Quantified Solutions for
Model Checking with
Constrained Horn Clauses

Arie Gurfinkel

BeMC: The Best of Model Checking
July 13, 2019
New York, NY

UNIVERSITY OF

WATERLOO

SPACER: The Final Frontier

joint work with Nikolaj Bjorner, Anvesh Komuraveli,
Sharon Shoham, Yakir Vizel, Hari Govind, Yu-Ting
(Jeff) Chen, ...

% WATERLOO

Software Model Checking of
Programs / Transitions Systems /
Push-down Systems

Satisfiability of Constrained
Horn Logic (CHC) fragment of
First Order Logic

Reduce Model Checking to
FOL Satisfiability

IIIIIIIIIIII

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

YV - (o Ap1[X1 A ApplXa]) = h|X]

where

e T is a background theory (e.g., Linear Arithmetic, Arrays,
Bit-Vectors, or combinations of the above)

e \/ are variables, and X, are terms over V

¢ Is a constraint in the background theory T°

° D4, ..., Py, h are n-ary predicates

e pi[X] is an application of a predicate to first-order terms

IIIIIIIIIIII

Horn Clauses for Program Verification

(‘Ol]tl\"’(:” wo, LG"" WY ALLLAL 1D Caa LLLLA"V lJULLlL LW DULACDODUL Luaw.

with the edges are formulated as follows:

Pinit(To,w, L) &z =x¢ where r occurs in w
Pezxit(Zo, ret, T) « €(zg,w, T) for each label £, and re
plz,ret, L, L) popi(z, ret, L)
plz,ret, L, T) ¢ pezit(z, ret, T)
boislza.w'. e.) ¢ Lilza. w.e) A —e: A ~wln(S. (e =

5. incorrect :- Z=W+1, W>0, W+1<
read(A,W,U), read(A,?

Weakest Preconditions If we apply Boogie directly we obtain a translation
from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

ToHorn(program)

ToHorn(def p(z) {S}) :

wlp(z := E, Q)

6. p(I1,N,B) :- 1<I, I<N, D=I—1, T1=I+1. V=U+1.

read(A,D,U), write(A
7.o(I.N.A) :-I=1. N>1.

De Angelis et al. Verifying Array
Programs by Transforming
Verification Conditions. VMCAI'14

—x' =4

= wip(Main(), T) A /\ ToHorn(decl)

decl€ program

i havoc z,: assume zy = z;
P\ assume Ppre(Z); S, p(zg, ret)

=letz=FEinQ
wip((if E then S, else 5:).Q):
wip((5,0S,),Q) :

ulp(51 S52.Q):

wip(havoc z, Q) :

wip(assert ¢, Q) :

wlp(assume ¢, Q) :=

wip((while E do S),Q) :

wlp(((assume E; S;)0(assume -E; 5;)),Q)
LLQD(S Q) A wip(S;,Q)
Ip(S:, wip(S2,Q))

Il
g
g
>

Vo (((inv(w)AE) = urfp(S.inv(w))))
"AA((inv(w) A-E) - Q)

To translate a procedure call £ : y := g(£); £ within a procedure p, create
he clauses:

1) + plwo, w,), call(w;, ws), g(wsz, w3), return(w;, ws, wy)
p(w.;;.wI).call(w;.wz)
r=4z =Ex" =4{,,

e w” =wret' Jy, £ /=]

Bjgrner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

%) WATERLOO

Horn Clauses for Concurrent / Distributed /

Parameterized Systems

{R(7p0') A dlsf(pl, 7pk)/\R(g7p17|17"'7pk7|k) } (6)
oES,
R(g plvlla 7pk7|k) — dlSt(plv apk)/\Inlt(gvll)/\"'/\Init(galk) (7)
Rgzphl 3. 7pk7|k « dist P1s---sPk) A gv'l 13 gl7|/ AR gvplylly-'-vpkvlk (8)
For assertions R1,..., Ry over V and E1,...,Ex over V, V', RE Il I; i E))(((()I)(ﬂ(l?)l’))(RC © k)) ©
gvplalv"'apkak < dist(po,P1,---,Px) A ((8,lo g:lp A OI'lj yieieisly
CM1: init(V) — Riy(V) . |]
CM2: Ri(V) A pi(V, V') — Ry(V") false < dist(p1,...,pr) A (jﬂ/\rspj =piN(glj) eEj)) ARConj(1,...,r) (10
CM3: (Viel..N\{j} Ri(V) A pi(V, V")) E;(V, V)
CM4: Ri(V)AE(V,V')Api (V,V') — Ri(V') Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-
CM5: Ri(V)A---ANRN(V) A error(V) — false ant. Sy is the symmetric group on {1,...,k}, i.e., the group of all permutations of k numbers; as an
optimisation, any generating subset of Sy, for instance transpositions, can be used instead of S;. In (10),
multi-threaded program P is safe we define r = max{m,k}.

Rybalchenko et al. Synthesizing Software
Verifiers from Proof Rules. PLDI'12

Hojjat et al. Horn Clauses for Communicating Timed
Systems. HCVS'14

Init(3, §,9) A Init(4,4,) A
Init(i,i,v) A Init(4, j,v) = I2(i, J, V)

L(i,5,9) A Tr(i,0,v') = I2(i,5,7) (3)
(initial) init(g, z1) A - - - Ainit(g,) = Inv(g, linit, T1, - - - , linit, Tk) Iz(’i j 5) A TT(j 5 5/) . 12(7: j 5’) (4)
1J)) b 1J)
(inductive) I’rL'U(g,Zl,ZEh...,Zi,wi,“.,fk,:l:k)/\s(g,xi,g’7x;)—)Inv(g',Zl,.’l:l,...,f;,zg,...,f}c,.' 1—2(2] 6) A 1—2(2 k 6) A I2(] k ﬁ) A
]))) b)) 5)
(non-interference) Inv(g,%1,Z1,-..,Lk, Tk) A — = . c 2 o =0 (
Inv(g, €%, xt, bo, za, . .., Lk, k) A T)"(k, v,v) NkFiNk#j= Iz(?,,],’v)
: I>(i, j,v) = —Bad(i, j,v)
Inv(g, 1,21, .., bu—1,25-1,€,27) A s(g,27,9,-) = Inv(g’, b1, 21, . .., Lk, k)
(safe) Inv(g, b1, 21, .., £k, zk) Aerr(g, €1, Z1, . . ., m, Tm) — false Figure 3: VC(T) for two-quantifier invariants.
Figure 6. I-Ilorn clause er_lcoding for thread modularity at .leve?l k (where (£:,s,£,) and (£, s, -) refer to statement s on ar Gurfinkel et al. SMT-Based Verification of
from £; to £; and, respectively, from £ to some other location in the control flow graph) Parameterized Systems ESE 2016
S L veRs Ty oF Hoenicke et al. Thread Modularity at Many
% WATERLOO | | evels. POPL'17 6

>

CHC Satisfiability

A T-model of a set of a CHCs [] is an extension of the model M of T
with a first-order interpretation of each predicate p, that makes all
clauses in II true in M

A set of clauses is satisfiable if and only if it has a model
» This is the usual FOL satisfiability

A T-solution of a set of CHCs II is a substitution o from predicates p, to
T-formulas such that I1o is T-valid

In the context of program verification
e a program satisfies a property iff corresponding CHCs are satisfiable
e solutions are inductive invariants
e refutation proofs are counterexample traces

IIIIIIIIIIII

WATERLOO

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN
» QARMC, Eldarica, ...
Maximal Inductive Subset from a finite Candidate space (Houdini)
e TACAS'18: hoice, FregHorn
Machine Learning
 PLDI'18: sample, ML to guess predicates, DT to guess combinations
Abstract Interpretation (Poly, intervals, boxes, arrays...)
o Approximate least model by an abstract domain (SeaHorn, ...)
Interpolation-based Model Checking
e Duality, QARMC, ...

~
SMT-based Unbounded Model Checking (IC3/PDR)

e Spacer, Implicit Predicate Abstraction

o

IIIIIIIIIIII

Program Verification with HORN(LIA)

Z = X; 1 = 0;

assume (y > 0);

while (i < vy) { ‘ IS SAT?
Z =2 + 1;
i=1+ 1;
}
assert(z == x + y); -\ /-
z=xXx&1 =08&y >0 = Inv(x, y, z, 1)

Inv(x, vy, z, i) & i <y & z1=z+1 & il=i+1 = Inv(x, y, zl, il)
Inv(x, vy, z, 1) & i >=y & z != x+y = false

%) WATERLOO 9

In SMT-LIB

(set-logic HORN)

55 Inv(x, y, z, 1)

(declare-fun Inv (Int Int Int Int) Bool)

(assert
(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (> B @) (=CA) (=D 9))
(Inv A B C D)))

)
(assert
(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))
(=>
(and (Inv ABCD) (¢<DB) (=C1 (+C1)) (=D1 (+D
1))
(Inv A B C1 D1)
)
)
)
(assert

(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
false

)

(check-sat)
(get-model)

$ z3 add-by-one.smt2

sat

(model

(define-fun Inv ((x!@ Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool
(and (<= (+ x!2 (* (- 1) x!@) (* (- 1) x!3)) 0)
(<= (+ x!2 (* (- 1) x!@) (* (- 1) x!1)) @)

(<= (+ x!o x!I3 (* (- 1) x!2)) 0)))

Inv(x, y, z, 1)

y4 X + 1

Z <= X + Y

UNITVERSITY OF

WATERLOO

10

Spacer: Solving SMT-constrained CHC

Spacer: SAT procedure for SMT-constrained Horn Clauses
e now the default CHC solver in Z3
— https://qgithub.com/Z3Prover/z3
— dev branch at https://github.com/agurfinkel/z3

Supported SMT-Theories

 Linear Real and Integer Arithmetic
» Quantifier-free theory of arrays
» Universally quantified theory of arrays + arithmetic
o Best-effort support for many other SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
Support for Non-Linear CHC

 for procedure summaries in inter-procedural verification conditions

 for compositional reasoning: abstraction, assume-guarantee, thread modular,
etc.

UNIVERSITY OF

WATERLOO

https://github.com/Z3Prover/z3

HORN(ALIA): Arrays + LIA

int A[N];

for (int i = @; i < N; ++1)
A[i] = 0;

int j = nd();

assume(@ <= j < N);

assert(A[j] == 0);

Inv(A, N, ©)
Inv(A, N, i) & i < N & Inv(A[i

g]] UNIVERSITY OF
% WATERLOO

:= 0], N, i+1)

12

In SMT-LIB

(set-logic HORN)

55 Inv(A, N, 1)
(declare-fun Inv ((Array Int Int) Int Int) Bool)

(assert

(forall ((A (Array Int Int)) (N Int) (C Int)) (Inv AN 9)))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Inv AN i) (< i N))
(Inv (store A'i @) N (+1i 1))
)
)

)

(assert

(forall ((A (Array Int Int)) (N Int) (i Int) (j Int))
(=> (and (Inv AN i)

(>= 1 N) (<=0 3) (< j N) (not (= (select A
3) @)

false

)

(check-sat)
(get-model)

UNITVERSITY OF

WATERLOO

$ z3 -t:100 array-zero.smt2

canceled

unknown

Inv(A, N, i)

V0 <= j<i

< N =D
A[J] = ©

13

Extends Spacer with reasoning about quantified solutions

QUIC3: QUANTIFIED IC3

Arie Gurfinkel, Sharon Shoham, Yakir Vizel: Quantifiers on Demand. ATVA 2018

IIIIIIIIIIII

14

MkSafe

IC3/PDR In Pictures: MkSafe

O€ x=3,y=0 x=1y=0

| | | | | 70/I

. R

Predecessor find M s.t. M = F; ATr Am’
find mst. (M Em)A(m = IV -TrAm')

NewLemma find £s.t. (F;ATr =)Nl = —m)

IIIIIIIIIIII

%) WATERLOO 15

Push

IC3/PDR in Pictures: Push

<€ @) O\O<
= O€ O

Algorithm Invariants
F,—-Bad Init— F;

Fi — Fi+1 Fi N\ Tr — Fi+1

Inductive

iz DM T-query: FLAF; N Tr — A "

Predecessor in array-zero example

Inv(A, N, i) & i >= N & @ <= j < N & A[j] !'= @ = false

Trri<N&O<=j<N&A[]!=0 POB: true

3j-i>NAO<j<NAA[J]£0
— i>NAZJj-(0<j<NAA[j|#0)

= 777

No way to eliminate the existential quantifier!

e can use the value of j in the current model
 but this only works when A[j] is not important

IIIIIIIIIIII

%) WATERLOO 17

Quantified POBs and Lemmas

Must deal with existentially quantified POBs

find M st. M =F, ANTr Am/
find mst. (M Em)A(m = IV -TrAm’)

Learning universally quantified lemmas is easy!
 if POB m is existentially quantified, then it's negation is universally quantified
e checking that Tr implies a universally quantified lemma is easy

find ¢/ s.t. (F;ATr =)N ({ = —m)

But universal quantifiers make even basic SMT queries undecidable!
e cannot assume that SMT-solver will magically handle this for us

IIIIIIIIIIII

QUIC3: Quantified IC3 [kwik-ee]

Spacer extends IC3/PDR from Propositional logic to LIA + Arrays

Quic3 extends Spacer to discovering Universally Quantified solutions
e Extend proof obligations with free (implicitly existentially quantified) variables
e Allow universal quantifiers in lemmas
» Explicitly manage quantifier instantiations to guarantee progress
— without syntactic restriction of formulas (e.g., MBQI, Local Theory, APF)
— without user-specified patterns
* Quantified generalization to heuristically infer new quantifiers

Implemented in spacer in Z3 master branch

e 23 fp.spacer.ground pobs=false fp.spacer.q3.use _ggen=true
NAME . smt2

UNIVERSITY OF

WATERLOO

19

QUIC3: Trace and Proof Obligations

A quantified trace Q = Qq, ..., Qyis a sequence of frames.

e A frame Q; is a set of (¢, o), where £ is alemma and ¢ a
substitution.

e qi(Q) ={fa | (¢, 0) € Q} vQ={v¢| (¢, o) € Q} |

e |nvariants:

— Bounded Safety: Vi< N . vQ;, — "Bad
— Monotonicity: Vi< N . VvQ; € VQ
— Inductiveness: Vi<N.VQ A Tr — VQ'i,4

A priority queue @ of quantified proof obligations (POBSs)
e (m, ¢, i) € @ where mis a cube, ¢ is a ground substitution for all

free variables of m, and i is a numeric level

o if (M, €, i) € Q then there exists a path of length (N-i) from a state in
m¢ to a state in Bad

UNIVERSITY OF

WATERLOO

20

>

QUIC3: Rules

UNIVERSITY OF

WATERLOO

Input: A safety problem (Init(X), Tr(X, X’), Bad(X)).

Assumptions: Init, Tr and Bad are quantifier free.

Data: A POB queue Q, where a POB ¢ € Q is a triple (m, 0,7), m is a
conjunction of literals over X and free variables, o is a substitution
s.t. mo is ground, and ¢ € N. A level N. A quantified trace
T = Qo, Q1, ..., where for every pair (¢,0) € Q;, ¢ is a quantifier-free
formula over X and free variables and o a substitution s.t. {o is
ground.

Notation: F(A) = (A(X) A Tr(X, X)) V Init(X"); ¢i(Q) = {lo | (¢,0) € Q};

VQ ={Vl|({,0) € Q}.
Output: Safe or Cex
Initially: Q =0, N =0, Qo = {(Init,0)}, Vi > 0-Q; = 0.

repeat
Safe If there is an i < N s.t. VQ; C VQ;+1 return Safe.

Cex If there is an m, o s.t. (m,0,0) € Q return Cez.
Unfold If ¢i(Qn) — —Bad, then set N <~ N + 1.
Candidate If for some m, m — qi(Qn) A Bad, then add (m,(, N) to Q.

Predecessor If (m,&,i+ 1) € Q and there is a model M s.t.
M E q¢i(Qi) A Tr A (ml), add (v, 0,4) to Q, where (¢, 0) = abs(U, ¢) and
(p,U) = pPMBP(X' USK, Tr Am’;,, M).

NewLemma For 0 < i < N, given a POB (m,0,i+ 1) € Q s.t. F(qi(Q:)) Amly, is
unsatisfiable, and L' = ITP(F(qi(Q:)), m.;), add (¢,0) to Q; for j <i+1,
where (¢,_) = abs(SK, L).

Push For 0 <i < N and ((¢ V¢),0) € Qs if (p,0) € Qit1, Init — Vo and
(Vo) AVQi A qi(Qi) N Tr — Yy’ then add (p, o) to Qj, for all 7 < i+ 1.

until oo;

21

QUIC3: Predecessor, NewLemma, and Push

repeat

M = qi(Qq)

(V) AVQ

N

qi(Q:)

until oo;

Predecessor If (m,&,i+ 1) € Q and there is a model M s.t.
A Tr A (mly,), add (¢, 0,1) to Q, where (¢, 0) = abs(U, ¢) and
(p,U) = pPMBP(X'USK, Tr Aml,, M).

NewLemma For 0 <4 < N, given a POB (m,0,i+ 1) € Q s.t.| gi(Qi)IN Tr Aml is
unsatisfiable, and L' = ITP(F(qi(Q:)), m%;), add (£,0) to Q; for 7 < i+ 1,
where (¢,_) = abs(SK, L).

Push For 0 <i< N and ((¢V),0) € Qi, if (p,0) € Qit+1, Init — Y and

A Tr — V¢, then add (p,0) to Q;, for all 7 <i+ 1.

In Predecessor and NewLemma only use current instantiations of
quantified lemmas. All SMT queries are quantifier free

In Push, quantified lemmas are required for relative completeness

e in practice, we use incomplete pattern-based instantiation and hope that it is
sufficient together with qi(Q;)

%) WATERLOO

22

Progress and Counterexamples

The Predecessor rule is only finitely applicable to any POB

o follows from how quantified terms are abstracted by free variables and how
quantified lemmas are instantiated

» assumes that Skolemization is deterministic
o uses finiteness of Model Based Projection

MkSafe in Quic3 is terminating for any given bound N
e w.l.0.g, assume Bad is a single POB
e Follows by induction on the bound N

MkSafe in Quic3 computes a quantified interpolation sequence

If there is a counterexample, Quic3 will terminate with the shortest
counterexample

UNIVERSITY OF

WATERLOO

23

In SMT-LIB

(set-logic HORN)

$ z3 array-zero.smt2

55 Inv(A, N, i)

(declare-fun Inv ((Array Int Int) Int Int) Bool) Sa.t
(assert (model
(forall ((A (Array Int Int)) (N Int) (C Int)) (Inv A N 9))) (define-fun Inv ((x!0@ (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
(let ((a'l (forall ((sk!'e Int))
(assert
(forall ((A (Array Int Int)) (N Int) (i Int)) (* (or (not (>= skle @))
(=> (>= (select x!0 sk!e) o)
(and (Inv AN i) (< iN)) (<= (+ x!12 (* (- 1) sklo)) @))
(Inv (store A'i @) N (+ i 1)) ‘weight 15)))
)
) (al2 (forall ((sk!e Int))
) (! (or (not (>= skl!e 9))
(assert (<= (select x!0 sk!@) o)

(forall E iA(::;‘r‘?)I/nIn: ;n‘.C); (N Int) (i Int) (J Int)) (<= (+ x12 (* (- 1) sk!@)) 0))
= \" 1
(>= 1 N) (<=0 3) (< JN) (not (= (select A rweight 15))))
i) e))) (and al!l al2)))

false

)

(check-sat)
(get-model)

UNITVERSITY OF

WATERLOO 24

almost ...

THE END

%) WATERLOO

HORN(ALIA): Arrays + LIA

int A[N];

for (int 1 = 0; i < N; ++1)

?
A[i] = ©; ‘ IS SAT*

for (1 = 0; 1 < N; ++1)

assert(A[i] == 0);

X/

Invli(A, N,) NV
Invi(A, N, i) & i < N & Invi(A[i := @], N, i+1)
Invi(A, N, i) & i >= N & Inv2(A, N,)

Inv2(A, N, i) & i < N & A[i] = @ =& Inv2(A, N, i+1)
Inv2(A, N, i) & i < N & A[i] != @ = false

IIIIIIIIIIII

In SMT-LIB

(set-logic HORN)

55 Inv(A, N, 1)

$ z3 -t:100 array-zero2.smt2

(declare-fun Invl ((Array Int Int) Int Int) Bool)
(declare-fun Inv2 ((Array Int Int) Int Int) Bool)

(sssert canceled

(forall ((A (Array Int Int)) (N Int) (C Int)) (Invl AN ©)))

ser unknown

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Invli AN i) (< iN))
(Invl (store A i @) N (+ i 1))
)
)

)

(assert

(forall ((A (Array In
(=>
(and (Invl A

)

=

Int)) (N Int) (i Int))

=

i) (>= i N)) (Inv2 A N @)

))

(assert

(forall ((A (Array In
(=>
(and (Inv2 A

)

=

Int)) (N Int) (i Int))

Ed

i) (< i N) (= (select A i) @)) (Inv2 AN (+ i 1))

))

(assert

(forall ((A (Array In
(=>
(and (Inv2 A

)

=

Int)) (N Int) (i Int))

=

i) (< i N) (not (= (select A i) @))) false

(check-sat)
(get-model)

% WATERLOO 27

Why this example diverges?
Inv2(A, N, i) & i < N & A[i] != @ = false

i< NAAJi]#£0 < true

Invi(A, N, i) & i >= N = Inv2(A, N, @)
0<N<iNA[D]#0 4 i < NAAJi]|#0

Inv2(A, N, i) & i < N & A[i] = @ & Inv2(A, N, i+l)

tH1<BA i < NANAJQ]#0
Al =0AA[i+1] £ 0

Invi(A, N, i) & i >= N 2 Inv2(A, N, ©)

I1<N<TA 1 +1 < BA
A0l =0AA[L] £0 Alil =0AAli +1] #0

IIIIIIIIIIII

%) WATERLOO 28

Quantified Generalizer

“... to boldly go where no one has gone before” (but many have been)

1< N<zANAO=0ANA[1] #0

Quantified generalizer is a heuristic to generalize POBs using existential
quantifiers

e e.g., in our example, we want to generalize the pob into

J7- 1< N<iN0O<j<NAA[j|#O

We look for a pattern in the formula (anti-unification)

Use convex closure (i.e., abstract join) to capture the pattern by a
conjunction

Apply after pob is blocked and generalized
e As any generalization, it is a dark magic

IIIIIIIIIIII

%) WATERLOO 29

In SMT-LIB

(set-logic HORN)

55 Inv(A, N, 1)

(declare-fun Invl ((Array Int Int) Int Int) Bool)

(declare-fun Inv2 ((Array Int Int) Int Int) Bool)

(assert

(forall ((A (Array Int Int)) (N Int) (C Int)) (Invl AN ©)))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Invl AN i) (< i N))
(Invl (store A i @) N (+ i 1))
)
)

)

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Invl AN i) (>=1i N)) (Inv2 AN 9)
)

))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Inv2 A N i) (< i N) (= (select A i) @)) (Inv2 AN (+ i 1))
)

))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Inv2 AN i) (< i N) (not (= (select A i) @))) false
)

))

(check-sat)

(get-model)

%) WATERLOO

$ z3 array-zero2.smt2

sat

(model
(define-fun Inv2 ((x!® (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
(let ((al!l (forall ((sk!e Int))
(! (or (<= (+ x!1 (* (- 1) skl@)) o)
(<= (select x!0 skl!o) @)
(<= (+ skle (* (- 1) x!2)) @))
:weight 15)))
(al2 (or (<= (+ x!1 (* (- 1) x!12)) @) (<= (select x!@ x!2) @)))
(al3 (or (>= (select x!@ x!12) @) (<= (+ x!1 (* (- 1) x!2)) @)))
(a!4 (forall ((sk!e Int))
(! (or (<= (+ x!1 (* (- 1) skl@)) o)
(>= (select x!0 skl!o) @)
(<= (+ skle (* (- 1) x!2)) @))
tweight 15))))
(and a!l al!2 a!3 al4)))

(define-fun Invl ((x!® (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
(let ((al!l (forall ((sk!e Int))
(! (or (<= (select x!0 sk!@) 0)
(<= (+ x!2 (* (- 1) skle)) o)
(<= sk!o 0))

:weight 15)))
(a!2 (forall ((sk!e Int))
(! (let ((a!l (>= (+ skle (* (- 1) (select x!@ sk!@))) @)))
(or (not (>= sk!@ @)) (<= (+ x!2 (* (- 1) skl@)) @) all))
:weight 15)))
(a!3 (forall ((sk!e Int))
(! (or (<= (+ x!2 (* (- 1) skl@)) o)
(>= (select x!0 skl!o) @)
(<= sk!o 0))
tweight 15))))
(and a!l al!2 (or (>= (select x!@ @) @) (<= x!2 0)) al3)))

30

THE CURSE OF INTYERPOLATION

WATERLOO

‘ current work with Hari Govind and Yu-Ting ‘Jeffz Chen \

The Curse of Interpolation

Interpolation is capable of generating many interesting terms

e (almost) any inductive invariant is an interpolant of something under the right
conditions!

Interpolation often works in practice
o creates false sense of security
 predicate / term generation is a solved problem

But, interpolation is very hard to control!

o Small changes to input result in big change in interpolants
o Small changes to solver parameter result in big change in interpolants

e Works well overall (i.e., large benchmark set), but poorly for any given user
problem!

UNIVERSITY OF

WATERLOO 32

& cC O @ GitHub, Inc. [US] | https://github.com/Z3Prover/z3/issues/2278 w 9 0 @ (s)

i Apps @ Getting Started @ Google Bookmark @ Addto WishList @ +Pocket @ Google Bookmark Application Funda... » [Other Bookmarks

Pull requests Issues Marketplace Explore

El Z3Prover [/ z3 ® Unwatch~ = 169 % Star = 4,193 YFork 716

Code ® Issues 136 Pull requests 8 Projects 0 Wiki Insights

Spacer's difficulty in finding linear invariants [Now ssue

shiatsumat opened this issue 4 days ago - 1 comment

e shiatsumat commented 4 days ago Assignees

No one assigned

It seems that Spacer is still not very good at finding linear invariants.
Are there any configurations on Spacer to enhance invariant finding? Labels

Example: None yet

(declare-rel loop (Int Int Int Int)) Projects

(rule (forall ((i Int) (x Int) (n Int) (r Int)) (=> (¢ in) (loop (+ i 1) (+ x 1) nr) (loopixnr None yet
(rule (forall ((i Int) (x Int) (n Int) (r Int)) (=> (>=1in) (=r x) (loop i x nr))))

(declare-rel q ())

(rule (forall ((x Int) (n Int) (r Int)) (=> (loop @ x n r) (>= n @) (distinct r (+ x n)) q))) Milestone
; this is ok (rule (forall ((i Int) (x Int) (n Int) (r Int)) (=> (loop i x n r) (>= n i) (distinct r

(query q) ; timeout No milestone

Notifications

% WATERLOO 33

& cC O @& GitHub, Inc. [US] | https://github.com/Z3Prover/z3/issues/2278 Y 8 Q9 0 @ (s)

i Apps @ Getting Started @ Google Bookmark @ Addto WishList @ +Pocket @ Google Bookmark Application Funda... » [Other Bookmarks

Pull requests Issues Marketplace Explore

method loop(i : int, x : int, n : int)
Z3 o 716
returns (r : int)
requires n >= 0;
ensures i <= hnh ==>pr ==X + n - 1
Sp : v issue |
ﬁﬂ ensures i1 > n ==> r == X
ensures 1 == 0 ==> r == X + n
n(:at {
if (i < n)
{
r := loop(i + 1, x + 1, n);
return r;
}
else
{ return x; }
I

% WATERLOO 34

< - C 0 @ localhost:8000 %* ¥ o §g 0 @ :

i Apps @ Getting Started @ Google Bookmark @ Add to Wish List @ + Pocket » 3 Other Bookmarks

yusuke.json

(and (>=n 0) (>n0) (> (+xn (* (-1) r)) 1) (=1 1)) [yusuketweakedjson

weaked.json

. . 0.075
0.13 0.1

N

0.091

: : : 0.058
074
0.1 0.1 0.086 0.09 0.0
0.085 0.957 0.072

at depth: 0, lemma level: 0 to 2
(or (> i 1) (< (+xmn (* (-1) r)) 2))

0.055

%Y WATERLOO

0.075

0.072

0.055

UNIVERSITY OF

WATERLOO 36

Data Driven Generalization & Lemma Discovery

Global view of the current solver state
e group lemmas (and pobs) based on syntactic/semantic similarity
— we currently use anti-unification on interpreted constants
» detect whenever global proof is diverging and mitigate

One lemma to rule them all
* merge lemmas in group to form a single universal lemma
e interpolation and inductive generalization can be applied to generalize further
* new lemma reduces the global proof by blocking all POBs in its group

Reduce, reuse, recycle
e under-approximate groups that cannot be merged in current theory
 learn multiple (simple) lemmas to block a (complex) pob

UNIVERSITY OF

WATERLOO 37

IIIIIIIIIIII

38

%Y WATERLOO 39

Conclusion

Verification of Safety Properties is FOL satisfiability
e Logic: Constrained Horn Clauses (CHC)
e “Decision” procedure: Spacer
* Now with (universal) quantifiers!

The Curse of Interpolation
* Interpolation can be amazing at guessing required terms
 but, is hard to control and masks the underlying problem!

Data driven generalization
e supplement interpolation with data-driven learning
 global view of the overall proof process
* identify diverging patterns / groups
e generalize lemmas based on groups

UNIVERSITY OF

WATERLOO

40

&

41

THE END

%) WATERLOO

Quic3: Related Work

Predicate Abstraction
o extend predicates with fresh universally quantified variables
* relies on a decision procedure for quantified logic
Model-Checking Modulo Theories (MCMT)
* model checking of array manipulating programs
e supported by multiple tools: cubicle, mcmt, safari, ...
e quantifier elimination to compute predecessors

e requires checking satisfiability of quantified formulas for sub-sumption and
convergence

Discovery of Universal Invariants with Abstract Interpretation
e compute universally quantified inductive invariants of a certain shape
e often specialized for reasoning about arrays in programming languages
 not property directed, no guarantees, but often very quick
e can be combined with Quic3 as pre-processing

UNIVERSITY OF

WATERLOO

43

Quic3: Most Closely Related Work

Safari and Booster

» extends Lazy Abstraction with Interpolants (LAWI) to array manipulating
programs

e solves mkSafe() using quantifier free theory of arrays and computes
quantifier free sequence interpolant

* heuristically guesses quantified lemmas by abstracting terms

e see Avy for in-depth comparison between interpolation and IC3
Transformation into non-linear CHC

e guess number of quantifiers and instances statically

e use quantifier-free non-linear CHC solver to find template invariant

e generalizes most Abstract Interpretation / Template-based approaches

e cannot discover counterexamples
 can be simulated in Quic3 by restricting instantiations used

UPDR
 existential pobs and universal lemmas over decidable theories

UNIVERSITY OF

WATERLOO

