[j] != 0 \rightarrow false
```


In SMT-LIB

```
(set-logic HORN)
;; Inv(A, N, i)
(declare-fun Inv ( (Array Int Int) Int Int ) Bool)
(assert
 (forall ( (A (Array Int Int)) (N Int) (C Int)) (Inv A N 0)))
(assert
 (forall ( (A (Array Int Int)) (N Int) (i Int) )
         (=>
          (and (Inv A N i) (< i N))
          (Inv (store A i 0) N (+ i 1))
(assert
 (forall ( (A (Array Int Int)) (N Int) (i Int) (j Int))
         (=> (and (Inv A N i )
                 (>= i N) (<= 0 j) (< j N) (not (= (select A)))
j) 0)))
            false
(check-sat)
(get-model)
```

```
$ z3 -t:100 array-zero.smt2
canceled
unknown
```

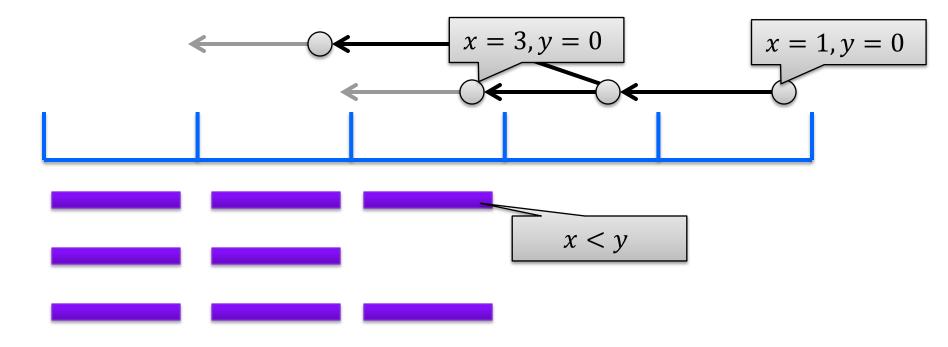



Extends Spacer with reasoning about quantified solutions

QUIC3: QUANTIFIED IC3

Arie Gurfinkel, Sharon Shoham, Yakir Vizel: Quantifiers on Demand. ATVA 2018

IC3/PDR In Pictures: MkSafe



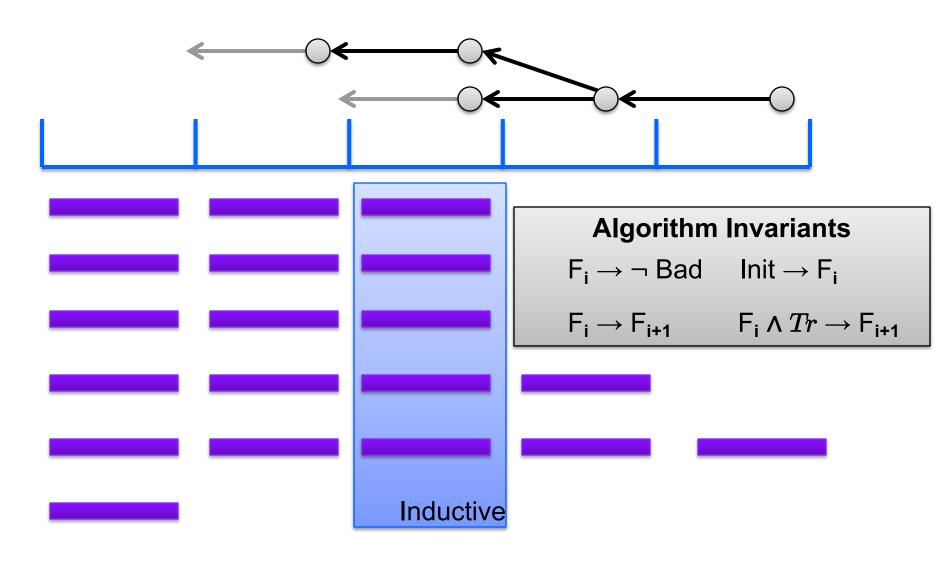
Predecessor

find M s.t. $M \models F_i \wedge Tr \wedge m'$

find m s.t. $(M \models m) \land (m \implies \exists V' \cdot Tr \land m')$

find
$$\ell$$
 s.t. $(F_i \wedge Tr \implies \ell') \wedge (\ell \implies \neg m)$

IC3/PDR in Pictures: Push



SMT-query: $\vdash \ell \land F_i \land Tr \implies \ell'$

Predecessor in array-zero example

Inv(A, N, i) & i >= N & 0 <= j < N & A[j] != 0
$$\rightarrow$$
 false

Tr:
$$i < N \& 0 <= j < N \& A[j] != 0$$

POB: true

$$\exists j \cdot i \ge N \land 0 \le j < N \land A[j] \ne 0$$

$$= i \ge N \land \exists j \cdot (0 \le j < N \land A[j] \ne 0)$$

$$= ???$$

No way to eliminate the existential quantifier!

- can use the value of j in the current model
- but this only works when A[j] is not important

Quantified POBs and Lemmas

Must deal with existentially quantified POBs

find
$$M$$
 s.t. $M \models F_i \wedge Tr \wedge m'$
find m s.t. $(M \models m) \wedge (m \implies \exists V' \cdot Tr \wedge m')$

Learning universally quantified lemmas is easy!

- if POB m is existentially quantified, then it's negation is universally quantified
- checking that Tr implies a universally quantified lemma is easy

find
$$\ell$$
 s.t. $(F_i \wedge Tr \implies \ell') \wedge (\ell \implies \neg m)$

But universal quantifiers make even basic SMT queries undecidable!

cannot assume that SMT-solver will magically handle this for us

QUIC3: Quantified IC3

[kwik-ee]

Spacer extends IC3/PDR from Propositional logic to LIA + Arrays

Quic3 extends Spacer to discovering Universally Quantified solutions

- Extend proof obligations with free (implicitly existentially quantified) variables
- Allow universal quantifiers in lemmas
- Explicitly manage quantifier instantiations to guarantee progress
 - without syntactic restriction of formulas (e.g., MBQI, Local Theory, APF)
 - without user-specified patterns
- Quantified generalization to heuristically infer new quantifiers

Implemented in spacer in Z3 master branch

• z3 fp.spacer.ground_pobs=false fp.spacer.q3.use_qgen=true NAME.smt2

QUIC3: Trace and Proof Obligations

A quantified trace $Q = Q_0, ..., Q_N$ is a sequence of frames.

- A frame Q_i is a set of (ℓ, σ) , where ℓ is a lemma and σ a substitution.
- $qi(Q) = \{\ell \sigma \mid (\ell, \sigma) \in Q\}$

$$\forall Q = \{ \forall \ell \mid (\ell, \sigma) \in Q \}$$

- Invariants:
 - Bounded Safety: \forall i < N . \forall Q_i → ¬Bad
 - Monotonicity: $\forall i < N : \forall Q_{i+1} \subseteq \forall Q_i$
 - Inductiveness: $\forall i < N : \forall Q_i \land Tr \rightarrow \forall Q'_{i+1}$

A priority queue *Q* of quantified proof obligations (POBs)

- $(m, \xi, i) \in Q$ where m is a cube, ξ is a ground substitution for all free variables of m, and i is a numeric level
- if $(m, \xi, i) \in \mathcal{Q}$ then there exists a path of length (N-i) from a state in $m\xi$ to a state in Bad

QUIC3: Rules

Input: A safety problem $\langle Init(X), Tr(X, X'), Bad(X) \rangle$.

Assumptions: *Init*, *Tr* and *Bad* are quantifier free.

Data: A POB queue \mathcal{Q} , where a POB $c \in \mathcal{Q}$ is a triple $\langle m, \sigma, i \rangle$, m is a conjunction of literals over X and free variables, σ is a substitution s.t. $m\sigma$ is ground, and $i \in \mathbb{N}$. A level N. A quantified trace $\mathcal{T} = Q_0, Q_1, \ldots$, where for every pair $(\ell, \sigma) \in Q_i$, ℓ is a quantifier-free formula over X and free variables and σ a substitution s.t. $\ell\sigma$ is ground.

Notation: $\mathcal{F}(A) = (A(X) \land Tr(X, X')) \lor Init(X'); \ qi(Q) = \{\ell\sigma \mid (\ell, \sigma) \in Q\}; \ \forall Q = \{\forall \ell \mid (\ell, \sigma) \in Q\}.$

Output: Safe or Cex

Initially: $Q = \emptyset$, N = 0, $Q_0 = \{(Init, \emptyset)\}$, $\forall i > 0 \cdot Q_i = \emptyset$.

repeat

Safe If there is an i < N s.t. $\forall Q_i \subseteq \forall Q_{i+1}$ **return** Safe.

Cex If there is an m, σ s.t. $\langle m, \sigma, 0 \rangle \in \mathcal{Q}$ **return** Cex.

Unfold If $qi(Q_N) \to \neg Bad$, then set $N \leftarrow N + 1$.

Candidate If for some $m, m \to qi(Q_N) \wedge Bad$, then add $\langle m, \emptyset, N \rangle$ to Q.

Predecessor If $\langle m, \xi, i+1 \rangle \in \mathcal{Q}$ and there is a model M s.t. $M \models qi(Q_i) \wedge Tr \wedge (m'_{sk})$, add $\langle \psi, \sigma, i \rangle$ to \mathcal{Q} , where $(\psi, \sigma) = abs(U, \varphi)$ and $(\varphi, U) = \text{PMBP}(X' \cup SK, Tr \wedge m'_{sk}, M)$.

NewLemma For $0 \le i < N$, given a POB $\langle m, \sigma, i+1 \rangle \in \mathcal{Q}$ s.t. $\mathcal{F}(qi(Q_i)) \wedge m'_{sk}$ is unsatisfiable, and $L' = \text{ITP}(\mathcal{F}(qi(Q_i)), m'_{sk})$, add (ℓ, σ) to Q_j for $j \le i+1$, where $(\ell, \bot) = abs(SK, L)$.

Push For $0 \le i < N$ and $((\varphi \lor \psi), \sigma) \in Q_i$, if $(\varphi, \sigma) \notin Q_{i+1}$, $Init \to \forall \varphi$ and $(\forall \varphi) \land \forall Q_i \land qi(Q_i) \land Tr \to \forall \varphi'$, then add (φ, σ) to Q_j , for all $j \le i+1$.

QUIC3: Predecessor, NewLemma, and Push

```
repeat

:

Predecessor If \langle m, \xi, i+1 \rangle \in \mathcal{Q} and there is a model M s.t.

M \models qi(Q_i) \land Tr \land (m'_{sk}), add \langle \psi, \sigma, i \rangle to \mathcal{Q}, where (\psi, \sigma) = abs(U, \varphi) and (\varphi, U) = \text{PMBP}(X' \cup SK, Tr \land m'_{sk}, M).

NewLemma For 0 \le i < N, given a POB \langle m, \sigma, i+1 \rangle \in \mathcal{Q} s.t. qi(Q_i) \land Tr \land m'_{sk} is unsatisfiable, and L' = \text{ITP}(\mathcal{F}(qi(Q_i)), m'_{sk}), add (\ell, \sigma) to Q_j for j \le i+1, where (\ell, \bot) = abs(SK, L).
```

Push For $0 \le i < N$ and $((\varphi \lor \psi), \sigma) \in Q_i$, if $(\varphi, \sigma) \not\in Q_{i+1}$, $Init \to \forall \varphi$ and $(\forall \varphi) \land \forall Q_i \land qi(Q_i) \land Tr \to \forall \varphi'$, then add (φ, σ) to Q_j , for all $j \le i+1$.

until ∞ ;

In **Predecessor** and **NewLemma** only use current instantiations of quantified lemmas. All SMT queries are quantifier free

In **Push**, quantified lemmas are required for relative completeness

• in practice, we use incomplete pattern-based instantiation and hope that it is sufficient together with qi(Q_i)

Progress and Counterexamples

The **Predecessor** rule is only finitely applicable to any POB

- follows from how quantified terms are abstracted by free variables and how quantified lemmas are instantiated
- assumes that Skolemization is deterministic
- uses finiteness of Model Based Projection

MkSafe in Quic3 is terminating for any given bound N

- w.l.o.g, assume Bad is a single POB
- Follows by induction on the bound N

MkSafe in Quic3 computes a quantified interpolation sequence

If there is a counterexample, Quic3 will terminate with the shortest counterexample

In SMT-LIB

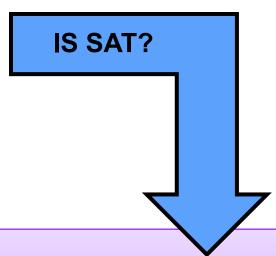
```
(set-logic HORN)
;; Inv(A, N, i)
(declare-fun Inv ( (Array Int Int) Int Int ) Bool)
(assert
 (forall ( (A (Array Int Int)) (N Int) (C Int)) (Inv A N 0)))
(assert
 (forall ( (A (Array Int Int)) (N Int) (i Int) )
         (=>
          (and (Inv A N i) (< i N) )
          (Inv (store A i 0) N (+ i 1))
(assert
 (forall ( (A (Array Int Int)) (N Int) (i Int) (j Int))
         (=> (and (Inv A N i )
                 (>= i N) (<= 0 j) (< j N) (not (= (select A)))
j) 0)))
            false
(check-sat)
(get-model)
```

```
$ z3 array-zero.smt2
sat
(model
 (define-fun Inv ((x!0 (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
   (let ((a!1 (forall ((sk!0 Int))
               (! (or (not (>= sk!0 0))
                      (>= (select x!0 sk!0) 0)
                      (<= (+ x!2 (* (- 1) sk!0)) 0))
                  :weight 15)))
         (a!2 (forall ((sk!0 Int))
                (! (or (not (>= sk!0 0))
                      (<= (select x!0 sk!0) 0)
                      (<= (+ x!2 (* (- 1) sk!0)) 0))
                  :weight 15))))
     (and a!1 a!2)))
```


almost ... THE END

HORN(ALIA): Arrays + LIA

```
int A[N];
for (int i = 0; i < N; ++i)
    A[i] = 0;
for (i = 0; i < N; ++i)
    assert(A[i] == 0);</pre>
```



```
Inv1(A, N, 0)
Inv1(A, N, i) & i < N → Inv1(A[i := 0], N, i+1)
Inv1(A, N, i) & i >= N → Inv2(A, N, 0)
Inv2(A, N, i) & i < N & A[i] = 0 → Inv2(A, N, i+1)
Inv2(A, N, i) & i < N & A[i] != 0 → false</pre>
```


In SMT-LIB

```
(set-logic HORN)
;; Inv(A, N, i)
(declare-fun Inv1 ( (Array Int Int) Int Int ) Bool)
(declare-fun Inv2 ( (Array Int Int) Int Int ) Bool)
(forall ( (A (Array Int Int)) (N Int) (C Int)) (Inv1 A N 0)))
(forall ( (A (Array Int Int)) (N Int) (i Int) )
         (and (Inv1 A N i) (< i N) )
         (Inv1 (store A i 0) N (+ i 1))
)
(assert
(forall ( (A (Array Int Int)) (N Int) (i Int) )
         (and (Inv1 A N i) (>= i N) ) (Inv2 A N \theta)
))
(forall ( (A (Array Int Int)) (N Int) (i Int) )
         (and (Inv2 A N i) (< i N) (= (select A i) \theta) ) (Inv2 A N (+ i 1))
))
(assert
(forall ( (A (Array Int Int)) (N Int) (i Int) )
         (and (Inv2 A N i) (< i N) (not (= (select A i) 0)) ) false
))
(check-sat)
(get-model)
```

\$ z3 -t:100 array-zero2.smt2
canceled
unknown

Why this example diverges?

Inv2(A, N, i) & i < N & A[i] != 0
$$\rightarrow$$
 false $i < N \land A[i] \neq 0$ true

Inv1(A, N, i) & i >= N
$$\rightarrow$$
 Inv2(A, N, 0)

$$0 < N \le i \land A[0] \ne 0 \qquad \longleftarrow \qquad i < N \land A[i] \ne 0$$

$$Inv2(A, N, i) & i < N & A[i] = 0 \rightarrow Inv2(A, N, i+1)$$

$$i + 1 < B \land A[i] = 0 \land A[i + 1] \neq 0$$

$$i < N \land A[i] \neq 0$$

$$\qquad \qquad t < N \land A[t] \neq 0$$

$Inv1(A, N, i) & i >= N \rightarrow Inv2(A, N, 0)$

$$i + 1 < B \land$$
$$A[i] = 0 \land A[i + 1] \neq 0$$

Quantified Generalizer

"... to boldly go where no one has gone before" (but many have been)

$$1 < N \le i \land A[0] = 0 \land A[1] \ne 0$$

Quantified generalizer is a heuristic to generalize POBs using existential quantifiers

• e.g., in our example, we want to generalize the pob into

$$\exists j \cdot 1 < N \le i \land 0 \le j < N \land A[j] \ne 0$$

We look for a pattern in the formula (anti-unification)

Use convex closure (i.e., abstract join) to capture the pattern by a conjunction

Apply after pob is blocked and generalized

As any generalization, it is a dark magic

In SMT-LIB

```
(set-logic HORN)
;; Inv(A, N, i)
(declare-fun Inv1 ( (Array Int Int) Int Int ) Bool)
(declare-fun Inv2 ( (Array Int Int) Int Int ) Bool)
(forall ( (A (Array Int Int)) (N Int) (C Int)) (Inv1 A N 0)))
(forall ( (A (Array Int Int)) (N Int) (i Int) )
         (and (Inv1 A N i) (< i N) )
         (Inv1 (store A i 0) N (+ i 1))
)
(assert
 (forall ( (A (Array Int Int)) (N Int) (i Int) )
         (and (Inv1 A N i) (>= i N) ) (Inv2 A N 0)
))
 (forall ( (A (Array Int Int)) (N Int) (i Int) )
         (and (Inv2 A N i) (< i N) (= (select A i) 0) ) (Inv2 A N (+ i 1))
))
(assert
(forall ( (A (Array Int Int)) (N Int) (i Int) )
         (and (Inv2 A N i) (\langle i N) (not (= (select A i) 0)) ) false
))
(check-sat)
(get-model)
```

```
$ z3 array-zero2.smt2
sat
  (define-fun Inv2 ((x!0 (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
    (let ((a!1 (forall ((sk!0 Int))
               (! (or (<= (+ x!1 (* (- 1) sk!0)) 0)
                      (<= (select x!0 sk!0) 0)
                      (<= (+ sk!0 (* (- 1) x!2)) 0))
                  :weight 15)))
         (a!2 (or (<= (+ x!1 (* (- 1) x!2)) 0) (<= (select x!0 x!2) 0)))
         (a!3 (or (>= (select x!0 x!2) 0) (<= (+ x!1 (* (-1) x!2)) 0)))
         (a!4 (forall ((sk!0 Int))
               (! (or (<= (+ x!1 (* (- 1) sk!0)) 0)
                      (>= (select x!0 sk!0) 0)
                      (<= (+ sk!0 (* (- 1) x!2)) 0))
                  :weight 15))))
     (and a!1 a!2 a!3 a!4)))
  (define-fun Inv1 ((x!0 (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
    (let ((a!1 (forall ((sk!0 Int))
               (! (or (<= (select x!0 sk!0) 0)
                      (<= (+ x!2 (* (- 1) sk!0)) 0)
                      (<= sk!0 0))
                  :weight 15)))
         (a!2 (forall ((sk!0 Int))
               (! (let ((a!1 (>= (+ sk!0 (* (- 1) (select x!0 sk!0))) 0)))
                    (or (not (>= sk!0\ 0)) (<= (+ x!2\ (*\ (-\ 1)\ sk!0))\ 0) a!1))
                  :weight 15)))
         (a!3 (forall ((sk!0 Int))
               (! (or (<= (+ x!2 (* (- 1) sk!0)) 0)
                      (>= (select x!0 sk!0) 0)
                      (<= sk!0 0))
                   :weight 15))))
     (and a!1 a!2 (or (>= (select x!0 0) 0) (<= x!2 0)) a!3)))
```


THE CURSE OF INTERPOLATION

The Curse of Interpolation

Interpolation is capable of generating many interesting terms

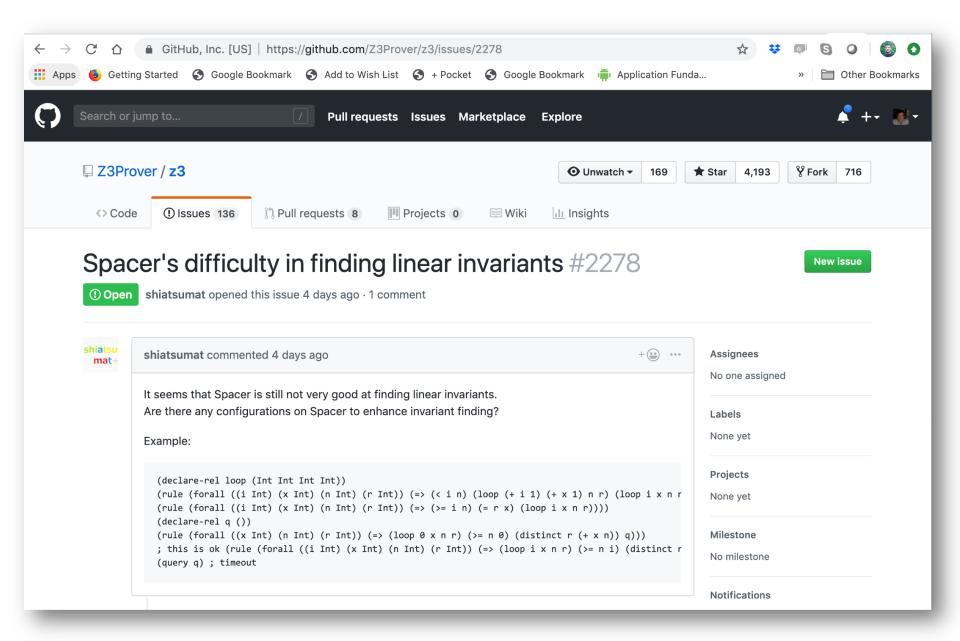
 (almost) any inductive invariant is an interpolant of something under the right conditions!

Interpolation often works in practice

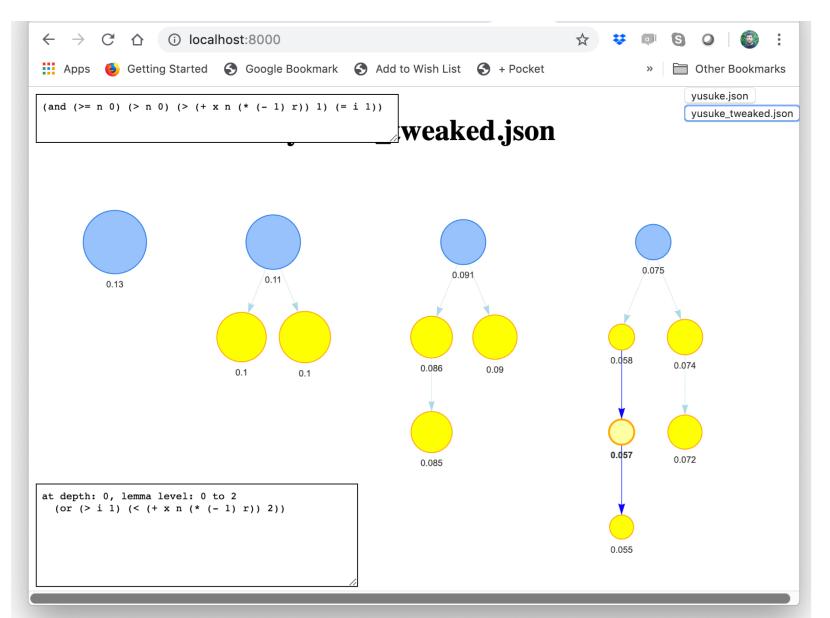
- creates false sense of security
- predicate / term generation is a solved problem

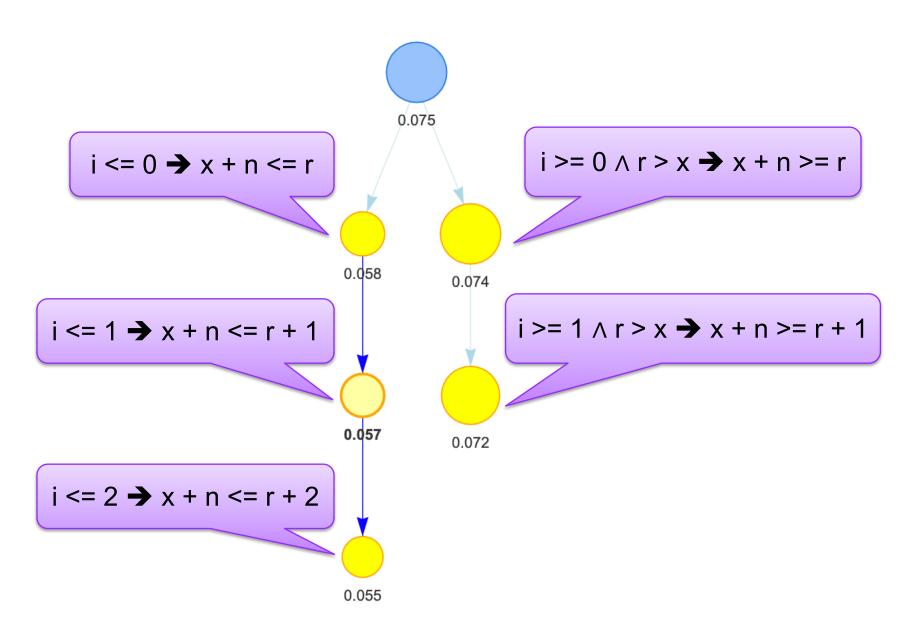
But, interpolation is very hard to control!

- Small changes to input result in big change in interpolants
- Small changes to solver parameter result in big change in interpolants
- Works well overall (i.e., large benchmark set), but poorly for any given user problem!




```
← → C ↑ â GitHub, Inc. [US] | https://github.com/Z3Prover/z3/issues/2278
🔛 Apps 🌘 Getting Started 🚱 Google Bookmark 🚱 Add to Wish List 🚱 + Pocket 🚱 Google Bookmark 🖐 Application Funda...
                                                                                Other Bookmarks
    Search or jump to...
                             Pull requests Issues Marketplace
        method loop(i : int, x : int, n : int)
    □ Z3
                                                                                  716
                                                     returns (r : int)
           requires n >= 0;
           ensures i <= n == x + n - i
                                                                                w issue
           ensures i > n ==> r == x
           ensures i == 0 == r == x + n
     shiats
           if (i < n)
              r := loop(i + 1, x + 1, n);
              return r;
           else
           { return x; }
```





Data Driven Generalization & Lemma Discovery

Global view of the current solver state

- group lemmas (and pobs) based on syntactic/semantic similarity
 - we currently use anti-unification on interpreted constants
- detect whenever global proof is diverging and mitigate

One lemma to rule them all

- merge lemmas in group to form a single universal lemma
- interpolation and inductive generalization can be applied to generalize further
- new lemma reduces the global proof by blocking all POBs in its group

Reduce, reuse, recycle

- under-approximate groups that cannot be merged in current theory
- learn multiple (simple) lemmas to block a (complex) pob

$$i < 0 \rightarrow x + n <= r + 0$$

$$i < 1 \rightarrow x + n <= r + 1$$

Lemma 1

Lemma 2

Group 1

 $(i < v \rightarrow x + n <= r + v)$

$$x + n \le r + i$$

Generalized Lemma

$$i < 0 \rightarrow x + n <= r + 0$$

$$r > x \wedge i >= 0 \rightarrow r + 0 <= x + n$$

$$r > x \wedge i >= 1 \rightarrow r + 1 <= x + n$$

$$0 \le v \le 1 \Rightarrow$$

(i < $v \Rightarrow x + n \le r + q$

$$r > x \wedge i > = v \rightarrow r + v < = x + n$$

$$x + n \le r + i$$

$$r > \chi \rightarrow r + i <= \chi + n$$

Conclusion

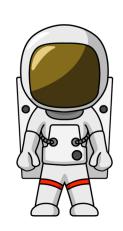
Verification of Safety Properties is FOL satisfiability

- Logic: Constrained Horn Clauses (CHC)
- "Decision" procedure: Spacer
- Now with (universal) quantifiers!

- Interpolation can be amazing at guessing required terms
- but, is hard to control and masks the underlying problem!

Data driven generalization

- supplement interpolation with data-driven learning
- global view of the overall proof process
- identify diverging patterns / groups
- generalize lemmas based on groups



THE END

Quic3: Related Work

Predicate Abstraction

- extend predicates with fresh universally quantified variables
- relies on a decision procedure for quantified logic

Model-Checking Modulo Theories (MCMT)

- model checking of array manipulating programs
- supported by multiple tools: cubicle, mcmt, safari, ...
- quantifier elimination to compute predecessors
- requires checking satisfiability of quantified formulas for sub-sumption and convergence

Discovery of Universal Invariants with Abstract Interpretation

- compute universally quantified inductive invariants of a certain shape
- often specialized for reasoning about arrays in programming languages
- not property directed, no guarantees, but often very quick
- can be combined with Quic3 as pre-processing

Quic3: Most Closely Related Work

Safari and Booster

- extends Lazy Abstraction with Interpolants (LAWI) to array manipulating programs
- solves mkSafe() using quantifier free theory of arrays and computes quantifier free sequence interpolant
- heuristically guesses quantified lemmas by abstracting terms
- see Avy for in-depth comparison between interpolation and IC3

Transformation into non-linear CHC

- guess number of quantifiers and instances statically
- use quantifier-free **non-linear** CHC solver to find template invariant
- generalizes most Abstract Interpretation / Template-based approaches
- cannot discover counterexamples
- can be simulated in Quic3 by restricting instantiations used

UPDR

• existential pobs and universal lemmas over decidable theories

