Quantifiers on Demand

Arie Gurfinkel, Sharon Shoham, and Yakir Vizel

v ¥

October 9, 2018

% WATERLOO

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

YV - (o Ap1[X1 A ApplXa]) = h|X]

where

e T is a background theory (e.g., Linear Arithmetic, Arrays,
Bit-Vectors, or combinations of the above)

e \/ are variables, and X, are terms over V

¢ Is a constraint in the background theory T°

° D4, ..., Py, h are n-ary predicates

e pi[X] is an application of a predicate to first-order terms

IIIIIIIIIIII

>

CHC Satisfiability

A T-model of a set of a CHCs [] is an extension of the model M of T
with a first-order interpretation of each predicate p, that makes all
clauses in II true in M

A set of clauses is satisfiable if and only if it has a model
» This is the usual FOL satisfiability

A T-solution of a set of CHCs II is a substitution o from predicates p, to
T-formulas such that I1o is T-valid

In the context of program verification
e a program satisfies a property iff corresponding CHCs are satisfiable
e solutions are inductive invariants
e refutation proofs are counterexample traces

IIIIIIIIIIII

WATERLOO

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN
» QARMC, Eldarica, ...
Maximal Inductive Subset from a finite Candidate space (Houdini)
e TACAS'18: hoice, FregHorn
Machine Learning
 PLDI'18: sample, ML to guess predicates, DT to guess combinations
Abstract Interpretation (Poly, intervals, boxes, arrays...)
o Approximate least model by an abstract domain (SeaHorn, ...)
Interpolation-based Model Checking
e Duality, QARMC, ...

~
SMT-based Unbounded Model Checking (IC3/PDR)

e Spacer, Implicit Predicate Abstraction

o

IIIIIIIIIIII

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
e now the default (and only) CHC solver in Z3
— https://github.com/Z3Prover/z3
— dev branch at https://github.com/agurfinkel/z3

Supported SMT-Theories

 Linear Real and Integer Arithmetic
» Quantifier-free theory of arrays
» Universally quantified theory of arrays + arithmetic (this talk!)
o Best-effort support for many other SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
Support for Non-Linear CHC

 for procedure summaries in inter-procedural verification conditions

 for compositional reasoning: abstraction, assume-guarantee, thread modular,
etc.

UNIVERSITY OF

WATERLOO

https://github.com/Z3Prover/z3

Program Verification with HORN(LIA)

Z = X; 1 = 0;

assume (y > 0);

while (i < vy) { ‘ IS SAT?
Z =2 + 1;
i=1+ 1;
}
assert(z == x + y); -\ /-
z=xXx&1 =08&y >0 = Inv(x, y, z, 1)

Inv(x, vy, z, i) & i <y & z1=z+1 & il=i+1 = Inv(x, y, zl, il)
Inv(x, vy, z, 1) & i >=y & z != x+y = false

%) WATERLOO 7

In SMT-LIB

(set-logic HORN)

55 Inv(x, y, z, 1)

(declare-fun Inv (Int Int Int Int) Bool)

(assert
(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (> B @) (=CA) (=D 9))
(Inv A B C D)))

)
(assert
(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))
(=>
(and (Inv ABCD) (¢<DB) (=C1 (+C1)) (=D1 (+D
1))
(Inv A B C1 D1)
)
)
)
(assert

(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
false

)

(check-sat)
(get-model)

$ z3 add-by-one.smt2

sat

(model

(define-fun Inv ((x!@ Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool
(and (<= (+ x!2 (* (- 1) x!@) (* (- 1) x!3)) 0)
(<= (+ x!2 (* (- 1) x!@) (* (- 1) x!1)) @)

(<= (+ x!o x!I3 (* (- 1) x!2)) 0)))

Inv(x, y, z, 1)

y4 X + 1

X +Yy

UNITVERSITY OF

WATERLOO

HORN(ALIA): Arrays + LIA

int A[N];

for (int i = @; i < N; ++1)
A[i] = 0;

int j = nd();

assume(@ <= j < N);

assert(A[j] == 0);

Inv(A, N, ©)
Inv(A, N, i) & i < N & Inv(A[i

g]] UNIVERSITY OF
% WATERLOO

:= 0], N, i+1)

In SMT-LIB

(set-logic HORN)

55 Inv(A, N, 1)
(declare-fun Inv ((Array Int Int) Int Int) Bool)

(assert

(forall ((A (Array Int Int)) (N Int) (C Int)) (Inv AN 9)))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Inv AN i) (< i N))
(Inv (store A'i @) N (+1i 1))
)
)

)

(assert

(forall ((A (Array Int Int)) (N Int) (i Int) (j Int))
(=> (and (Inv AN i)

(>= 1 N) (<=0 3) (< j N) (not (= (select A
3) @)

false

)

(check-sat)
(get-model)

UNITVERSITY OF

WATERLOO

$ z3 -t:100 array-zero.smt2

canceled

unknown

Inv(A, N, i)

V0 <= j<i

< N =D
A[J] = ©

10

Extends Spacer with reasoning about quantified solutions

QUIC3: QUANTIFIED IC3

IIIIIIIIIIII

11

MkSafe

IC3/PDR In Pictures: MkSafe

O€ x=3,y=0 x=1y=0

| | | | | 70/I

. R

Predecessor find M s.t. M = F; ATr Am’
find mst. (M Em)A(m = IV -TrAm')

NewLemma find £s.t. (F;ATr =)Nl = —m)

IIIIIIIIIIII

%) WATERLOO 12

Push

IC3/PDR in Pictures: Push

<€ @) O\O<
= O€ O

Algorithm Invariants
F,—-Bad Init— F;

Fi — Fi+1 Fi N\ Tr — Fi+1

Inductive

iz DM T-query: FLAF; N Tr — A "

Predecessor in array-zero example

Inv(A, N, i) & i >= N & @ <= j < N & A[j] !'= @ = false

Trri<N&O<=j<N&A[]!=0 POB: true

3j-i>NAO<j<NAA[J]£0
— i>NAZJj-(0<j<NAA[j|#0)

= 777

No way to eliminate the existential quantifier!

e can use the value of j in the current model
 but this only works when A[j] is not important

IIIIIIIIIIII

%) WATERLOO 15

Quantified POBs and Lemmas

Must deal with existentially quantified POBs

find M st. M =F, ANTr Am/
find mst. (M Em)A(m = IV -TrAm’)

Learning universally quantified lemmas is easy!
 if POB m is existentially quantified, then it's negation is universally quantified
e checking that Tr implies a universally quantified lemma is easy

find ¢/ s.t. (F;ATr =)N ({ = —m)

But universal quantifiers make even basic SMT queries undecidable!
e cannot assume that SMT-solver will magically handle this for us

IIIIIIIIIIII

QUIC3: Quantified IC3 [kwik-ee]

Spacer extends IC3/PDR from Propositional logic to LIA + Arrays

Quic3 extends Spacer to discovering Universally Quantified solutions
e Extend proof obligations with free (implicitly existentially quantified) variables
e Allow universal quantifiers in lemmas
» Explicitly manage quantifier instantiations to guarantee progress
— without syntactic restriction of formulas (e.g., MBQI, Local Theory, APF)
— without user-specified patterns
* Quantified generalization to heuristically infer new quantifiers

Implemented in spacer in Z3 master branch

e 23 fp.spacer.ground pobs=false fp.spacer.q3.use _ggen=true
NAME . smt2

UNIVERSITY OF

WATERLOO

17

QUIC3: Trace and Proof Obligations

A quantified trace Q = Qq, ..., Qyis a sequence of frames.

e A frame Q; is a set of (¢, o), where £ is alemma and ¢ a
substitution.

e qi(Q) ={fa | (¢, 0) € Q} vQ={v¢| (¢, o) € Q} |

e |nvariants:

— Bounded Safety: Vi< N . vQ;, — "Bad
— Monotonicity: Vi< N . VvQ; € VQ
— Inductiveness: Vi<N.VQ A Tr — VQ'i,4

A priority queue @ of quantified proof obligations (POBSs)
e (m, ¢, i) € @ where mis a cube, ¢ is a ground substitution for all

free variables of m, and i is a numeric level

o if (M, €, i) € Q then there exists a path of length (N-i) from a state in
m¢ to a state in Bad

UNIVERSITY OF

WATERLOO

18

>

QUIC3: Rules

UNIVERSITY OF

WATERLOO

Input: A safety problem (Init(X), Tr(X, X’), Bad(X)).

Assumptions: Init, Tr and Bad are quantifier free.

Data: A POB queue Q, where a POB ¢ € Q is a triple (m, 0,7), m is a
conjunction of literals over X and free variables, o is a substitution
s.t. mo is ground, and ¢ € N. A level N. A quantified trace
T = Qo, Q1, ..., where for every pair (¢,0) € Q;, ¢ is a quantifier-free
formula over X and free variables and o a substitution s.t. {o is
ground.

Notation: F(A) = (A(X) A Tr(X, X)) V Init(X"); ¢i(Q) = {lo | (¢,0) € Q};

VQ ={Vl|({,0) € Q}.
Output: Safe or Cex
Initially: Q =0, N =0, Qo = {(Init,0)}, Vi > 0-Q; = 0.

repeat
Safe If there is an i < N s.t. VQ; C VQ;+1 return Safe.

Cex If there is an m, o s.t. (m,0,0) € Q return Cez.
Unfold If ¢i(Qn) — —Bad, then set N <~ N + 1.
Candidate If for some m, m — qi(Qn) A Bad, then add (m,(, N) to Q.

Predecessor If (m,&,i+ 1) € Q and there is a model M s.t.
M E q¢i(Qi) A Tr A (ml), add (v, 0,4) to Q, where (¢, 0) = abs(U, ¢) and
(p,U) = pPMBP(X' USK, Tr Am’;,, M).

NewLemma For 0 < i < N, given a POB (m,0,i+ 1) € Q s.t. F(qi(Q:)) Amly, is
unsatisfiable, and L' = ITP(F(qi(Q:)), m.;), add (¢,0) to Q; for j <i+1,
where (¢,_) = abs(SK, L).

Push For 0 <i < N and ((¢ V¢),0) € Qs if (p,0) € Qit1, Init — Vo and
(Vo) AVQi A qi(Qi) N Tr — Yy’ then add (p, o) to Qj, for all 7 < i+ 1.

until oo;

19

QUIC3: Predecessor, NewLemma, and Push

repeat

M = qi(Qq)

(V) AVQ

N

qi(Q:)

until oo;

Predecessor If (m,&,i+ 1) € Q and there is a model M s.t.
A Tr A (mly,), add (¢, 0,1) to Q, where (¢, 0) = abs(U, ¢) and
(p,U) = pPMBP(X'USK, Tr Aml,, M).

NewLemma For 0 <4 < N, given a POB (m,0,i+ 1) € Q s.t.| gi(Qi)IN Tr Aml is
unsatisfiable, and L' = ITP(F(qi(Q:)), m%;), add (£,0) to Q; for 7 < i+ 1,
where (¢,_) = abs(SK, L).

Push For 0 <i< N and ((¢V),0) € Qi, if (p,0) € Qit+1, Init — Y and

A Tr — V¢, then add (p,0) to Q;, for all 7 <i+ 1.

In Predecessor and NewLemma only use current instantiations of
quantified lemmas. All SMT queries are quantifier free

In Push, quantified lemmas are required for relative completeness

e in practice, we use incomplete pattern-based instantiation and hope that it is
sufficient together with qi(Q;)

%) WATERLOO

20

Progress and Counterexamples

The Predecessor rule is only finitely applicable to any POB

o follows from how quantified terms are abstracted by free variables and how
quantified lemmas are instantiated

» assumes that Skolemization is deterministic
o uses finiteness of Model Based Projection

MkSafe in Quic3 is terminating for any given bound N
e w.l.0.g, assume Bad is a single POB
e Follows by induction on the bound N

MkSafe in Quic3 computes a quantified interpolation sequence

If there is a counterexample, Quic3 will terminate with the shortest
counterexample

UNIVERSITY OF

WATERLOO

21

In SMT-LIB

(set-logic HORN)

$ z3 array-zero.smt2

55 Inv(A, N, i)

(declare-fun Inv ((Array Int Int) Int Int) Bool) Sa.t
(assert (model
(forall ((A (Array Int Int)) (N Int) (C Int)) (Inv A N 9))) (define-fun Inv ((x!0@ (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
(let ((a'l (forall ((sk!'e Int))
(assert
(forall ((A (Array Int Int)) (N Int) (i Int)) (* (or (not (>= skle @))
(=> (>= (select x!0 sk!e) o)
(and (Inv AN i) (< iN)) (<= (+ x!12 (* (- 1) sklo)) @))
(Inv (store A'i @) N (+ i 1)) ‘weight 15)))
)
) (al2 (forall ((sk!e Int))
) (! (or (not (>= skl!e 9))
(assert (<= (select x!0 sk!@) o)

(forall E iA(::;‘r‘?)I/nIn: ;n‘.C); (N Int) (i Int) (J Int)) (<= (+ x12 (* (- 1) sk!@)) 0))
= \" 1
(>= 1 N) (<=0 3) (< JN) (not (= (select A rweight 15))))
i) e))) (and al!l al2)))

false

)

(check-sat)
(get-model)

UNITVERSITY OF

WATERLOO 29

almost ...

THE END

%) WATERLOO

HORN(ALIA): Arrays + LIA

int A[N];

for (int 1 = 0; i < N; ++1)

?
A[i] = ©; ‘ IS SAT*

for (1 = 0; 1 < N; ++1)

assert(A[i] == 0);

X/

Invli(A, N,) NV
Invi(A, N, i) & i < N & Invi(A[i := @], N, i+1)
Invi(A, N, i) & i >= N & Inv2(A, N,)

Inv2(A, N, i) & i < N & A[i] = @ =& Inv2(A, N, i+1)
Inv2(A, N, i) & i < N & A[i] != @ = false

IIIIIIIIIIII

In SMT-LIB

(set-logic HORN)

55 Inv(A, N, 1)

$ z3 -t:100 array-zero2.smt2

(declare-fun Invl ((Array Int Int) Int Int) Bool)
(declare-fun Inv2 ((Array Int Int) Int Int) Bool)

(sssert canceled

(forall ((A (Array Int Int)) (N Int) (C Int)) (Invl AN ©)))

ser unknown

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Invli AN i) (< iN))
(Invl (store A i @) N (+ i 1))
)
)

)

(assert

(forall ((A (Array In
(=>
(and (Invl A

)

=

Int)) (N Int) (i Int))

=

i) (>= i N)) (Inv2 A N @)

))

(assert

(forall ((A (Array In
(=>
(and (Inv2 A

)

=

Int)) (N Int) (i Int))

Ed

i) (< i N) (= (select A i) @)) (Inv2 AN (+ i 1))

))

(assert

(forall ((A (Array In
(=>
(and (Inv2 A

)

=

Int)) (N Int) (i Int))

=

i) (< i N) (not (= (select A i) @))) false

(check-sat)
(get-model)

% WATERLOO 25

Why this example diverges?
Inv2(A, N, i) & i < N & A[i] != @ = false

i< NAAJi]#£0 < true

Invi(A, N, i) & i >= N = Inv2(A, N, @)
0<N<iNA[D]#0 4 i < NAAJi]|#0

Inv2(A, N, i) & i < N & A[i] = @ & Inv2(A, N, i+l)

tH1<BA i < NANAJQ]#0
Al =0AA[i+1] £ 0

Invi(A, N, i) & i >= N 2 Inv2(A, N, ©)

I1<N<TA 1 +1 < BA
A0l =0AA[L] £0 Alil =0AAli +1] #0

IIIIIIIIIIII

%) WATERLOO 26

Quantified Generalizer

“... to boldly go where no one has gone before” (but many have been)

1< N<zANAO=0ANA[1] #0

Quantified generalizer is a heuristic to generalize POBs using existential
quantifiers

e e.g., in our example, we want to generalize the pob into

J7- 1< N<iN0O<j<NAA[j|#O

We look for a pattern in the formula (anti-unification)

Use convex closure (i.e., abstract join) to capture the pattern by a
conjunction

Apply after pob is blocked and generalized
e As any generalization, it is a dark magic

IIIIIIIIIIII

%) WATERLOO 07

In SMT-LIB

(set-logic HORN)

55 Inv(A, N, 1)

(declare-fun Invl ((Array Int Int) Int Int) Bool)

(declare-fun Inv2 ((Array Int Int) Int Int) Bool)

(assert

(forall ((A (Array Int Int)) (N Int) (C Int)) (Invl AN ©)))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Invl AN i) (< i N))
(Invl (store A i @) N (+ i 1))
)
)

)

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Invl AN i) (>=1i N)) (Inv2 AN 9)
)

))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Inv2 A N i) (< i N) (= (select A i) @)) (Inv2 AN (+ i 1))
)

))

(assert

(forall ((A (Array Int Int)) (N Int) (i Int))
(=>
(and (Inv2 AN i) (< i N) (not (= (select A i) @))) false
)

))

(check-sat)

(get-model)

%) WATERLOO

$ z3 array-zero2.smt2

sat

(model
(define-fun Inv2 ((x!® (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
(let ((al!l (forall ((sk!e Int))
(! (or (<= (+ x!1 (* (- 1) skl@)) o)
(<= (select x!0 skl!o) @)
(<= (+ skle (* (- 1) x!2)) @))
:weight 15)))
(al2 (or (<= (+ x!1 (* (- 1) x!12)) @) (<= (select x!@ x!2) @)))
(al3 (or (>= (select x!@ x!12) @) (<= (+ x!1 (* (- 1) x!2)) @)))
(a!4 (forall ((sk!e Int))
(! (or (<= (+ x!1 (* (- 1) skl@)) o)
(>= (select x!0 skl!o) @)
(<= (+ skle (* (- 1) x!2)) @))
tweight 15))))
(and a!l al!2 a!3 al4)))

(define-fun Invl ((x!® (Array Int Int)) (x!1 Int) (x!2 Int)) Bool
(let ((al!l (forall ((sk!e Int))
(! (or (<= (select x!0 sk!@) 0)
(<= (+ x!2 (* (- 1) skle)) o)
(<= sk!o 0))

:weight 15)))
(a!2 (forall ((sk!e Int))
(! (let ((a!l (>= (+ skle (* (- 1) (select x!@ sk!@))) @)))
(or (not (>= sk!@ @)) (<= (+ x!2 (* (- 1) skl@)) @) all))
:weight 15)))
(a!3 (forall ((sk!e Int))
(! (or (<= (+ x!2 (* (- 1) skl@)) o)
(>= (select x!0 skl!o) @)
(<= sk!o 0))
tweight 15))))
(and a!l al!2 (or (>= (select x!@ @) @) (<= x!2 0)) al3)))

28

DEMO

%) WATERLOO

Related Work

Predicate Abstraction
o extend predicates with fresh universally quantified variables
* relies on a decision procedure for quantified logic
Model-Checking Modulo Theories (MCMT)
* model checking of array manipulating programs
e supported by multiple tools: cubicle, mcmt, safari, ...
e quantifier elimination to compute predecessors

e requires checking satisfiability of quantified formulas for sub-sumption and
convergence

Discovery of Universal Invariants with Abstract Interpretation
e compute universally quantified inductive invariants of a certain shape
e often specialized for reasoning about arrays in programming languages
 not property directed, no guarantees, but often very quick
e can be combined with Quic3 as pre-processing

UNIVERSITY OF

WATERLOO

30

Most Closely Related Work

Safari and Booster

» extends Lazy Abstraction with Interpolants (LAWI) to array manipulating
programs

e solves mkSafe() using quantifier free theory of arrays and computes
quantifier free sequence interpolant

* heuristically guesses quantified lemmas by abstracting terms

e see Avy for in-depth comparison between interpolation and IC3
Transformation into non-linear CHC

e guess number of quantifiers and instances statically

e use quantifier-free non-linear CHC solver to find template invariant

e generalizes most Abstract Interpretation / Template-based approaches

e cannot discover counterexamples
 can be simulated in Quic3 by restricting instantiations used

UPDR
 existential pobs and universal lemmas over decidable theories

UNIVERSITY OF

WATERLOO

Conclusion

Quic3 brings reasoning about quantified invariants to CHC
e Implemented in spacer
e can discover non-trivial quantified invariants of complex code

Guarantee progress and counterexamples
» don’t get stuck with a quantified SMT query
e find shortest counterexample

Many open questions remain
o strides — memory is traversed in a stride (e.g., x=x+4)
 additional quantified generalizers (speed vs precision)
 Enumerating invariants in a decidable fragment (EssenUF, APF, etc.)

UNIVERSITY OF

WATERLOO

32

CHC-COMP: CHC Solving Competition
First edition on July 13, 2018 at HVCS@FLOC

Constrained Horn Clauses (CHC) is a fragment of First Order Logic
(FOL) that is sufficiently expressive to describe many verification,
inference, and synthesis problems including inductive invariant
inference, model checking of safety properties, inference of procedure
summaries, regression verification, and sequential equivalence. The
CHC competition (CHC-COMP) will compare state-of-the-art tools for
CHC solving with respect to performance and effectiveness on a set of
publicly available benchmarks. The winners among participating solvers
are recognized by measuring the number of correctly solved

benchmarks as well as the runtime.

%) WATERLOO 33

Web: https://chc-comp.github.io/

Gitter: https://qitter.im/chc-comp/Lobby

GitHub: https://github.com/chc-comp

Format: https://chc-comp.github.io/2018/format.html

https://gitter.im/chc-comp/Lobby
https://github.com/chc-comp

&

34

