
© 2016 Carnegie Mellon University

Algorithmic Logic-Based
Verification

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel

2
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0002754

3
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

SYMBOLIC REACHABILITY

4
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Symbolic Reachability Problem

P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN) 6) ?

Init) Inv

Inv(X) ^ Tr(X,X 0)) Inv(X 0)

Inv) ¬Bad

5
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the forms

8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → pn+1[X])
8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → false)

where
• Á is a constrained in a background theory A
–of combined theory of Linear Arithmetic, Arrays, Bit-

Vectors, …
• p1, …, pn+1 are n-ary predicates
• pi[X] is an application of a predicate to first-order terms

6
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
• stand-alone implementation in a fork of Z3
• http://bitbucket.org/spacer/code

Support for Non-Linear CHC
• model procedure summaries in inter-procedural verification conditions
• model assume-guarantee reasoning
• uses MBP to under-approximate models for finite unfoldings of predicates
• uses MAX-SAT to decide on an unfolding strategy

Supported SMT-Theories
• Best-effort support for arbitrary SMT-theories
– data-structures, bit-vectors, non-linear arithmetic

• Full support for Linear arithmetic (rational and integer)
• Quantifier-free theory of arrays
– only quantifier free models with limited applications of array equality

7
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property

directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to
SMT)
• A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit

Predicate Abstraction. TACAS 2014
• J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014

8
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate

summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive

Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI

2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification

of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD
2015

9
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Spacer In Pictures SpcrMkSafe

𝑥 = 1, 𝑦 = 0𝑥 = 3, 𝑦 = 0

𝑥 ≠ 3 ∨ 𝑦 ≠ 0𝑥 > 𝑦

10
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Logic-based Algorithmic Verification

Spacer

CPR

Simulink

Lustre

Java

C/C++ concurrent
/distributed

systems

T2Termination
for C

SeaHorn

11
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

http://seahorn.github.io

12
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Example: in test.c, check that x is always greater than or equal to y
test.c

SeaHorn command: SeaHorn result:

SeaHorn Usage

13
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

SeaHorn Encoding of Verification Conditions

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y)

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0)
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4 (x � y), p3(x, y).
h7i perr (x < y), p3(x, y).
h8i p4 p4.
h9i ? perr.

14
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

PARAMETRIZED SYMBOLIC
REACHABILITY

joint work with Sharon Shoham

15
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

What we want to do …
local

pc : {CHOOSE,TRY,WAIT,MOVE} ;
curr ,next , desired : Location

def proc(i) :
do

pc[i] = CHOOSE : desired [i] ⇤ ; pc[i] TRY;
pc[i] = TRY^8j . i < j) curr[j] 6= desired [i]^next[j] 6= desired [i]
:

next[i] desired [i] ; pc[i] WAIT ;
pc[i] = WAIT ^ 8j . j < i) next[i] 6= curr[j] ^ next[i] 6= next[j] :

pc[i] MOVE ;
pc[i] = MOVE :

curr[i] next[i] ; pc[i] CHOOSE;
def init(i, j) :

pc[i] = CHOOSE ^ curr[i] = next[i] ^ (i 6= j) curr[i] 6= curr[j])
def bad(i, j) :

i 6= j ^ curr[i] = curr[j]

16
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Parameterized Symbolic Reachability Problem

T = (v, Init(N,v), Tr(i, N, v, v’), Bad (N,v))
• v is a set of state variables
– each vk2 v is a map Nat→Rat
– v is partitioned into Local(v) and Global(v)

• Init(N,v) and Bad(N,v) are initial and bad states, respectively
• Tr(i, N, v, v’) is a transition relation, parameterized by a process identifier i

and total number of processes N
All formulas are over the combined theories of arrays and LRA
Init(N,v) and Bad(N,v) contain at most 2 quantifiers
• Init(N,v) = 8 x,y . φInit(N, x, y, v), where φInit is quantifier free (QF)
• Bad(N,v) = 8 x,y . φBad(N, x, y, v), where φBad is QF

Tr contains at most 1 quantifier
• Tr(i, N, v, v’) = 8 j . ½ (i, j, N, v, v’)

17
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

A State of a Parameterized System

PID Local
v4 v5 v6 v7

0
1
2
3
4
5
6
…
N

Global
v0 v1 v2 v3

18
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Parameterized Symbolic Reachability

T = (v, Init, Tr, Bad)

T is UNSAFE if and only if there exists a number K s.t.

T is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init(v0) ^ (
^

s2[0,K)

Tr(is, N,vs,vs+1)) ^ Bad(vK) 6) ?

Init(v)) Inv(v)

Inv(v) ^ Tr(i, N,v,v0)) Inv(v0)

Inv(v)) ¬Bad(v)
VC(T)

19
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Parameterized vs Non-Parameterized
Reachability

Init, Bad, and Tr might contain quantifiers
• e.g., “ALL processes start in unique locations”
• e.g., “only make a step if ALL other processes are ok”
• e.g., “EXIST two distinct process in a critical section”

Inv cannot be assumed to be quantifier free
• QF Inv is either non-parametric or trivial

Decide existence of quantified solution for CHC
• stratify search by the number of quantifiers
• solutions with 1 quantifier, 2 quantifiers, 3 quantifiers, etc…

Init(v)) Inv(v)

Inv(v) ^ Tr(i, N,v,v0)) Inv(v0)

Inv(v)) ¬Bad(v)
VC(T)

20
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

ONE QUANTIFIER
TWO QUANTIFIER

21
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

One Quantifier (Solution)

Claim
• If VC1(T) is QF-SAT then VC(T) is SAT
• If Tr does not contain functions that range over PIDs, then VC1(T) is QF-SAT

only if VC(T) admits a solution definable by a simple single quantifier formula
– simple == quantified id variables do not appear as arguments to functions

VC1(T) is essentially Owicki-Gries for 2 processes i and j
If there are no global variables then (3) is unnecessary

• VC1(T) is linear

VC1(T)

Init(i, i,v) =) Inv1(i,v)

Inv1(i,v) ^ Tr(i,v,v0) =) Inv1(i,v
0)

j 6= i ^ Inv1(i,v) ^ Inv1(j,v) ^ Tr(j,v,v0) =) Inv1(i,v
0)

Inv1(i,v) ^ Inv1(j,v) =) ¬Bad(i, j,v)

22
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

How do we get it

1. Restrict Inv to a fixed number of quantifiers
• e.g., replace Inv(N, v) with ∀k.Inv1(k, N, v)

2. Case split consecution Horn clause based on the process that makes
the move
• w+1 cases for w-quantifiers
– one for each quantified id variable
– one for interference by “other” process (only for global variables)

3. Instantiate the universal quantifier in ∀k.Inv1(k, N, v)
• use symmetry to reduce the space of instantiations

4. Other instantiations might be needed for quantifiers if
• id variables appear as arguments to functions

23
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

How do we get it

(8k · Inv1(k,v)) ^ Tr(i,v,v0) =) Inv1(i,v
0)

(8k · Inv1(k,v)) ^ j 6= i ^ Tr(j,v,v0) =) Inv1(i,v
0)

(8k · Inv1(k,v)) ^ Tr(j,v,v0) =) Inv1(i,v
0)

Inv(v) ^ Tr(j,v,v0) =) Inv(v0)

Inv1(i,v) ^ Tr(i,v,v0) =) Inv1(i,v
0)

Inv1(i,v) ^ Inv1(j,v) ^ j 6= i ^ Tr(j,v,v0) =) Inv1(i,v
0)

Restrict

Cases

Instantiate

24
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Two Quantifier Solution

Claim
• If VC2(T) is QF-SAT then VC(T) is SAT
• If Tr does not contain functions that range over PIDs, then VC2(T) is QF-SAT

only if VC(T) admits a solution definable by a simple two quantifier formula

• At least 2 quantifiers are “needed” for systems with global guards

Extends to K-quantifiers

Init(i, j,v) ^ Init(j, i,v) ^ Init(i, i,v) ^ Init(j, j,v)) I2(i, j,v)

I2(i, j,v) ^ Tr(i,v,v0)) I2(i, j,v
0)

I2(i, j,v) ^ Tr(j,v,v0)) I2(i, j,v
0)

I2(i, j,v) ^ I2(i, z,v) ^ I2(j, z,v) ^ Tr(z,v,v0) ^ z 6= i ^ z 6= j) I2(i, j,v
0)

I2(i, j,v)) ¬Bad(i, j,v)

25
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Putting it all together

k := 1 ;

while true do

Invk(i1, . . . , ik,v) := Solve(U

k
(V C

!
(T))) ;

if Invk(i1, . . . , ik,v) 6= null then

return “inductive invariant found:

8i1, . . . , ik . Inv(i1, . . . , ik,v)”
res := ModelCheck(Tk) ;

if res = cex then

return “counterexample found for k processes”

k := k + 1

Solve for Inductive
Invariant

Look for bugs

26
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Finite vs Infinite Number of Processes

Tr does not depend on N (number of processes)
Safe for infinitely many processes

Cex for N = 2

def proc(i) :
do

b[i] = 0 : b[i] := 1 ;
b[i] = 1 : b[i] := 0 ;
(8j 6= i . b[j] 6= b[i]) : pc[i] := E ;

def init(i, j) : pc[i] = I ^ b[i] = 0 ;
def bad(i, j) : pc[i] = E ;

Inv ⌘(8i . b[i] 2 [0, 1] ^ pc[i] = I) ^
�
8i, j, k . distinct(i, j, k)) ¬distinct(b[i], b[j], b[k])

�

27
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Evaluation and Implementation

Python-based Implementation
• Simple language for specifying concurrent protocols
• Local and Universally guarded transitions
• Constraints over arrays and integer arithmetic
• Reduce to CHC using the rules and solve using Spacer

Evaluated on Simple/Tricky Well-Know Protocols
• Dining philosophers, bakery1, bakery2, collision avoidance, TICKET
• Models are pretty close to an implementation
– limit abstraction in modeling, try to make verification hard

• Safe inductive invariants computed within seconds

28
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Related Work

Kedar Namjoshi et al.
• Local Proofs for Global Safety Properties, and many other papers
• systematic derivation of proof rules for concurrent systems
• finite state and fixed number of processes

Andrey Rybalchenko et al.
• Compositional Verification of Multi-Threaded Programs, and others
• compositional proof rules for concurrent systems are CHC
• infinite state and fixed number of processes

Lenore Zuck et al.
• Invisible Invariants
• finite state and parametric number of processes
• finite model theorem for special classes of parametric systems

Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko
• On Solving Universally Quantified Horn Clauses. SAS 2013:

29
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Conclusion

Parameterized Verification == Quantified solutions for CHC

Quantifier instantiation to systematically derive proof rules for verification
of safety properties of parameterized systems
• Parameterized systems definable with SMT-LIB syntax

Lazy vs Eager Quantifier Instantiation
• eager instantiation in this talk
• would be good to extend to lazy / dynamic / model-based instantiation

Connections with other work in parameterized verification
• complete instantiation = decidability ?
• relative completeness
• …

30
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

31
Algorithmic Logic-Based Verification
Gurfinkel, 2016
© 2016 Carnegie Mellon University

Contact Information

Arie Gurfinkel, Ph. D.
Principle Researcher
CSC/SSD
Telephone: +1 412-268-5800
Email: info@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

