
Property Directed Polyhedral Abstraction?

Nikolaj Bjørner and Arie Gurfinkel

Abstract. This paper combines the benefits of Polyhedral Abstract In-
terpretation (poly-AI) with the flexibility of Property Directed Reacha-
bility (PDR) algorithms for computing safe inductive convex polyhedral
invariants. We develop two algorithms that integrate Poly-AI with PDR
and show their benefits on a prototype in Z3 using a preliminary eval-
uation. The algorithms mimic traditional forward Kleene and a chaotic
backward iterations, respectively. Our main contribution is showing how
to replace expensive convex hull and quantifier elimination computations,
a major bottleneck in poly-AI, with demand-driven property-directed
algorithms based on interpolation and model-based projection. Our ap-
proach integrates seamlessly within the framework of PDR adapted to
Linear Real Arithmetic, and allows to dynamically decide between com-
puting convex and non-convex invariants as directed by the property.

1 Introduction

Linear Real Arithmetic (LRA) enjoys a prominent rôle in symbolic model check-
ing. Semantics of many program statements and properties can be expressed
using LRA. In practice, it is often sufficient to limit the verification of such pro-
grams to a search for linear arithmetic invariants [20, 19, 15, 9, 22, 26, 10, 24, 7].
These methods, however, cover only a tiny fraction of the search space of LRA
invariants, and even worse, miss simple invariants.

x← y ← z ← 0
`0: while ∗ do

x← x+ 1; y ← y+ 1; z ← z − 2
end
`1: while ∗ do

x← x− 1; y ← y− 3; z ← z + 2
end
`2: assert x ≤ 0→ z ≥ 0 ∧ y ≤ 0

Fig. 1. Program Bouncy.

Consider for example the program
Bouncy in Fig. 1. It increments and
decrements variables x, y, z in tandem.
There is a simple proof of the assertion
by using convex polyhedra invariant: `0 →
2x = 2y = −z, `1 → 2x = −z ∧ y ≤ x. On
the other hand, an abstraction-refinement
proof that starts from either end (the ini-
tial state or the assertion) gets stuck in
this example deriving specialized asser-
tions about exact values of each variable.

Convex polyhedral invariants, however, are often insufficient. For example, they

? This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release and unlimited
distribution. DM-0001643.

cannot express disequalities (e.g., x 6= y), and many disjunctive extensions
(e.g.,[25, 4, 17, 1]) have been proposed to remedy this.

This paper embarks on the quest of devising practical property directed [8]
polyhedral abstraction algorithms [13]. Our grander ambition is to enable practi-
cal model checking methods that search effectively the relevant space of all linear
invariants. However, the goal of this paper is more modest: import the search
for convex linear invariants, as done by abstract interpretation, into a property
directed framework, and do so efficiently. The resulting approach should retain
the advantages of restricting the search in an abstract space as well as limiting
derived invariants to only the ones that are sufficient for establishing a given
property. Indeed, we claim that the combination of polyhedral abstraction and
property directed model checking allows to simultaneously address limitations
of each approach when they are used in isolation.

The first step towards this goal is a modular account of PDR (Section 3),
and the first complete description in Section 4 of APDR: PDR for LRA. We
then develop two main ingredients, a forward procedure, FPDR in Section 5,
that produces convex polyhedra invariants; and a backward, BPDR in Section 6,
for complements of convex polyhedra. FPDR mimics forward Kleene iteration,
and BPDR mimics backward chaotic iteration, respectively. We present the in-
gredients in isolation and show that they can be combined in Section 7 in a
framework we call PolyPDR. A crucial enabler for PolyPDR is the syntactic con-
vex closure method from [5] (Section 2). It allows us to avoid maintaining poly-
hedra explicitly, in contrast to main tools [3] for polyhedral abstraction that rely
on computationally expensive steps that amount to quantifier elimination. To
use syntactic convex closure effectively, we integrate a novel algorithm, CCSAT,
that finds polyhedra invariants incrementally as half-space interpolants [2]. The
resulting method inherits several features from polyhedral abstract interpreta-
tion and allows to refine the abstraction lazily based on a proof search. The
BPDR method dually computes co-convex polyhedra invariants. Section 8 re-
ports on a preliminary evaluation on selected examples that are known to be
difficult to APDR, yet are easy for FPDR or BPDR.

Verification with Interpolation-based MC versus Polyhedral AI. We believe that
this work also sheds light on the relationship between abstract interpretation-
based and interpolation-based approaches for discovering convex arithmetic in-
variants. Recall that a Craig Interpolant of two inconsistent formulas A and
B is a formula I such that A → I, I → ¬B, and the free variables of I are
common to A and B. Interpolation-based model checkers use interpolants as
oracles to extract constraints relevant for verifying a given property. Table 1
summarizes interpolation procedures for LRA. In the table, Bool , Mono, DNF ,
and HalfSpace stand for Boolean combinations of linear inequalities, monomi-
als (i.e., conjunctions of literals), disjunction of monomials, and a single linear
inequality, respectively. Note that the procedures are partial — they are only de-
fined when an interpolant of the particular kind exists. For example, a half-space
interpolant might not exists even when A and B are inconsistent.

Name Domain Algorithm

SmtItp Bool × Bool → Bool MathSat5 [11]

Itp Mono × Bool → Mono GPDR [19]

HalfItp DNF ×DNF → HalfSpace [2]
HalfItp Bool ×Mono → HalfSpace CCSAT (Sec. 5.2)

PolyItp Mono × Bool → Mono —
Table 1. Interpolation algorithms for Linear Real Arithmetic (LRA).

The general interpolation procedure SmtItp does not guarantee that the
interpolant is convex (or a monomial), even if the inputs are. This makes it
difficult to compare it to AI. For other procedures, the key difference is that in AI
all operations are typically restricted to the faces of the input polyhedra, whereas
interpolation operates over linear combinations (so called Farkas consequences)
of the input constraints. We show in Section 5.3 that this leads to a significant
difference in the two approaches. To unify MC and polyhedral AI, we suggest
it is necessary to restrict interpolants to a subset of faces of A that suffice to
separate B. Such an interpolant, we call it PolyItp, can be implemented using
Fourier-Motzkin-based decision procedures for LRA (e.g., [14, 23]), but we are
not aware of any interpolation or verification procedures based on it.

2 Preliminaries: Closures and Polyhedral Abstraction

In this section we recall some main notions from Polyhedral Abstraction. The
construction for syntactic convex closures [5] is central to our quest: it lets us
write down the convex closure of two convex polyhedra as the solutions to a linear
arithmetic formula. We also recall basic notions from polyhedral abstraction to
set the stage for our property directed approach.

2.1 Convex Hulls and Syntactic Convex Closures

Let X be a subset of Qn. We write X for the topological closure of X. X is
called closed if it is invariant under topological closure, i.e., X = X. We write
CH (X) for the convex hull of X defined as the set of all affine combinations of
points in X:

CH (X) ≡ {λx + (1− λy) | x,y ∈ X, 0 ≤ λ ≤ 1} .

X is called convex if it is invariant under the convex hull. A convex hull of a
closed set is not necessarily closed. In particular, a convex hull of a closed set
and a point is not closed. For example,

CH (x = 0 ∧ y = 1 ∨ x ≥ 0 ∧ x = y) ≡ 0 ≤ x ≤ y < x+ 1 .

We write CC (X) ≡ CH (X) for the convex closure of X. Of course:

CC (x = 0 ∧ y = 1 ∨ x ≥ 0 ∧ x = y) ≡ 0 ≤ x ≤ y ≤ x+ 1 .

A closed polyhedron P (x) ⊆ Qn is a set of solutions to a conjunction of
linear non-strict inequalities, of the form Ax ≤ a. P is closed and convex. In
the rest of the paper, unless noted otherwise, we do not distinguish between the
syntactic and semantic representation of P . We also restrict our attention to
closed polyhedra, i.e., systems with non-strict inequalities only. While this is a
significant limitation, in practice, we use systems over Q to approximate systems
over N. Hence, the restriction can be enforced before the relaxation.

A very useful property of convex closure is that it can be computed by Linear
Programming, using, what we call, a syntactic convex closure.

Definition 1 (Syntactic Convex Closure). [5] Let {Pi(x) = Aix ≤ ai} be
a set of polyhedra. The syntactic convex closure cc({Pi}) is defined as follows:

cc({Pi}) ≡

(
x =

∑
i

zi

)
∧

(
1 =

∑
i

σi

)
∧
∧
i

(Aizi ≤ σiai ∧ σi ≥ 0)

where {zi} and {σi} are fresh variables different from x.

Convex closure can be computed by existentially quantifying all variables intro-
duced by the syntactic convex closure transformation.

Theorem 1. [5] Let {Pi(x) = Aix ≤ ai} be a set of polyhedra. Then,

CC ({Pi}) ≡ ∃V · cc({Pi})

where V = {zi} ∪ {σi}.

This syntactic form is the basis of our approach.

2.2 Polyhedral Abstract Interpretation

We give a brief overview of polyhedral abstract domain that is necessary to
understand our results. The reader is referred to [12, 13] for more details. The
polyhedral abstract domain over Qn is a tuple 〈P, α, γ,>,⊥,u,t,∇〉, where P
is the set of all polyhedra over Qn, and for X ⊆ Qn and P1, P2 ∈ P,

α(X) = CC (X) γ(P1) = P1 P1 t P2 = CC ({P1, P2}) P1 u P2 = P1 ∩ P2

and∇ is a operator satisfying extrapolation (P1tP2 ⊆ P1∇P2), and convergence:
for any increasing sub-sequence of Qn, X0 ⊆ X1 ⊆ · · · , the sequence Yi, defined
as follows,

Y0 = X0 Yn = Yn−1∇(Yn−1 tXn)

is ultimately convergent, (i.e., there is an N ∈ N s.t. YN = YN+1). The standard
polyhedra widening [13] ∇s is defined as follows:

P1∇sP2 = {H is a half-space of P1 | P2 → H}

and is often extended to also keep the constraints of P2 that are mutually redun-
dant with those in P1 [18]. Note that for simplicity, we assume that an abstract
domain is a subset of a concrete one, making γ an identity.

Given post- and pre-transformers we can define abstract versions using con-
vex closures as follows:

postα(X) = CC (post(X)) preα(X) = CC (pre(X))

Forward abstract interpretation computes an over-approximation of the tran-
sitive closure of post by iterating the Kleene iteration sequence {Yi} until con-
vergence, where

Y0 = α(X) Yn =

{
Yn−1 t postα(Yn−1) if n 6∈W
Yn−1∇(Yn−1 t postα(Yn−1)) if n ∈W

(1)

and W is an infinite subset of N that determines the widening strategy. Note
that each Yi over-approximates the set of states reachable in i steps or less. Al-
ternatively, abstract interpretation can be done using chaotic iteration strategy
by computing the sequence {Zi}:

Z0 = α(X) sn ∈ post(γ(Zn−1)) Zn =

{
Zn−1 t α(sn−1) if n 6∈W
Zn−1∇(Zn−1 t α(sn−1)) if n ∈W

(2)

Intuitively, the sequence {Zi} over-approximates the sequence {si} of states
reachable by iterative application of best abstract transformer postα and con-
cretization γ. Backward abstract interpretation is defined similarly to over-
approximate transitive closure of pre.

3 Property Directed Reachability

This section introduces a modular, rule-based, description of property directed
reachability. It simplifies the presentation of our refinements to PDR throughout
the paper.

3.1 Symbolic Reachability

A symbolic reachability problem is given by a tuple:

〈v, Init , ρ,Bad〉 (3)

where v is a set of state variables. Init and Bad are formulae with free variables in
v representing the initial and bad states, respectively, and ρ(v,v′) is a transition
relation. The problem is to decide whether there is a state in Init that can reach

a state in Bad . Formally, a bad state is reachable, if there is an N , such that the
following formula is satisfiable:

Init(v0) ∧
N−1∧
i=0

ρ(vi,vi+1) ∧ Bad(vN) (4)

The bad states are unreachable if there exists a formula I over v, called an
inductive invariant, such that(

(I ∧ ρ) ∨ Init ′
)
→ I ′ I → ¬Bad (5)

We have used Init ′ and I ′ for formulas where the variables v are replaced by
primed versions v′.

Example 1. The transition system for program Bouncy (Fig. 1) is given by
v = x, y, z, π, where π is a program counter, and Init , Bad , and ρ are defined as
follows:

Init ≡ x = y = z = π = 0 Bad ≡ x ≤ 0 ∧ (z < 0 ∨ y ≥ 0) (6)

ρ ≡ (π = 0 ∧ π′ = 0 ∧ x′ = x+ 1 ∧ y′ = y + 1 ∧ z′ = z − 2) ∨
(π = 0 ∧ π′ = 1 ∧ x′ = x ∧ y′ = y ∧ z′ = z) ∨
(π = 1 ∧ π′ = 1 ∧ x′ = x− 1 ∧ y′ = y − 3 ∧ z′ = z + 2) ∨
(π = 1 ∧ π′ = 2 ∧ x′ = x ∧ y′ = y ∧ z′ = z)

(7)

Bad is unreachable, and a certificate is

(π = 0→ 2x = 2y = −z) ∧ ((π = 1 ∨ π = 2)→ 2x = −z ∧ y ≤ x) (8)

3.2 A Rule Based Algorithm Description

The finite state model checking algorithm IC3 was introduced in [8]. It maintains
sets of clauses R0, . . . , Ri, . . . , RN , called a trace, that are properties of states
reachable in i steps from the initial states Init . Elements of Ri are called lemmas.
In the following, we assume that R0 is initialized to Init . After establishing that
Init → ¬Bad , the algorithm maintains the following invariants (for 0 ≤ i < N):

Invariant 1

Ri → ¬Bad Ri → Ri+1 Ri ∧ ρ→ R′i+1

That is, each Ri is safe, the trace is monotone, and Ri+1 is inductive relative to
Ri. In practice, the algorithm enforces monotonicity by maintaining Ri+1 ⊆ Ri.

We introduce the following shorthand for convenience

F(R) ≡ (R ∧ ρ) ∨ Init ′ (9)

Alg. 1 summarizes, in a simplified form, a variant of the IC3 algorithm. The
algorithm maintains a queue of counter-examples Q. Each element of Q is a

Data: Q a queue of counter-examples. Initially, Q = ∅.
Data: N a level indication. Initially, N = 0.
Data: R0, R1, . . . , RN is a trace. Initially, R0 = Init .
repeat

Unreachable If there is an i < N s.t. Ri+1 → Ri, return Unreachable.
Reachable If there is an m s.t. 〈m, 0〉 ∈ Q return Reachable.
Unfold If RN → ¬Bad , then set N ← N + 1, RN ← >.
Candidate If for some m, m→ RN ∧ Bad , then add 〈m,N〉 to Q .
Decide If 〈m, i+ 1〉 ∈ Q and there are m0 and m1 s.t. m1 → m, m0 ∧m′1 is

satisfiable, and m0 ∧m′1 → F(Ri) ∧m′, then add 〈m0, i〉 to Q .
Conflict For 0 ≤ i < N : given a candidate model 〈m, i+ 1〉 ∈ Q and clause ϕ,

such that ¬ϕ ⊆ m, if F(Ri ∧ ϕ)→ ϕ, then add ϕ to Rj , for j ≤ i+ 1.
Leaf If 〈m, i〉 ∈ Q , 0 < i < N and F(Ri−1) ∧m′ is unsatisfiable, then add
〈m, i+ 1〉 to Q .

Induction For 0 ≤ i < N , a clause (ϕ∨ ψ) ∈ Ri, ϕ 6∈ Ri+1, if F(Ri ∧ ϕ)→ ϕ,
then add ϕ to Rj , for each j ≤ i+ 1.

until ∞;
Algorithm 1: IC3/PDR.

tuple 〈m, i〉 where m is a monomial over v and 0 ≤ i ≤ N . Intuitively, 〈m, i〉
means that a state m can reach a state in Bad in N − i steps. Initially, Q is
empty, N = 0 and R0 = Init . Then, the rules are applied (possibly in a non-
deterministic order) until either Unreachable or Reachable rule is applicable.
Unfold rules extends the current trace and increases the level at which coun-
terexample is searched. Candidate picks a set of bad states. Decide extends a
counter-example from the queue by one step. Conflict blocks a counterexample
and adds a new lemma. Leaf moves the counterexample to the next level. Fi-
nally, Induction generalizes a lemma inductively. A typical schedule of the rules
is to first apply all applicable rules except for Induction and Unfold, followed
by Induction at all levels, then Unfold, and then repeating the cycle.

Define post and post∗ as follows:

post(R) = ∃v0 ·R(v0) ∧ ρ(v0,v) post∗(R) =
∨

0≤i<ω

post i(R) (10)

The dual operators pre and pre∗ are defined similarly. A direct consequence of
Invariant 1 is that Ri over-approximates i applications of the forward image,
e.g., Ri is an over-approximation of states reachable in at most i steps:

Proposition 1.
∨
j≤i postj(Init) → Ri

Theorem 2. If PDR (Alg. 1) returns from Reachable then property (4) holds.
If PDR returns from Unreachable with Ri+1 → Ri, then Ri satisfies (5).

We have omitted many important optimizations and generalizations instru-
mental for the efficiency of PDR. For example, when propagating the monomial

m in the Decide rule, it is useful to keep m0 as general (i.e., weak) as pos-
sible to minimize backtracking during model search. Similarly, Induction can
be applied to each new lemma created by the Conflict rule. These and other
important insights are described in depth by others (e.g., [8, 19]).

4 APDR: PDR for Linear Real Arithmetic

In this section, we describe APDR, a generalization of PDR to Linear Real
Arithmetic (LRA). The presentation is based on GPDR [19] and Spacer [21].
To our knowledge, this is the first complete description of APDR1.

The input to APDR is a transition system 〈v, Init , ρ,Bad〉, as in PDR, except
that the variables v are rational and Init , Bad , and ρ are formulas in LRA.
Naturally, the lemmas and the trace maintained by APDR are in LRA as well.

In principle, PDR as presented in Alg. 1 is applicable to LRA directly. How-
ever, Decide and Conflict rules are quite weak for LRA. In particular, they do
not guarantee even a bounded progress of the algorithm – in LRA, PDR might
diverge within a fixed level [21].
APDR extends PDR with two new rules, DecideA and ConflictA that re-

place Decide and Conflict rules, respectively. The new rules are shown in Algo-
rithm 2. In the rules, we use P and P↓ to indicate a conjunction and P ↑ a disjunc-

tion of linear inequalities, respectively. The DecideA is based on Model Based
Projection (Mbp) that under-approximates existential quantification. MBP was
introduced in [21] and is defined as follows. Let ϕ be a formula, U ⊆ Vars(ϕ)
a subset of variables of ϕ, and P a model of ϕ. Then, ψ ∈ Mbp(U,P, ϕ) is a
model based projection if (a) ψ is a monomial, (b) Vars(ψ) ⊆ Vars(ϕ) \ U , (c)
P |= ψ, (d) ψ → ∃V · ϕ. Furthermore, for a fixed U and a fixed ϕ, Mbp is
finite. In [21], an MBP function is defined for LRA based on Loos-Weispfenning
quantifier elimination. Note that finiteness of MBP ensures that DecideA can
only be applied finitely many times for a fixed set of lemmas Ri.

The ConflictA rule is based on Craig interpolation (Itp). Given two formu-
las A[x, z] and B[y, z] such that A∧B is unsatisfiable, a Craig interpolant I[z] =
Itp(A[x, z], B[y, z]), is a formula such that A[x, z]→ I[z] and I[z]→ ¬B[y, z].
Note that in the context of ConflictA, B is always a monomial. In this case, we
further require that the interpolant is a clause (i.e., a negation of a monomial).
An algorithm for extracting LRA clause interpolants from the theory lemmas
produced during DPLL(T) proof is given in [19]. There is an important differ-
ence between Conflict and ConflictA rules. While by the definition of Itp, in
ConflictA F(Ri)→ P ↑, the corresponding requirement of Conflict is weaker:
F(Ri ∧ P ↑)→ P ↑. It is not clear how to extend this to LRA.

An appealing feature of PDR is that it generates separate lemmas to block
spurious counter-examples. These lemmas can be strengthened and leverage mu-
tual induction. In propositional PDR, the space of lemmas is bounded by the

1 Previous versions omit important aspects of IC3, such as priority queues, inductive
blocking. The addition of model based projection helps ensuring termination at fixed
levels.

DecideA If 〈P, i+ 1〉 ∈ Q and there is a model m(v,v′) s.t. m |= F(Ri) ∧ P ′,
add 〈P↓, i〉 to Q , where P↓ ∈Mbp(v′,m,F(Ri) ∧ P ′).

ConflictA For 0 ≤ i < N , given a counterexample 〈P, i+ 1〉 ∈ Q s.t.
F(Ri) ∧ P ′ is unsatisfiable, add P ↑ = Itp(F(Ri)(v0,v), P) to Rj for
j ≤ i+ 1.

Algorithm 2: APDR.

number of propositional variables. This guarantees convergence. Clearly, this is
not the case for arithmetic. However, we can show that APDR guarantees to
explore increasingly longer execution paths.

Theorem 3. In any infinite execution of APDR, the rule Unfold is enabled
infinitely often.

Several other approaches have been suggested to lift IC3 to arithmetic. [9]
extracts lemmas as a side-effect of an incremental quantifier-elimination proce-
dure that enumerates satisfiable cubes, then eliminates variables from the cubes;
[20] develops IC3 for timed automata. More recent attention has been focused on
combination with predicate abstraction and arithmetic [10, 7]. The abstraction
is refined (using interpolants) if the concrete interpretation is able to strengthen
inductive lemmas or block abstract counter-examples, otherwise preference is
given to a search over existing abstract predicates. In this setting, the interpo-
lation queries also include formulas from the abstract domain.

5 FPDR: Deriving Convex Invariants

In this section, we present our first major contribution – an algorithm, called
FPDR, to compute convex invariants. The algorithm terminates when it either
finds a convex polyhedral invariant, or an abstract counter-example that cannot
be refuted by the best polyhedral abstract transformer postα. Conceptually, the
main difference between FPDR and APDR is that FPDR uses an abstract post-
image postα instead of the concrete post of APDR. Furthermore, FPDR restricts
R0, . . . , RN to be convex polyhedra, i.e., conjunctions of linear inequalites. FPDR
uses the same data structures as APDR but maintains a stronger invariant:

Invariant 2 (FPDR) ¬Bad ← Ri → Ri+1 ← postα(Ri) and for 0 ≤ i ≤ N , Ri
are convex polyhedra.

To realize FPDR, we extend APDR with two new rules, ConflictF and
DecideF shown in Alg. 3. The new rules create abstract counter-example traces
that may not correspond to concrete traces. We differentiate abstract states by
inserting them into AQ instead of Q , which is not used in FPDR.

To understand the rules, recall that the best abstract transformer for poly-
hedra is defined as postα(Ri)[v] = CC (∃v0 · F(Ri)(v0,v)). The only difference

Data: AQ a queue of abstract counter-examples. Initially, AQ = ∅.
ReachableF If there is an m s.t. 〈m, 0〉 ∈ AQ return AbstractReachable.
DecideF If 〈P, i+ 1〉 ∈ AQ and there is a model m(v,v′) s.t.

m |= CC (F(Ri)) ∧ P ′, add 〈P↓, i〉 to AQ , where
P↓ = Mbp(v′,m,CC (F(Ri)) ∧ P ′).

ConflictF For 0 ≤ i < N , given a counterexample 〈P, i+ 1〉 ∈ AQ s.t.
CC (F(Ri)) ∧ P ′ is unsatisfiable, add P ↑ = HalfItp(CC (F(Ri))(v0,v), P)
to Rj for j ≤ i+ 1.

Algorithm 3: FPDR.

between FPDR and APDR rules is that FPDR uses convex closure of the formu-
las representing the post-image. Furthermore, the ConflictF rule uses half-space
interpolant HalfItp(A,B) of [2] that restricts interpolants to a single inequality
(i.e., a half-space). ConflictF is well defined because both A and B are convex.
Hence, by Farkas lemma, there exists a half-space separating them. Invariant 2
follows immediately from the rules.

In the rest of this section, we establish the main properties of FPDR show
how to implement the rules in Alg. 3 efficiently, and, discuss the relationship
between FPDR and polyhedral Abstract Interpretation.

5.1 Properties

FPDR over-approximates the abstract iteration sequence (1).

Proposition 2. Let R0, . . . , RN be a trace of FPDR and 0 ≤ i ≤ N . Then,(⊔
j≤i postjα(Init)

)
→ Ri.

Proposition 2 is an immediate consequence of ConflictF rule. Note the analogy
with Proposition 1.

Since the abstract post-image over-approximates the concrete post-image,
whenever FPDR returns from Unreachable, it has found a concrete inductive
invariant that certifies that Bad is unreachable from Init .

Proposition 3. Let R0, . . . , RN be a trace of FPDR and 0 < i ≤ N be such
that Ri → Ri−1, then post∗(Init) ∩ Bad = ∅

Finally, FPDR returns from ReachableF only if there does not exist an un-
reachability certificate that can be established using the best abstract post-image
That is, every abstract iteration sequence (1), independently of the widening op-
erator or other strategy heuristics, reaches a bad state.

Proposition 4. Traces found by FPDR are contained in the abstraction:

〈P, 0〉 ∈ AQ implies postNα (Init) ∩ Bad 6= ∅.

Proof. By construction, 〈P,N〉 ∩ Bad 6= ∅. Then, by induction on the size of N
that 〈P, i〉 ∈ AQ implies that postN−iα (P) ∩ Bad 6= ∅. ut

Propositions 2 and 3 establish soundness of FPDR. Proposition 4 provides
an interesting form of completeness: FPDR is guaranteed to terminate when the
polyhedral abstract domain is too weak to refute a counterexample (i.e., a false
alarm). However, FPDR might still diverge when Bad is unreachable even if the
abstract domain is strong enough to refute every finite counterexample.

5.2 Implementation

The main bottleneck in implementing the FPDR rules in Alg. 3 is deciding
satisfiability CC (ϕ) ∧ P of a convex closure CC (ϕ) of an arbitrary formula ϕ
and a monomial P , where both ϕ and P are over LRA. A näıve algorithm is
to (a) compute a DNF of ϕ, (b) compute the convex closure ψ = CC (ϕ) of the
disjuncts, and (c) check satisfiability of ψ∧P . This however, is not efficient: both
the explicit computation of the DNF and the convex closure are exponential in
the size of ϕ. Instead, we propose a novel algorithm CCSAT that avoids an
explicit convex closure computation by a combination of the syntactic convex
closure construction and interpolation.

The pseudo-code for algorithm CCSAT(ϕ, P) is shown in Alg. 4. The inputs
to CCSAT are a formula ϕ[v,v′] and a monomial P [v]. The output is either
unsat and an interpolant between CC (ϕ) and P , or sat and a model-based
projection of v from CC (ϕ)∧P . CCSAT replaces an expensive up-front convex
closure computation with an iterative approximation using syntactic convex clo-
sure cc (see Def. 1). The algorithm maintains the set M of implicants of ϕ such
that CC (M) under-approximates CC (ϕ). In each iteration, checking whether
CC (M) and ϕ are consistent is reduced to an SMT-check using the syntac-
tic representation cc(M) of the convex closure CC (M). Note that cc(M) is an
SMT-formula that is linear in |M | and is easy to compute. If cc(M) and P are
consistent, their model is used to derive the model-based projection. Otherwise,
interpolation is used to construct an over-approximation P ↑ of cc(M). Crucially,
since both cc(M) and P are monomials, even a general interpolation procedure
Itp of [19] guarantees that P ↑ is a half-space. Thus, no special HalfItp proce-
dure is needed. If P ↑ contains ϕ, then P ↑ is an interpolant between CC (ϕ) and
P ′, and CCSAT terminates. Otherwise, CCSAT picks another implicant m of
ϕ that contains at least one point outside of P ↑, adds it to M , and repeats the
loop.

Example 2. We illustrate a run of CCSAT(ϕ, P), where ϕ[x, y] and P [x, y] are
defined as follows:

ϕ ≡ ((0 ≤ y ≤ 1) ∧ (0 ≤ x ≤ 4) ∧ (x ≤ 1 ∨ x ≥ 2)) ∨ ((2 ≤ y ≤ 3) ∧ (2 ≤ x ≤ 3))

P ≡ x = 5 ∧ y = 4

First, an implicant m1 = (0 ≤ y ≤ 1) ∧ (0 ≤ x ≤ 1) is chosen and blocked by

P ↑1 = (y ≤ 3). Second, m2 = (2 ≤ x ≤ 3)∧ (2 ≤ y ≤ 3) is chosen and blocked by

P ↑2 = (x ≤ 4). Since ϕ→ P ↑2 , the algorithm terminates with (unsat, P ↑2).

Input: ϕ[v,v′], P [v]
M ← ∅
while cc(M) ∧ P ′ |= ⊥ do

P ↑[v′]← Itp(cc(M), P ′)
if ϕ ∧ ¬P ↑[v′] |= ⊥ then

return unsat, P ↑[v]
else

m← implicant(ϕ) such that m ∧ ¬P ↑[v′] 6|= ⊥
M ←M ∪ {m}

end

end
let m be s.t. m |= cc(M) ∧ P ′

P↓ ←Mbp(v′,m, cc(M) ∧ P ′)
return sat, P↓

Algorithm 4: CCSAT: Decides satisfiability of CC (ϕ)∧P ′. It produces either
a half-interpolant or a model-based projection.

The soundness of CCSAT follows immediately from the exit condition of the
while loop. Running time is bounded by the number of distinct propositional
implicants of ϕ.

Proposition 5. CCSAT terminates.

Proof. For all mi,mj ∈ M , by construction, there exists a polyhedron P ↑ such
that mi → P ↑ and mj → ¬P ↑. Thus, all elements of M are distinct. Further-
more, ϕ has only finitely many distinct propositional implicants. ut

The rules in Alg 3 are implemented by first using CCSAT to decide whether
CC (F(Ri)) ∧ P is satisfiable, and then applying either the DecideF or the
ConflictF rule, as applicable.

In conclusion, we remark that CCSAT is interesting in its own right as an
alternative algorithm for computing half-space (or beautiful) interpolants of [2].
In particular, let ϕ be a formula and P0, . . . , Pk be monomials over LRA. Then,
CCSAT(ϕ, cc({P0, . . . , Pk})) is a half-space interpolant of ϕ and

∨k
i=0 Pi, if such

an interpolant exists.

5.3 Discussion

What is the relationship between FPDR and the traditional Kleene iteration
sequence (1)? Both compute convex invariants, but can one simulate the other?
Let K be a natural number. For simplicity, consider a convergent Kleene se-
quence Y0, . . . , YK in which widening is only applied at the last step. That is,
∀i ≥ k · Yi = YK , and W = {K}. Similarly, take an N -step execution of FPDR
with N ≥ K, so that RK is well defined. Let Inv(RK) stand for an inductive
subset of RK , i.e., a subset that satisfies the first equation of (5). We are in-
terested in two questions: (Q1) given K and a run of FPDR, is there a Kleene
sequence such that YK = Inv(RK); and (Q2) given K and a convergent Kleene

sequence, is there a run of PDR such that YK = Inv(RK). While we do not give
complete answers, in the rest of the section we explore some special cases.

We use the following transition system as a running example:

Init(x, y, z) ≡ x− y ≤ 0 ∧ x+ y ≤ 0 ∧ z = 1/2 Bad(x, y, z) ≡ x ≥ 2 (11)

ρ(x, y, z, x′, y′, z′) ≡ y′ = y ∧ (x ≤ 1→ x′ = x+ z ∧ z′ = 1/2× z) ∧
(x > 1→ x′ = x ∧ z′ = z)

(12)

Note that the set of reachable states is (x− y < 1) ∧ (x+ y < 1).

First, consider an execution of FPDR that converges with an inductive in-
variant x ≤ 3/2 ∧ z ≤ 1/2. A Kleene sequence with standard widening cannot
converge on this invariant for any value of K. In particular, the strongest Yi is of
the form x− y ≤ s(i)∧ x+ y ≤ s(i), where s(i) =

∑j≤i
j=1 2−j . Since the standard

widening only drops constraints, any Kleene sequence converges to >. The key
difference here is that the Kleene iteration with standard widening is restricted
to the faces of the polyhedra appearing in the sequence Yi, while FPDR is lim-
ited only by interpolation (i.e., any linear combinations of constraints appearing
in RK−1 and in the transition relation ρ). In this particular example, other
choices for widening can easily simulate FPDR. Moreover, with a suitable (but
not necessarily efficiently computable) widening operator, a Kleene sequence can
simulate any other method for discovering convex invariants.

Second, consider a variant of the example above, where z is not changed: i.e,
replace z′ = 1/2×z by z′ = z in (12). In this example, Kleene iteration converges
to the exact set of reachable states in 2 steps. No widening is required. On the
other hand, FPDR, as presented, does not simulate the Kleene iteration. Once
again, the issue is that FPDR is not restricted to the faces of the polyhedra
involved. In fact, our formulation of the ConflictF rule further restricts the
set of lemmas to half-spaces of the form P ↑ = HalfItp(ϕ, P). Alternatively,
we can redefine ConflictF to use P ↑ = PolyItp(ϕ, P), where PolyItp(A,B)
is a polyhedral interpolant consisting of some faces of A (we assume that A is
convex). Note that PolyItp can be implemented, for example, by quantifying
out local variables from the subset of A inconsistent with B. We believe that
with this redefinition of ConflictF , FPDR can simulate the Kleene iteration.
However, an efficient implementation of PolyItp that avoids explicit quantifier
elimination remains open. In summary, FPDR and Kleene iteration are quite
distinct algorithms for computing convex inductive invariants. Their existing
implementation are unlikely to simulate one another. We leave further theoretical
and practical exploration of this question to future work.

We conclude this section with an interesting connection between FPDR and
widening refinement for AI (e.g., [16, 1]). While there is no explicit widening in
FPDR, it is implicit in the choice of half-spaces added by ConflictF . Whenever
some half-spaces are not added in a given iteration (i.e., too much widening),
further iterations refine the trace, until all imprecisions introduced by a sub-
optimal choices in all previous applications of the ConflictF rule are removed.
This mimics the more elaborate algorithms of [16, 1].

6 BPDR: co-convex invariants

Not all necessary invariants can be expressed as convex polyhedra. Take for
example,

Init ≡ x = y = 0 Bad ≡ x > 1000 ∧ y > 1000

ρ ≡ (x < 100 ∨ y < 100) ∧ x′ ≤ x+ 1 ∧ y′ ≤ y + 1

The inductive invariant x ≤ 100 ∨ y ≤ 100 is not convex, but its complement
is. We call such invariants co-convex. In this section, we devise a property di-
rected algorithm BPDR, that finds co-convex invariants. Dually to FPDR, BPDR
mimics chaotic iteration (2) with the best abstract pre-image.

The rules for BPDR, are shown in Alg. 5. As before, the algorithm maintains
a trace R0, . . . , RN , but each Ri is restricted to a single clause (disjunction of
inequalities). We assume that Bad is convex, otherwise, take CC (Bad) as the
new set of bad states. Thus, ¬Bad is co-convex. BPDR maintains the following
invariant:

Invariant 3 ¬Bad ← ¬CC (S) ← Ri → Ri+1 ← F(Ri). ∀0 ≤ i ≤ N · Ri is
co-convex.

BPDR is based on the observation that the transitive closure pre∗α(Bad) of the
abstract pre-image is convex. Thus, instead of maintaining a queue Q of coun-
terexamples, BPDR maintains a set S s.t. the convex closure CC(S) of S under-
approximates pre∗α(Bad), i.e., CC(S) ⊆ pre∗α(Bad). In each iteration, BPDR
either extends S by adding a state that reaches the convex closure of S in 1 or
0 steps (DecideB and CandidateB rules), or strengthen some Ri (ConflictB

rule). Since there is no queue, ReachableB checks whether there are states in the
intersection of Init and convex closure CC (S) of bad-reaching states. Further-
more, Leaf is unnecessary and Induction is disabled. DecideB is very similar
to DecideF of FPDR. The only difference is that convex closure is applied to
the bad states. ConflictB is more complex. First, since there is no queue of
counterexamples, we must find the smallest i at which the rule is applicable.
Second, since the trace Ri of BPDR is restricted to single clauses, the rule can
only change the content of Ri. To guarantee monotonicity of the trace, we stutter
the transition relation, i.e., we use R′i−1 ∨ F(Ri−1) as the transformer instead
of F(Ri−1). Finally, we compute lemmas by backward interpolation. We let the
bad states be the A-part of the interpolant, and use the backward interpolation
property: I = Itp(A,B) iff ¬I = Itp(B,A). Note that since CC (S) is convex,
the interpolant P ↑ is convex, and the backward interpolant ¬P ↑ is co-convex.

Unlike FPDR, implementing BPDR rules is straightforward. Since in Alg. 5
CC is only applied to the set S of convex polyhedra, all applications of CC are
simply replaced by its syntactic version cc.
BPDR satisfies similar properties to FPDR, but relative to the pre-image. In

particular, whenever BPDR returns from Unreachable, it has found a concrete
inductive invariant:

ReachableB If Init ∧ CC(S) is satisfiable, return AbstractReachable
CandidateB If for some P , P → RN ∧ Bad , then S ← S ∪ {P}.
DecideB If there is an 0 < i ≤ N and a model m(v,v′) s.t.

m |= F(Ri) ∧ CC (S)′, then S ← S ∪ {P↓}, where
P↓ = Mbp(v′,m,F(Ri) ∧ CC (S)′).

ConflictB If there exists a minimal 0 < i ≤ N s.t.
(R′i−1 ∨ F(Ri−1)) ∧ CC (S)′ |= ⊥. Then, Ri ← ¬P ↑[v], N ← i+ 1, and
RN ← >, where P ↑[v′] = Itp(CC (S)′, R′i−1 ∨ F(Ri−1)).

Algorithm 5: BPDR.

Proposition 6. Let R0, . . . , RN be a trace of BPDR and 0 < i ≤ N be such that
Ri → Ri+1, then Init ∩ pre∗(Bad) = ∅.

Similarly, BPDR returns from ReachableB only if there is no invariant that can
be established using best abstract pre-image. That is, every backward chaotic
iteration sequence (2) started from Bad states, reaches a state in Init .

Proposition 7. Traces found by BPDR are contained in the abstraction:

Init ∩ CC (Bad) 6= ∅ implies Init ∩ pre∗α(Bad) 6= ∅ .

It is also interesting to see whether BPDR simulates backward chaotic itera-
tion. Here, the correspondence is much more direct. The choice of si in (2) is in
one-to-one correspondence with the choice of P↓ in DecideB. Widening choices
in (2) correspond to constraints dropped by the interpolation during computa-
tion of P ↑ in ConflictB. In practice, the key difference is again in the choice
of the lemmas found by interpolation. On one hand, the chaotic iteration with
standard widening is restricted to the faces of the polyhedra involved. On the
other hand, BPDR is restricted to half-spaces found by interpolation.

7 Combinations

In the previous sections, we have presented 3 algorithms, APDR, FPDR, and
BPDR, for computing linear, convex, and co-convex sufficient inductive invari-
ants, respectively. In this section, we present a uniform framework that combines
the three algorithms.

First, note that ConflictB rule of BPDR is significantly different from the
corresponding rules ofAPDR and FPDR. Unlike inAPDR and FPDR, ConflictB

only modifies one element Ri of the trace, and ensures that each Ri contains
a single clause. This, however, is only necessary to prune the search space to
be co-convex invariants. To unify BPDR with the other algorithms, we replace
ConflictB with ConflictAB shown in Alg. 6. Note that ConflictAB still uses
the convex closure CC (S) of bad-reaching states S, but it adds the new lemma
P ↑ to all levels below i. BPDR remains sound with the new rule. However, it

ConflictAB If there exists a 0 < i ≤ N s.t. F(Ri−1) ∧ CC (S)′ |= ⊥.
Rj ← Rj ∧ ¬P ↑[v] for 0 < j ≤ i, where P ↑[v′] = Itp(CC (S)′,F(Ri−1)).

ConflictAFB If there exists a 0 < i ≤ N s.t. CC (F(Ri−1)) ∧ CC (S)′ |= ⊥.
Rj ← Rj ∧ P ↑[v] for 0 < j ≤ i, where
P ↑[v′] = HalfItp(CC (F(Ri−1)),CC (S)′).

Algorithm 6: Additional conflict rules for BPDR.

no longer mimics backward chaotic iteration, and produces more than just co-
convex invariants.

Second, we add a new rule ConflictAFB, shown in Alg. 6 that combines the
corresponding rules of FPDR and BPDR by taking the convex closures of both
the post-image and the bad-reaching states. Note that in this case, interpolation
guarantees that the corresponding lemma is a single inequality (i.e., a half-space).
The rule is implemented efficiently using CCSAT from Section 5.2.

Finally, the combined algorithm, called PolyPDR, is obtained by combining
all the rules of PDR (Alg. 1), APDR (Alg. 2), FPDR (Alg. 3), BPDR (Alg. 5),
and the new BPDR rules (Alg. 6), except for ConflictB, ReachableF , and
ReachableB. PolyPDR maintains 3 kinds of counterexamples: a queue of con-
crete counterexamples Q from PDR, a queue of abstract counterexamples AQ
from FPDR, and a set of abstract counterexamples S from BPDR. States from
Q can reach a state in Bad , states in AQ can abstractly reach a state in Bad
via the abstract post-image, and states in S are reachable from Bad via the ab-
stract pre-image. The soundness of PolyPDR follows directly from the soundness
of individual algorithms: it either finds a concrete counterexample in Q , or finds
a concrete or an abstract sufficient inductive invariant.

We suggest two schemes to apply the rules of PolyPDR to combine the effects
of abstract and concrete reasoning: pre-processing and in-processing. The pre-
processing scheme starts with enabling only the rules of FPDR and BPDR, and
applying them until either the algorithm terminates, or the pre-conditions of
ReachableF or ReachableB become true (i.e., an abstract counterexample is
found). Then, the rules of FPDR and BPDR are disabled and the rules of APDR
are enabled. This scheme is similar to first running an abstract interpreter to
discover an inductive invariant, and then using APDR to strengthen it or find
a counterexample. The two stages, abstract and concrete, communicate by the
lemmas learned in the trace.

The in-processing scheme also starts with enabling only FPDR and BPDR
rules. Then, whenever the pre-conditions for ReachableF or ReachableB be-
come true, abstract counterexamples AQ and S are reset. Next, the control is
given to APDR rules, until the Unfold rule is applied. At this point, the APDR
rules are disabled, the rules of FPDR and BPDR are enabled, and the cycle re-
peats. This scheme mimics the abstraction-refinement loop of Vinta [1]. First,
an abstract interpreter is used to compute an inductive, but not (necessarily)
sufficient invariant. Then, the concrete reasoning is used to refine the invariant

and rule out false alarms. Whenever the concrete strengthening is not inductive,
the abstract reasoning is repeated starting from it. Again, the communication
between the abstract and concrete reasoning is captured by the lemmas com-
puted in the trace.

8 Evaluation

We have implemented variants of FPDR and BPDR algorithms in Z3. For the
FPDR variant, we have extended APDR with the DecideF rule, but not the
ConflictF rule. This makes our FPDR algorithm a generalization step forAPDR.
Whenever a candidate model is blocked by ConflictA, we check whether the
learned lemma P ↑ can be generalized to be convex. For the BPDR variant,
we have implemented a hybrid algorithm by adding the rule ConflictAB to
APDR. Furthermore, our BPDR implementation is limited to the incomplete
projection-based generalization strategy of [19], instead of the complete MBP-
based strategy presented here. Hence, it sometimes diverges without making
progress (i.e., gets into an infinite execution in which Unfold rule is never ap-
plied). Our implementation and benchmarks are available in the cc branch of
https://z3.codeplex.com/SourceControl/network/forks/arie/zag.

To answer the main question posed in the Introduction, we have selected sev-
eral benchmarks that are easy for polyhedral abstraction, but are hard for PDR-
based approaches, from [2] and Z3 regression test suite.

Name Z3 FPDR BPDR
addadd ∞ ε ∞
d03 ε ε ε
david ε ∞ ε
ev-down ∞ ε ε
ev-up ∞ ε ε
ev ∞ ε ∞
ev1 ∞ ε ∞
updown ∞ ε ε
xyz ∞ ε ε
xyz2 ∞ ε ∞
gcnr ∞ ∞ ∞

Fig. 2. Results.

While the examples are small, they illustrate well
the benefits of the new approach. The results
are summarized in Fig. 2. In the figure, ε and
∞ mean “solved in under a second” and “did
not terminate”, respectively. In all cases, except
for ev-series of examples, Z3 was configured with
the default configuration options and restricted
to Linear Arithmetic (an optional UTVPI solver
was disabled using fixedpoint.use utvpi=false

command line option). For ev-series, Z3 is fur-
ther restricted to projection-based generalization
strategy of [19] using command line option
fixedpoint.use model generalizer=true. The orig-
inal Z3 algorithm diverges on all examples except for
d03 and david. FPDR performs the best. However,

generalizing using convex closures interferes with default algorithm for lemma
generation in Z3. This makes david hard for FPDR. BPDR often diverges. For
some cases (ev, ev1) this is due to the fact that Bad is not convex. For others
(xyz2, addadd) this is a problem with our use of projection-based generalization.
Finally, the gcnr example, originally from [16], and also used in [22, 2], remains
unsolved.

We believe that this evaluation, albeit limited and preliminary, demonstrates
the advantages of our framework. It shows the clear benefits of integrating poly-
hedral abstraction as a component within APDR.

9 Summary

This paper developed property directed model checking procedures using poly-
hedral abstraction. We showed how to combine syntactic convex closures with
interpolation to incrementally compute abstractions, and we correspondences be-
tween Kleene, chaotic abstract interpretation and property directed reachability.
We evaluated the new approaches on exemplary benchmarks. This work sheds
furter light on the synergy of polyhedral abstraction and interpolation-based
model checking.

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. Craig Interpretation. In SAS,
pages 300–316, 2012.

2. A. Albarghouthi and K. L. McMillan. Beautiful interpolants. In Sharygina and
Veith [27], pages 313–329.

3. R. Bagnara, P. M. Hill, and E. Zaffanella. The parma polyhedra library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. CoRR, abs/cs/0612085, 2006.

4. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset do-
mains. STTT, 9(3-4):413–414, 2007.

5. F. Benoy, A. King, and F. Mesnard. Computing Convex Hulls with a Linear Solver.
TPLP, 5(1-2):259–271, 2005.

6. A. Biere and R. Bloem, editors. Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in
Computer Science. Springer, 2014.

7. J. Birgmeier, A. R. Bradley, and G. Weissenbacher. Counterexample to induction-
guided abstraction-refinement (CTIGAR). In Biere and Bloem [6], pages 831–848.

8. A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI, pages
70–87, 2011.

9. A. Cimatti and A. Griggio. Software Model Checking via IC3. In CAV, pages
277–293, 2012.

10. A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. IC3 Modulo Theories via Implicit
Predicate Abstraction. In TACAS, pages 46–61, 2014.

11. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Generation of Craig Inter-
polants in Satisfiability Modulo Theories. ACM Trans. Comput. Log., 12(1):7,
2010.

12. P. Cousot and R. Cousot. Abstract Interpretation Frameworks. J. Log. Comput.,
2(4):511–547, 1992.

13. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In A. V. Aho, S. N. Zilles, and T. G. Szymanski, editors,
POPL, pages 84–96. ACM Press, 1978.

14. L. M. de Moura and D. Jovanovic. A Model-Constructing Satisfiability Calculus. In
R. Giacobazzi, J. Berdine, and I. Mastroeni, editors, Verification, Model Checking,
and Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome,
Italy, January 20-22, 2013. Proceedings, volume 7737 of Lecture Notes in Computer
Science, pages 1–12. Springer, 2013.

15. S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing
software verifiers from proof rules. In PLDI, 2012.

16. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Refining abstract
interpretations. Inf. Process. Lett., 110(16):666–671, 2010.

17. A. Gurfinkel and S. Chaki. Boxes: A Symbolic Abstract Domain of Boxes. In
R. Cousot and M. Martel, editors, SAS, volume 6337 of Lecture Notes in Computer
Science, pages 287–303. Springer, 2010.

18. N. Halbwachs. Détermination automatique de relations linéaires vérifiées par les
variables d’un programme. PhD thesis, Grenoble, 1979.

19. K. Hoder and N. Bjørner. Generalized Property Directed Reachability. In SAT,
pages 157–171, 2012.

20. R. Kindermann, T. A. Junttila, and I. Niemelä. SMT-Based Induction Methods
for Timed Systems. In M. Jurdzinski and D. Nickovic, editors, FORMATS, volume
7595 of Lecture Notes in Computer Science, pages 171–187. Springer, 2012.

21. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-Based Model Checking for
Recursive Programs. In Biere and Bloem [6], pages 17–34.

22. A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke. Automatic Abstraction
in SMT-Based Unbounded Software Model Checking. In Sharygina and Veith [27],
pages 846–862.

23. K. Korovin and A. Voronkov. Solving Systems of Linear Inequalities by Bound
Propagation. In N. Bjørner and V. Sofronie-Stokkermans, editors, Automated
Deduction - CADE-23 - 23rd International Conference on Automated Deduction,
Wroclaw, Poland, July 31 - August 5, 2011. Proceedings, volume 6803 of Lecture
Notes in Computer Science, pages 369–383. Springer, 2011.

24. K. L. McMillan. Lazy annotation revisited. In CAV, pages 243–259, 2014.
25. X. Rival and L. Mauborgne. The trace partitioning abstract domain. ACM Trans.

Program. Lang. Syst., 29(5), 2007.
26. P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants for horn-clause

verification. In CAV, pages 347–363, 2013.
27. N. Sharygina and H. Veith, editors. CAV, volume 8044 of Lecture Notes in Com-

puter Science. Springer, 2013.

