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SYMBOLIC REACHABILITY
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Symbolic Reachability Problem

P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^
 

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN ) 6) ?

Init ) Inv

Inv(X) ^ Tr(X,X 0) ) Inv(X 0)

Inv ) ¬Bad
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Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL 
formula of the forms

8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → pn+1[X])
8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → false)

where
• Á is a constrained in a background theory A
–of combined theory of Linear Arithmetic, Arrays, Bit-

Vectors, …
• p1, …, pn+1 are n-ary predicates
• pi[X] is an application of a predicate to first-order terms
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Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
• stand-alone implementation in a fork of Z3
• http://bitbucket.org/spacer/code

Support for Non-Linear CHC
• model procedure summaries in inter-procedural verification conditions
• model assume-guarantee reasoning
• uses MBP to under-approximate models for finite unfoldings of predicates
• uses MAX-SAT to decide on an unfolding strategy

Supported SMT-Theories
• Best-effort support for arbitrary SMT-theories
– data-structures, bit-vectors, non-linear arithmetic

• Full support for Linear arithmetic (rational and integer)
• Quantifier-free theory of arrays
– only quantifier free models with limited applications of array equality
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IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property 

directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to 
SMT)
• A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit 

Predicate Abstraction. TACAS 2014
• J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014
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IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate 

summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive 

Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 

2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification 

of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 
2015
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Spacer In Pictures SpcrMkSafe

𝑥 = 1, 𝑦 = 0𝑥 = 3, 𝑦 = 0

𝑥 ≠ 3 ∨ 𝑦 ≠ 0𝑥 > 𝑦
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Logic-based Algorithmic Verification

Spacer

CPR

Simulink

Lustre

Java

C/C++ concurrent 
/distributed 

systems

T2Termination 
for C

SeaHorn
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http://seahorn.github.io
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Example: in test.c, check that x is always greater than or equal to y
test.c

SeaHorn command: SeaHorn result:

SeaHorn Usage
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SeaHorn Encoding of Verification Conditions

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y) 

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0) 
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4  (x � y), p3(x, y).
h7i perr  (x < y), p3(x, y).
h8i p4  p4.
h9i ?  perr.
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PARAMETRIZED SYMBOLIC 
REACHABILITY

joint work with Sharon Shoham
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What we want to do …
local

pc : {CHOOSE,TRY,WAIT,MOVE} ;
curr ,next , desired : Location

def proc(i) :
do

pc[i] = CHOOSE : desired [i] ⇤ ; pc[i]  TRY;
pc[i] = TRY^8j . i < j ) curr[j] 6= desired [i]^next[j] 6= desired [i]
:

next[i]  desired [i] ; pc[i]  WAIT ;
pc[i] = WAIT ^ 8j . j < i) next[i] 6= curr[j] ^ next[i] 6= next[j] :

pc[i]  MOVE ;
pc[i] = MOVE :

curr[i] next[i] ; pc[i] CHOOSE;
def init(i, j) :

pc[i] = CHOOSE ^ curr[i] = next[i] ^ (i 6= j ) curr[i] 6= curr[j])
def bad(i, j) :

i 6= j ^ curr[i] = curr[j]
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Parameterized Symbolic Reachability Problem

T = ( v, Init(N,v), Tr(i, N, v, v’), Bad (N,v) )
• v is a set of state variables
– each vk2 v is a map Nat→Rat
– v is partitioned into Local(v) and Global(v)

• Init(N,v) and Bad(N,v) are initial and bad states, respectively
• Tr(i, N, v, v’) is a transition relation, parameterized by a process identifier i

and total number of processes N
All formulas are over the combined theories of arrays and LRA
Init(N,v) and Bad(N,v) contain at most 2 quantifiers
• Init(N,v) = 8 x,y . φInit(N, x, y, v), where φInit is quantifier free (QF)
• Bad(N,v) = 8 x,y . φBad(N, x, y, v), where φBad is QF

Tr contains at most 1 quantifier
• Tr(i, N, v, v’) = 8 j . ½ (i, j, N, v, v’)
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A State of a Parameterized System

PID Local
v4 v5 v6 v7

0
1
2
3
4
5
6
…
N

Global
v0 v1 v2 v3
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Parameterized Symbolic Reachability

T = (v, Init, Tr, Bad)

T is UNSAFE if and only if there exists a number K s.t.

T is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init(v0) ^ (
^

s2[0,K)

Tr(is, N,vs,vs+1)) ^ Bad(vK) 6) ?

Init(v) ) Inv(v)

Inv(v) ^ Tr(i, N,v,v0) ) Inv(v0)

Inv(v) ) ¬Bad(v)
VC(T)
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Parameterized vs Non-Parameterized 
Reachability

Init, Bad, and Tr might contain quantifiers
• e.g., “ALL processes start in unique locations”
• e.g., “only make a step if ALL other processes are ok”
• e.g., “EXIST two distinct process in a critical section”

Inv cannot be assumed to be quantifier free
• QF Inv is either non-parametric or trivial

Decide existence of quantified solution for CHC
• stratify search by the number of quantifiers
• solutions with 1 quantifier, 2 quantifiers, 3 quantifiers, etc…

Init(v) ) Inv(v)

Inv(v) ^ Tr(i, N,v,v0) ) Inv(v0)

Inv(v) ) ¬Bad(v)
VC(T)
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ONE QUANTIFIER
TWO QUANTIFIER
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One Quantifier (Solution)

Claim
• If VC1(T) is QF-SAT then VC(T) is SAT
• If Tr does not contain functions that range over PIDs, then VC1(T) is QF-SAT 

only if VC(T) admits a solution definable by a simple single quantifier formula
– simple == quantified id variables do not appear as arguments to functions

VC1(T) is essentially Owicki-Gries for 2 processes i and j
If there are no global variables then (3) is unnecessary

• VC1(T) is linear

VC1(T)

Init(i, i,v) =) Inv1(i,v)

Inv1(i,v) ^ Tr(i,v,v0) =) Inv1(i,v
0)

j 6= i ^ Inv1(i,v) ^ Inv1(j,v) ^ Tr(j,v,v0) =) Inv1(i,v
0)

Inv1(i,v) ^ Inv1(j,v) =) ¬Bad(i, j,v)
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How do we get it

1. Restrict Inv to a fixed number of quantifiers
• e.g., replace Inv(N, v) with ∀k.Inv1(k, N, v)

2. Case split consecution Horn clause based on the process that makes 
the move
• w+1 cases for w-quantifiers
– one for each quantified id variable
– one for interference by “other” process (only for global variables)

3. Instantiate the universal quantifier in ∀k.Inv1(k, N, v)
• use symmetry to reduce the space of instantiations

4. Other instantiations might be needed for quantifiers if 
• id variables appear as arguments to functions
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How do we get it

(8k · Inv1(k,v)) ^ Tr(i,v,v0) =) Inv1(i,v
0)

(8k · Inv1(k,v)) ^ j 6= i ^ Tr(j,v,v0) =) Inv1(i,v
0)

(8k · Inv1(k,v)) ^ Tr(j,v,v0) =) Inv1(i,v
0)

Inv(v) ^ Tr(j,v,v0) =) Inv(v0)

Inv1(i,v) ^ Tr(i,v,v0) =) Inv1(i,v
0)

Inv1(i,v) ^ Inv1(j,v) ^ j 6= i ^ Tr(j,v,v0) =) Inv1(i,v
0)

Restrict

Cases

Instantiate
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Two Quantifier Solution

Claim
• If VC2(T) is QF-SAT then VC(T) is SAT
• If Tr does not contain functions that range over PIDs, then VC2(T) is QF-SAT 

only if VC(T) admits a solution definable by a simple two quantifier formula

• At least 2 quantifiers are “needed” for systems with global guards

Extends to K-quantifiers

Init(i, j,v) ^ Init(j, i,v) ^ Init(i, i,v) ^ Init(j, j,v) ) I2(i, j,v)

I2(i, j,v) ^ Tr(i,v,v0) ) I2(i, j,v
0)

I2(i, j,v) ^ Tr(j,v,v0) ) I2(i, j,v
0)

I2(i, j,v) ^ I2(i, z,v) ^ I2(j, z,v) ^ Tr(z,v,v0) ^ z 6= i ^ z 6= j ) I2(i, j,v
0)

I2(i, j,v) ) ¬Bad(i, j,v)



25
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Putting it all together

k := 1 ;

while true do

Invk(i1, . . . , ik,v) := Solve(U

k
(V C

!
(T ))) ;

if Invk(i1, . . . , ik,v) 6= null then

return “inductive invariant found:

8i1, . . . , ik . Inv(i1, . . . , ik,v)”
res := ModelCheck(Tk) ;

if res = cex then

return “counterexample found for k processes”

k := k + 1

Solve for Inductive
Invariant

Look for bugs
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Finite vs Infinite Number of Processes

Tr does not depend on N (number of processes)
Safe for infinitely many processes

Cex for N = 2

def proc(i) :
do

b[i] = 0 : b[i] := 1 ;
b[i] = 1 : b[i] := 0 ;
(8j 6= i . b[j] 6= b[i]) : pc[i] := E ;

def init(i, j) : pc[i] = I ^ b[i] = 0 ;
def bad(i, j) : pc[i] = E ;

Inv ⌘(8i . b[i] 2 [0, 1] ^ pc[i] = I) ^
�
8i, j, k . distinct(i, j, k) ) ¬distinct(b[i], b[j], b[k])

�
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Evaluation and Implementation

Python-based Implementation
• Simple language for specifying concurrent protocols
• Local and Universally guarded transitions
• Constraints over arrays and integer arithmetic
• Reduce to CHC using the rules and solve using Spacer

Evaluated on Simple/Tricky Well-Know Protocols
• Dining philosophers, bakery1, bakery2, collision avoidance, TICKET
• Models are pretty close to an implementation 
– limit abstraction in modeling, try to make verification hard

• Safe inductive invariants computed within seconds
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Related Work

Kedar Namjoshi et al.
• Local Proofs for Global Safety Properties, and many other papers
• systematic derivation of proof rules for concurrent systems
• finite state and fixed number of processes

Andrey Rybalchenko et al.
• Compositional Verification of Multi-Threaded Programs, and others
• compositional proof rules for concurrent systems are CHC
• infinite state and fixed number of processes

Lenore Zuck et al.
• Invisible Invariants
• finite state and parametric number of processes
• finite model theorem for special classes of parametric systems

Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko
• On Solving Universally Quantified Horn Clauses. SAS 2013:



29
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Conclusion

Parameterized Verification == Quantified solutions for CHC

Quantifier instantiation to systematically derive proof rules for verification 
of safety properties of parameterized systems 
• Parameterized systems definable with SMT-LIB syntax

Lazy vs Eager Quantifier Instantiation
• eager instantiation in this talk
• would be good to extend to lazy / dynamic / model-based instantiation

Connections with other work in parameterized verification
• complete instantiation = decidability ?
• relative completeness
• …
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