Solving Constrained Horn Clauses with
SMT

Arie Gurfinkel
International Summer School on Satisfiability,
Satisfiability Modulo Theories, and Automated
Reasoning

SAT/SMT/AR 2018

July 6, 2018

% WATERLOO

Automated Verification

Deductive Verification
e A user provides a program and a verification certificate
— e.g., inductive invariant, pre- and post-conditions, function summaries, etc.
A tool automatically checks validity of the certificate
— this is not easy! (might even be undecidable)
 Verification is manual but machine certified

mgorithmic Verification (My research area) \
e A user provides a program and a desired specification

— e.g., program never writes outside of allocated memory
A tool automatically checks validity of the specification

— and generates a verification certificate if the program is correct

— and generates a counterexample if the program is not correct
\-Verification is completely automatic — “push-button” /

UNIVERSITY OF

WATERLOO 2

Algorithmic Logic-Based Verification

Safety
Properties

Program + Spec

Verification
Condition (in Logic)

Decision Procedure

Constrained }

Horn Clauses

Spacer

|

Yes No

IIIIIIIIIIII

Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
e now the default (and only) CHC solver in Z3
— https://qgithub.com/Z3Prover/z3
— dev branch at https://github.com/agurfinkel/z3
Supported SMT-Theories
 Linear Real and Integer Arithmetic
» Quantifier-free theory of arrays
o Universally quantified theory of arrays + arithmetic (work in progress)
o Best-effort support for many other SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
Support for Non-Linear CHC
 for procedure summaries in inter-procedural verification conditions

 for compositional reasoning: abstraction, assume-guarantee, thread modular,
etc.

UNIVERSITY OF

WATERLOO

https://github.com/Z3Prover/z3

Contributors

Arie Gurfinkel
Anvesh Komuravelli

Nikolaj Bjorner
(Krystof Hoder)
Yakir Vizel
Bernhard Gleiss
Matteo Marescotti

XN heater

A n
B0ONShow 8:00

- -
.o . g "
s .
i [RexStory
- HegPRY[30L1102
V - 7 -ubl o e
oy 2 ’” Communication Jlin pargiour stu ivities fees

%Y WATERLOO

Logic-based Algorithmic Verification

Simulink
—— I C/C++ I concurrent

Java /distributed
Qi systems
[Lustre g @ CPR

[Termination

for C TZ v

Spacer g

IIIIIIIIIIII

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

V'V . (oA pqX]A...A P[X] = N[X]),

where

e A is a background theory (e.g., Linear Arithmetic, Arrays,
Bit-Vectors, or combinations of the above)

* ¢ Iis a constrained in the background theory A
* p4, -.-, Py, N @re n-ary predicates
* p[X] is an application of a predicate to first-order terms

IIIIIIIIIIII

CHC Notation and oIo &Tstraint

Rule

Query

Fact
Linear CHC

Non-Linear CHC

IIIIIIIIIIII

false < p4[X4],..., PuIX,], ©.
h[X] + o.
h[X] < p[X4], ¢.

h[X] . p1[x‘|]""a pn[xn]’ ¢
forn>1

CHC Satisfiability

A model of a set of clauses I7 is an extension of the model of the

background theory with an interpretation of each predicate p, that makes
all clauses in II valid

A set of clauses is satisfiable if it has a model, and is unsatisfiable
otherwise

Given a theory A, a model M is A-definable, it each p, in M is definable
by a formula ; in A

In the context of program verification
e a program satisfies a property iff corresponding CHCs are satisfiable
e verification certificates correspond to models
e counterexamples correspond to derivations of false

UNIVERSITY OF

WATERLOO

Horn Clauses for Program Verification

Cout \()s W 5 €, Jy WLLGH 1S 8l CLLLY PULLL LW SUCUESDUL CUgES. |
with the edges are formulated as follows:
Pinit(To, w, L) + = x¢ where z occurs in w
Perit(To, ret, T) « €(zp,w, T) for each label £, and re
plz,ret, L, L) + p.,i(z, ret, L)
plz,ret, L, T) « pezit(z,ret, T)
bo(To.w'.€.) & Linlza.w.) A —e: A —win(S.—(e: =

5. incorrect :- Z=W+1, W>0, W+1<
read(A,W,U), read(A,?

Weakest Preconditions If we apply Boogie directly we obtain a translation
from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

ToHorn(program) := wip(Main(), T) A /\ ToHorn(decl)

havoc z,; assume z, = r;
ToHorn(def p(z) {S}) := wl, (assume Ppre(Z): S, p(zo, mt])
wlp(z .= E,Q):=let z=E in Q
wip((if E then S, else S;), Q) := wip(((assume E; S;)J(assume —E; S;)),.Q)
wip((5,08,),Q) := MP(S Q) Awip(S,, Q)
wip(S1; 52, Q) = wip(S:, wip(S2,Q))
wip(havoc z,Q) :=Vz . Q

wip(assert ¢, Q) :=pAQ
wlp(assume ¢, Q) :=¢ =+ Q
wlp((while E do S),Q) := inv(w) A
Vo (((inv(w) AE) = wip(S, inv(w))))
" \A((inv(w) A-E) = Q)

6. p(I1,N,B) :- 1<I, I<N, D=I—1, T1=I+1. V=U+1.

read(A,D,U), write(A
7.o(I.N.A) :- I=1. N>1.

De Angelis et al. Verifying Array
Programs by Transforming
Verification Conditions. VMCAI'14

To translate a procedure call £ : y := ¢(E); £ within a procedure p, create
he clauses:

 p(wy, wy), call(w;, w3), g(wz, ws), return(w,;, ws, wy)
p(w.;].w1).call(w<_.wg)
=0z =Ex' =§,,

' =£y w =wret'/yl[x]

)
g(w2, wa)
call(w, w')

)

return(w, w’, w

Bjarner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

%) WATERLOO

10

Horn Clauses for Concurrent / Distributed /

Parameterized Systems

For assertions R1,..., Ry over Vand Ey,...,Exyover V,V’,

CM1: init(V) — Ri(V)
CM2: R;(V)Api(V, V') — Ri(V')
CM3 : (Viel..N\{j} Ri(V) A pi(V, V")) E;(V,V')
CM4: R;(V)ANE;(V,VYApr (V,V') — Ri(V')
CM5: Ri(V)A---ARNn(V) A error(V) — false

multi-threaded program P is safe

Rybalchenko et al. Synthesizing Software
Verifiers from Proof Rules. PLDI'12

{R(-sPo(k)lok)) < dist(p1,---,Pk) AR(g,P1, 115+ -, Pks i) }o'esk (©6)
R(g,p1,l1,-- 7pk,lk) <« dist(p1,...,px) Anit(g,l}) A --- Alnit(g, i) @)
R(g,p1,1h, - spi k) = dist(pr,....pe) A ((g:11) 2 (&,11)) AR(g, P11 -, Pk) ®)
R(g,p1, - Pis k) < dist(po,p1,...,px) A ((g:10) =3 (&',15)) ARConj(0, ..., k) ©)
false dist(p1,...,pr)/\(A (i=piA(e))) GEj))ARConj(l,...,r) (10)

j=1,...m

Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-

ant. Sy is the symmetric group on {1,...

,k}, i.e., the group of all permutations of k numbers; as an

optimisation, any generating subset of Sy, for instance transpositions, can be used instead of S;. In (10),

we define r = max{m,k}.

Hojjat et al. Horn

Clauses for Communicating Timed

Systems. HCVS'14

Init(3, §,9) A Init(4,4,) A
Init(i,i,v) A Init(4, j,v) = I2(i, J, V)

L(i,5,9) A Tr(i,0,v') = I2(i,5,7) (3)
(initial) init(g, z1) A - - - Ainit(g,) = Inv(g, linit, T1, - - - , linit, Tk) I (’l _] 6) A TT‘(] 7 5,) = I, (Z _7 51) (4)
1J))) 1J)
(inductive) I’rL'U(g,Zl,zl,...,Zi,xi,...,fk,:l:k)/\s(g,xi,g'7z;)—)Inv(g’,Zl,zl,...,ﬁ,zg,...,f}c,.' 1—2(2] 6) A 1—2(2 k 6) A I2(J k ﬁ) A
] 1J?)))) 5)
(non-interference) Inv(g,%1,Z1,-..,Lk, Tk) A — = . c 2 o =0 (
Inv(g,é*,zth,m,...,ék,zk)/\ Tr(k,v,v) A k # (24 k ?é .7 = 12(7".7’”)
Inv(g7£17 T1,--. 7ek—17 zk—heTaxf) A 3(g7xT7gl7) — In’l}(gl7é17$1, LR ae’ka)
(safe) Inv(g, b1, 1, .., Lk, Tk) A err(g, €1, 21, . .., fm, Tm) — false Figure 3: VC(T) for two-quantifier invariants.
Figure 6.]-’Iorn clause er_lcoding for thread modularity at .leve?l k (where (£:,s,£,) and (£,s, -) refer to statement s on af Gurfinkel et al. SMT-Based Verification of
from £; to £; and, respectively, from £ to some other location in the control flow graph) Parameterized Svstems. FSE 2016
1Z Yy :
S5y MveRsiTy or Hoenicke et al. Thread Modularity at Many
%> WATERLOO | | evels. POPL'17 11

Is this program correct?

Z = X; 1 = 0;

assume (y > 0);

while (1 < y) {
Z =2 + 1;
i=1+1;

}

assert(z == x + vy);

z=X&1 =08&y >0 = Inv(x, vy, z, 1)
Inv(x, vy, z, i) & i <y & z1=z+1 & il=i+1 = 1Inv(x, y, zl, il)
Inv(x, vy, z, 1) & 1 >=y & z = x+y = false

IIIIIIII

WATERLOO 12

In SMT-LIB

(set-logic HORN)

55 Inv(x, y, z, 1)

(declare-fun Inv (Int Int Int Int) Bool)

(assert
(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (> B @) (=CA) (=D 9))
(Inv A B C D)))
)
(assert
(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))
(=>

(and (Inv AB CD) (<DB) (=Cl (+C1)) (=D1 (+D

1))
(Inv A B C1 D1)
)
)

)

(assert

(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (Inv A B C D) (>=D B) (not (= C (+ A B))))
false
)

(check-sat)
(get-model)

UNITVERSITY OF

WATERLOO

$ z3 add-by-one.smt2

sat

(model

(define-fun Inv ((x!@ Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool
(and (<= (+ x!2 (* (- 1) x!@) (* (- 1) x!3)) o)
(<= (+ x!2 (* (- 1) x!@) (* (- 1) x!1)) @)

(<= (+ x!@ x!3 (* (- 1) x!2)) 0)))

Inv(x, vy, z, 1)

Z X + 1

Z <= X + Y

13

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN
* QARMC, Eldarica, ...
Maximal Inductive Subset from a finite Candidate space (Houdini)
e TACAS'18: hoice, FregHorn
Machine Learning
 PLDI'18: sample, ML to guess predicates, DT to guess combinations
Abstract Interpretation (Poly, intervals, boxes, arrays...)
o Approximate least model by an abstract domain (SeaHorn, ...)
Interpolation-based Model Checking
e Duality, QARMC, ...

e
SMT-based Unbounded Model Checking (IC3/PDR)

e Spacer, Implicit Predicate Abstraction
o

IIIIIIIIIIII

14

Safety Verification Problem

Is Bad reachable?

()

IIIIIIIIIIII

15

Safety Verification Problem

Is Bad reachable?

Yes. There is a counterexample!

IIIIIIIIIIII

16

Safety Verification Problem

Is Bad reachable?

®») @

No. There is an inductive invariant

IIIIIIIIIIII

17

Programs, Cexs, Invariants

A program P = (V, Init, 7/, Bad)
e Notation: A(X)=3u.(XATr)V Init
P is UNSAFE if and only if there exists a number N s.t.
N—-1
Init(Xo) A (N Tr(Xi, Xm)) A Bad(Xn) #& L
1=0
P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Init = Inv
Inductive
Inv(X)A Tr(X, X" = Inv(X')
Inv = = Bad Safe

IIIIIIIIIIII

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
e Incremental Construction of Inductive Clauses for Indubitable Correctness
* A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

» Property Directed Reachability

* N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property
directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to
SMT)

e A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit
Predicate Abstraction. TACAS 2014

 J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). CAV 2014

UNIVERSITY OF

WATERLOO 19

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints

» Generalized Property Directed Reachability
e K. Hoder and N. Bjgrner: Generalized Property Directed Reachability. SAT 2012

ﬁACER: Non-Linear CHC with Arithmetic \

« fixes an incompleteness issue in GPDR and extends it with under-approximate
summaries

o A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive
Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
e simulating Numeric Abstract Interpretation with PDR
. IZ\IOPAaner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI
ArrayPDR: CHC with constraints over Airthmetic + Arrays

* Required to model heap manipulating programs
e A. Komuravelli, N. Bjgrner, A. Gurfinkel, K. L. McMillan:Compositional Verification
%Ii’gocedural Programs using Horn Clauses over Integers and Arrays. FMCAD

UNIVERSITY OF

WATERLOO 20

SMT-based Model Checking

Generalizing from bounded proofs
lT, N=0

/A counterexample\
Yes of length N No, N:=N+1
l SMT
x | 4 4 s a safe)
inductive YES
No + t;(())(l)JPded invariant? —
P SMT
a N\ W,
Generalize proof |
candidate
| SMT - Inv

IIIIIIIIIIII

IC3/PDR/Spacer Overview

bounded
safety

Input: Safety problem (Init(X), Tr(X, X'), Bad

Fo < Init ; N < O repeat
| G + PDRMKSAFE([Fy, ..., Fy], Bad) “ J
if G = || then return Reachable;

| F,...,EFy < PDRPUSH([Fp, ..., Fy]) }
if 30 <1 < N - F; = F; 11 then return Unreq hable;
N+ N+1;Fy <« strengthen
until co: result

IIIIIIIIIIII

%) WATERLOO 29

IC3/PDR/Spacer In Pictures: MkSafe
O

x=3,y=0

MkSafe

| |

I N

x*+3Vy+0

IIIIIIIIIIII

23

Push

IC3/PDR in Pictures: Push

<€ @) O\@(
< O<€ O

Algorithm Invariants
F,—-Bad Init— F,

Fi — Fi+1 Fi N\ 1-!" — Fi+1

Inductiv

IIIIIIIIIIII

%) WATERLOO

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
 terminate the algorithm when a solution is found

Unfold
e increase search bound by 1

Candidate
» choose a bad state in the last frame

/Decide
e extend a cex (backward) consistent with the current frame
e choose an assignment ss.t. (s AF, A Tr A cex’) is SAT

Conflict

» construct a lemma to explain why cex cannot be extended
\. Find a clause L s.t. L=>7cex, Init=L,andLAF,ATr= L

4

Induction
 propagate a lemma as far into the future as possible
 (optionally) strengthen by dropping literals

UNIVERSITY OF

WATERLOO

25

Decide Rule: Generalizing Predecessors

Decide If (m,i+ 1) € @ and there are my and my s.t. m; — m, mg A mj is
satisfiable, and mg A m} — F; A Tr A m/, then add (mg,) to Q.

Decide rule chooses a (generalized) predecessor m, of m that is
consistent with the current frame

Simplest implementation is to extract a predecessor m, from a
satisfying assignmentof MEF, A Tr A m’

e m, cab be further generalized using ternary simulation by dropping literals
and checking that m’ remains forced

An alternative is to let my be an implicant (not necessarily prime) of
FFAIX.(TrAm’)

e finding a prime implicant is difficult because of the existential quantification
e we settle for an arbitrary implicant. The side conditions ensure it is not trivial

UNIVERSITY OF

WATERLOO

26

Conflict Rule: Inductive Generalization

Conflict For 0 <i < N: given a candidate model (m,i + 1) € @ and clause
¢, such that ¢ — —m, if Init — @, and o A F; A Tr — ', then
add ¢ to Fj, for j <14+ 1.

A clause ¢ is inductive relative to F iff
e Init — @ (Initialization) and QAFATr— @ (Inductiveness)

Implemented by first letting @ = —=m and generalizing ¢ by iteratively
dropping literals while checking the inductiveness condition

Theorem: Let Fy, F,, ..., F be a valid IC3 trace. If ¢ is inductive relative
toF;, 0-i<N,then, forallj-i, ¢ is inductive relative to F;.

e Follows from the monotonicity of the trace
—ifj<ithen F; — F,

% WATERLOO 27

From Propositional PDR to Solving CHC

Theories with Infinite Models
« infinitely many satisfying assignments
e can’t simply enumerate (in decide)
e can’t block one assignment at a time (in conflict)

Non-Linear Horn Clauses
e multiple predecessors (in decide)

The problem is undecidable in general, but we want an algorithm that
makes progress

e doesn’t get stuck in a decidable sub-problem

UNIVERSITY OF

WATERLOO

28

CHC OVER LINEAR
ARITHMETIC

IIIIIIIIIIII

29

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
 terminate the algorithm when a solution is found

Unfold
e increase search bound by 1
Candidate Th
e choose a bad state in the last frame Seln
_ dependent
/Decide

e extend a cex (backward) consistent with the current frame
e choose an assignment ss.t. (s AR, A Tr A cex’) is SAT

Conflict

» construct a lemma to explain why cex cannot be extended
\. Find a clause L s.t. L=7cex, Int=L,andLARATr=1L

4

Induction
 propagate a lemma as far into the future as possible
 (optionally) strengthen by dropping literals

UNIVERSITY OF

WATERLOO

30

(E5; AN Tr) V Init') = ¢

N
QY = T1C

Looking for ¢’

ARITHMETIC CONFLICT

IIIIIIIIIIII

/

31

Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A = —B, then

there exists a FO formula |, denoted ITP(A, B), such that

A=l | = —-B
atoms(l) € atoms(A) n atoms(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a
resolution proof of unsatisfiability of AAB

In Model Checking, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

IIIIIIIIIIII

%) WATERLOO 32

Craig Interpolant

IIIIIIIIIIII

33

Craig Interpolation for Linear Arithmetic

Proof

- 1=interpolant|

Reachable

Useful properties of existing interpolation algorithms [CGS10] [HB12]
« | €ITP (A, B) then -1 € ITP (B, A)
 if Ais syntactically convex (a monomial), then | is convex
o if B is syntactically convex, then | is co-convex (a clause)
 if A and B are syntactically convex, then | is a half-space

IIIIIIIIIIII

%) WATERLOO 34

Arithmetic Conflict

Notation: F(A) = (A(X) A Tr) V Init(X').

Conflict For 0 <i < N, given a counterexample (P,i+ 1) € @ s.t.
F(F;) A P’ is unsatisfiable, add PT = ITp(F(F;), P') to F; for j < i+ 1.

Counterexample is blocked using Craig Interpolation
e summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
e weaker than IC3/PDR
 inductive generalization for arithmetic is still an open problem

UNIVERSITY OF

WATERLOO

35

Computing Interpolants for IC3/PDR

Much simpler than general interpolation problem for A A B
* B is always a conjunction of literals
e A is dynamically split into DNF by the SMT solver
e DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a
DPLL(T) proof produced by the solver

e every theory-lemma that mixes B-pure literals with other literals is interpolated
to produce a single literal in the final solution
« interpolation is restricted to clauses of the form (AB; = V A))
Interpolating (UNSAT) Cores (ongoing work with Bernhard Gleiss)
e improve interpolation algorithms and definitions to the specific case of PDR
o classical interpolation focuses on eliminating non-shared literals
 in PDR, the focus is on finding good generalizations

UNIVERSITY OF

WATERLOO

Back to addition example...

z = X; 1= 0;
assume (y > 0);
while (i < vy)

z =2z + 1;

assert(z == x + vy);

z=X&1 =08&y >0 = Inv(x, vy, z, 1)
Inv(x, vy, z, i) & i <y & z1=z+1 & il=i+1 = 1Inv(x, y, zl, il)
Inv(x, vy, z, 1) & 1 >=y & z = x+y = false

IIIIIIII

WATERLOO 37

Lemma Generation Example

error

O &
| | | |

MkSafe

Transition Relation
x=x0&z=2z0+1 & i=i0+1 &y > i0
Farkas explanation for unsat

X0+y0<=2z0, x<=x0,z0<z,i<=10 + 1

Pob

i>=y&x+y>z

| >=y, Xty >z

X+i1<=Z

X+1>27

false

uuuuuuuuuuuu Learn lemma: [x+i<=2z

38

s C pre(c)

= s=3dX'.Tr Nc

Computing a predecessor s of a counterexample ¢

ARITHMETIC DECIDE

IIIIIIIIIIII

39

Model Based Projection

Definition: Let ¢ be a formula, U a set of variables, and M a
model of ¢. Then ¢y = MBP (U, M, ¢) is a Model Based

Projection of U, M and ¢ iff

1. 1 Is a monomial
2. Vars(y) C Vars(p) \ U

3. Me
4. v=d4U. 0o

Model Based Projection under-approximates existential quantifier
elimination relative to a given model (i.e., satisfying assignment)

IIIIIIIIIIII

%) WATERLOO 40

Model Based Projection

L Expensive to find a quantifier-free ¢(y) = 3T - o(T, ?)}

1. Find model M of ¢ (x,y)

2. Compute a partition containing M

IIIIIIIIIIII

%) WATERLOO 492

Quantifier Elimination for Linear Real Arithmetic

dr - \;jsi <z ANz <ty
= N\ \, resolve(s; < x,x < t;,x)

Y /\j i <ty

Quadratic increase in the formula size

IIIIIIIIIIII

43

Quantifier Elimination with an order side-cond

(/\j;éotogtf")AHCE'/\iSi<$/\/\jm<tj
— (/\j;éo tg < tj) AN, resolve(s; < xz,z < tg,x)

Quantifier elimination is simplified by a choice of a minimal upper bound
e For each choice of minimal upper bound, no increase in term size
e Dually, can use largest lower bound

How to chose an order on terms?!
e MBP == use the order chosen by the model

% WATERLOO 44

MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model
» Use the Model to uniquely pick a substitution term for x

Mbp,(M,z = s N\ L)= L|x < s]
Mbp,(M,x # sNL)= Mbp,(M,s <xAL)if M(x)> M(s)

Mbp,(M,x # sNL)= Mbp,(M,—s < —x ANL)if M(x) < M(s)

Mbpw(M,/\Si < CU/\/\.%’ <tj) = /\Si <t0/\/\t0 < tj where M(to) < M(tz),Vz

J J

MBP techniques have been developed for
e Linear Rational Arithmetic, Linear Integer Arithmetic
e Theories of Arrays, and Recursive Data Types

UNIVERSITY OF

WATERLOO

45

Arithmetic Decide
Notation: F(A) = (A(X) A Tr(X, X") V Init(X").

Decide If (P,i+ 1) € @ and there is a model m(X, X') s.t. m = F(F;) A P/,
add (Py,i) to @, where P, = MBP (X', m, F(F;) A P’).

Compute a predecessor using Model Based Projection

To ensure progress, Decide must be finite
e finitely many possible predecessors when all other arguments are fixed

Alternatively
e Completeness can follow from an interaction of Decide and Conflict

— but requires more rules to propagate implicants backward (as in PDR) and
forward (as in Spacer and Quip)

UNIVERSITY OF

WATERLOO 46

SOLVING NON-LINEAR CHC

IIIIIIIIIIII

47

Horn Clauses for Program Verification

Cout \()s W 5 €, Jy WLLGH 1S 8l CLLLY PULLL LW SUCUESDUL CUgES. |
with the edges are formulated as follows:
Pinit(To, w, L) + = x¢ where z occurs in w
Perit(To, ret, T) « €(zp,w, T) for each label £, and re
plz,ret, L, L) + p.,i(z, ret, L)
plz,ret, L, T) « pezit(z,ret, T)
bo(To.w'.€.) & Linlza.w.) A —e: A —win(S.—(e: =

5. incorrect :- Z=W+1, W>0, W+1<
read(A,W,U), read(A,?

Weakest Preconditions If we apply Boogie directly we obtain a translation
from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

ToHorn(program) := wip(Main(), T) A /\ ToHorn(decl)

havoc z,; assume z, = r;
ToHorn(def p(z) {S}) := wl, (assume Ppre(Z): S, p(zo, mt])
wlp(z .= E,Q):=let z=E in Q
wip((if E then S, else S;), Q) := wip(((assume E; S;)J(assume —E; S;)),.Q)
wip((5,08,),Q) := MP(S Q) Awip(S,, Q)
wip(S1; 52, Q) = wip(S:, wip(S2,Q))
wip(havoc z,Q) :=Vz . Q

wip(assert ¢, Q) :=pAQ
wlp(assume ¢, Q) :=¢ =+ Q
wlp((while E do S),Q) := inv(w) A
Vo (((inv(w) AE) = wip(S, inv(w))))
" \A((inv(w) A-E) = Q)

6. p(I1,N,B) :- 1<I, I<N, D=I—1, T1=I+1. V=U+1.

read(A,D,U), write(A
7.o(I.N.A) :- I=1. N>1.

De Angelis et al. Verifying Array
Programs by Transforming
Verification Conditions. VMCAI'14

To translate a procedure call £ : y := ¢(E); £ within a procedure p, create
he clauses:

 p(wy, wy), call(w;, w3), g(wz, ws), return(w,;, ws, wy)
p(w.;].w1).call(w<_.wg)
=0z =Ex' =§,,

' =£y w =wret'/yl[x]

)
g(w2, wa)
call(w, w')

)

return(w, w’, w

Bjarner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

%) WATERLOO

48

Horn Clauses for Concurrent / Distributed /

Parameterized Systems

{R() — dlsr(plv apk)/\R(g7p17|17"'7pk7|k) } (6)
oES,
R(g plvlla 7pk7|k) — dlSt(plv apk)/\Inlt(gall)/\"'/\Init(galk) (7)
Rgzphl 3. 7pk7|k « dist P1s---sPk) A gv'l 13 gl7|/ AR gvplylly-'-vpkvlk (8)
For assertions R1,..., Ry over V and E1,...,Ex over V, V', RE Il I; i E))(((()I)(ﬂ(l?)l’))(RC © k)) ©
gvplalv"'apkak < dist(po,P1,---,Px) A ((8,lo g5l A Onj yieieisly
CM1: init(V) — Riy(V) . |]
CM2: Ri(V) A pi(V, V') — Ry(V") false < dist(p1,...,pr) A (jﬂ/\rspj =piN(glj) eEj)) ARConj(1,...,r) (10
CM3: (Viel..N\{j} Ri(V) A pi(V, V")) E;(V, V)
CM4: Ri(V)AE(V,V')Api (V,V') — Ri(V') Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-
CMS5 RI(V) A A RN(V) A er’ror(V) — false ant. Sy is the symmetric group on {1,...,k}, i.e., the group of all permutations of k numbers; as an
optimisation, any generating subset of Sy, for instance transpositions, can be used instead of S;. In (10),
multi-threaded program P is safe we define r = max{m,k}.

Rybalchenko et al. Synthesizing Software
Verifiers from Proof Rules. PLDI'12

Hojjat et al. Horn Clauses for Communicating Timed
Systems. HCVS'14

Init(3, §,9) A Init(4,4,) A
Init(i,i,v) A Init(4, j,v) = I2(i, J, V)
I2(7’v.7”0)/\71r(21’0 ’U):>I2(’L,_7,’U) (3)

(initial) init(g, z1) A - - - Ainit(g,) = Inv(g, linit, T1, - - - , linit, Tk) I (’l _] 6) A TT‘(] 7 5,) = I, (Z _7 51) (4)
1J))) 1J)
(inductive) Inv(g, 1,21, - bi, Tis .- bk, Tk) A 8(9, i, ¢, 25) = Inv(g', ba, 20, 3, T, Uiy I>(i,j,0) A I2(i, k,0) A I2(4, k,0) A (5)
(non-interference) Inv(g,%1,Z1,-..,Lk, Tk) A — =0 : : 2 9 =0
Inv(g,é*,zth,m,...,ék,zk)/\ Tr(k,v,v) A k # A k ?é J = 12(7".7’”)
Inv(g7£17 T1,--. 7ek—17 zk—heTaxf) A 3(g7xT7gl7) — In’l}(gl7é17$1, LR ae’ka)
(safe) Inv(g, b1, 1, .., Lk, Tk) A err(g, €1, 21, . .., fm, Tm) — false Figure 3: VC(T) for two-quantifier invariants.
Figure 6.]-’Iorn clause er_lcoding for thread modularity at .leve?l k (where (£:,s,£,) and (£,s, -) refer to statement s on af Gurfinkel et al. SMT-Based Verification of
from £; to £; and, respectively, from £ to some other location in the control flow graph) Parameterized Svstems. FSE 2016
1Z Yy :
S5y MveRsiTy or Hoenicke et al. Thread Modularity at Many
@ WATERLOO | | evels. POPL'17 49

Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is
reducible to satisfiability of THREE clauses of the form

Init(X) = P(X)
P(X)AP(X°) A Tr(X,X° X") — P(X")
P(X) = —Bad(X)

where, X' = {x’ | x € X}, X° ={x° | x € X}, P a fresh predicate, and Init,

Bad, and Tr are constraints

IIIIIIIIIIII

50

Generalized GPDR

Input: A safety problem (Init(X), Tr(X, X°, X'), Bad(X)).
Output: Unreachable or Reachable Counterexample
Data: A cex queue Q., where a cex (cg, ..., ck> €Qisa fcuple, each iS a tree
¢; = (m,1), m is a cube over state variables, and i € N. A level N.
A trace Fy, Fy,...
Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and
F(A)=F(AA)
Initially: Q =0, N =0, Fy = Init,Vi >0-F; =0
Require: Init — - Bad

repeat
Unreachable If there is an ¢ < N s.t. F; C F; 41 return Unreachable.

Reachable if exists t € @ s.t. for all (c,i) € t, i = 0, return Reachable.

Unfold If Fy — —Bad, then set N < N + 1 and Q + 0.
Candidate If for some m, m — Fn A Bad, then add ((m, N)) to Q. two

Decide If there is a t € Q. with ¢ = (m,i + 1) € £, my — m, o Am§ Am is predecessors
satisfiable, and lo A mg Am) — F; A F? A Tr Am/ then add t to Q, where
t = t with ¢ replaced by two tuples (lg,), and (mg,).

Conflict If there is a t € Q with ¢ = (m, i+ 1) € t, s.t. F(F,) Am/ is theory-aware
unsatisfiable. Then, add ¢ = ITP(F(F;), m’) to Fj, for all 0 < j <i+ 1. .
’ Conflict

Leaf If there is t € @ with ¢ = (m,i) € ¢, 0 <i <N and F(F;_1) Am/ is
unsatisfiable, then add ¢ to @, where ¢ is ¢ with ¢ replaced by (m,i+ 1).

Induction For 0 <i < N and a clause (¢ V) € F;, if o & Fi 11,
F(p N F;) — ¢, then add ¢ to Fj, for all j < i+ 1.

until oo;

% WATERLOO 51

Counterexamples to non-linear CHC

A set S of CHC is unsatisfiable iff S can derive FALSE
e we call such a derivation a counterexample

For linear CHC, the counterexample is a path

For non-linear CHC, the counterexample is a tree

l FALSE

Sy €S, NS, ATY S's €Sy NSO ATr
I I
I | I |
l S, € Init l S5 € Init l Sg € Init l S, € Init
WATERLOO

52

GPDR Search Space

Bad
queue)
element

I @ ()
>

Q

- ‘

@
® @ g

v O O O O O O O

At each step, one CTI in the frontier is chosen and its two children are
expanded

53

GPDR: Splitting predecessors

Consider a clause
Plx)y APy Nx>yANz=z+y = P(2)

How to compute a predecessor for a proof obligation z> 0

Predecessor over the constraint is:

dz-x>yNz=xz+yNz>0
= x>yNxz+y>0

Need to create two separate proof obligation
e one for P(x) and one for P(y)
e gpdr solution: split by substituting values from the model (incomplete)

IIIIIIIIIIII

%) WATERLOO 54

GPDR: Deciding predecessors

Decide If there is a t € Q, with ¢ = (m,i+ 1) € t, my — m, lo Amd Am] is
satisfiable, and g A mJ Am’ — F; A F2 A Tr Am’ then add ¢ to @), where
t = t with ¢ replaced by two tuples (ly,), and (mg, 7).

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel
e e.g., BFS or DFS exploration order

Number of predecessors is unbounded
e incomplete even for finite problem (i.e., non-recursive CHC)

No caching/summarization of previous decisions
e worst-case exponential for Boolean Push-Down Systems

UNIVERSITY OF

WATERLOO

95

Input: A safety problem (Init(X), Tr(X,X°, X'), Bad(X)).
S Output: Unreachable or Reachable
pacer Data: A cex queue @, where a cex ¢ € @ is a pair (m,i), m is a cube
over state variables, and 7 € N. A level N. A set of reachable
states REACH. A trace Fy, F1, ...

Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and
Same queue as Fon A
|n IC3/PDR Initially: Q =0, N =0, Fy = Init, Vi > 0- F; = (), REACH = Init
Require: Init — —Bad
repeat

Unreachable If there is an i« < N s.t. F; C F; 1 return Unreachable.

Reachable If REACH A Bad is satisfiable, return Reachable.

Cache Reachable

Unfold If Fy — —Bad, then set N < N + 1 and Q «+ 0.
states

Candidate If for some m, m — Fy A Bad, then add (m, N) to Q.

Successor If there is (m,i+ 1) € @ and a model M M = 1), where
b = F(VREACH) A'm/. Then, add s to REACH, where
s’ € MBP({X, X°},).
Th ree va r|ants Of DecideMust If there is (m,i+ 1) € @, and a model M M |= 1, where

. Y = F(F;, VREACH) A'm/. Then, add s to @, where
Decide s € MBP({X°, X'},).

DecideMay If there is (m,i+ 1) € @ and a model M M |= v, where
= F(F;) Am/. Then, add s to @, where s° € MBP({X, X'},).

Conflict If there is an (m,i+ 1) € @, s.t. F(F;) Am’ is unsatisfiable. Then,

' add ¢ = ITP(F(F;),m’) to Fj, for all 0 < j < i+ 1.
Same Con'ﬂict as Leaf If (m,i) € @, 0 <i < N and F(F;_1) A m/ is unsatisfiable, then add
. (m,i+1) to Q.
in APDR/GPDR . | |
Induction For 0 <i < N and a clause (¢ V) € F;, if o & Fi41,

F(p N F;) — ¢, then add ¢ to Fj, for all j <i+ 1.

until oo;

% WATERLOO 56

SPACER Search Space

Bad

Level

v O O O O

Unfold the derivation tree in a fixed depth-first order
e use MBP to decide on counterexamples

Learn new facts (reachable states) on the way up
e use MBP to propagate facts bottom up

o7

Successor Rule: Computing Reachable States

Successor If there is (m,i+ 1) € @) and a model M M |= 1, where
Y = F(VREACH) A m/. Then, add s to REACH, where
s’ € MBP({X, X°},).

Computing new reachable states by under-approximating forward image
using MBP

» since MBP is finite, guarantee to exhaust all reachable states

Second use of MBP
 orthogonal to the use of MBP in Decide
« REACH can contain auxiliary variables, but might get too large

For Boolean CHC, the number of reachable states is bounded
e complexity is polynomial in the number of states
e same as reachability in Push Down Systems

UNIVERSITY OF

WATERLOO

58

Decide Rule: Must and May refinement

DecideMust If there is (m,7+ 1) € @, and a model M M = ¢, where
Y = F(F;, VREACH) A m’. Then, add s to @, where
s € MBP({X°, X'}, v).

DecideMay If there is (m,i + 1) € @ and a model M M |= v, where
Y = F(F;) Am’. Then, add s to @, where s° € MBP({X, X'},).

DecideMust
e use computed summary to skip over a call site
DecideMay

e use over-approximation of a calling context to guess an approximation of the
call-site

 the call-site either refutes the approximation (Conflict) or refines it with a
witness (Successor)

UNIVERSITY OF

WATERLOO

59

Conclusion and Future Work

Spacer: an SMT-based procedure for deciding CHC modulo theories
e extends IC3/PDR from SAT to SMT
e interpolation to over-approximate a possible model
 model-based projection to summarize derivations

The curse of interpolation

e interpolation is fantastic at quickly discovering good lemmas

e BUT it is highly unstable: small changes to input (or code) drastically change
what is discovered

e what is easy today might be difficult tomorrow ®
Many open problems
 Parallel solving (see FMCAD’17)
e Supporting extra theories: bit-vectors, uninterpreted functions, EPR
o Stability — reduce reliance on interpolation
» Exploration strategies, transformations, heuristics, ...

UNIVERSITY OF

WATERLOO 60

CHC-COMP: CHC Solving Competition

First edition on July 13, 2018 at HVCS@FLOC

Constrained Horn Clauses (CHC) is a fragment of First Order Logic
(FOL) that is sufficiently expressive to describe many verification,
inference, and synthesis problems including inductive invariant
inference, model checking of safety properties, inference of procedure
summaries, regression verification, and sequential equivalence. The
CHC competition (CHC-COMP) will compare state-of-the-art tools for
CHC solving with respect to performance and effectiveness on a set of
publicly available benchmarks. The winners among participating solvers
are recognized by measuring the number of correctly solved

benchmarks as well as the runtime.

%) WATERLOO 61

Web: https://chc-comp.github.io/

Gitter: https://gitter.im/chc-comp/Lobby

GitHub: https://github.com/chc-comp

Format: https://chc-comp.github.io/2018/format.html

https://gitter.im/chc-comp/Lobby
https://github.com/chc-comp

&

62

Farkas Lemma

LetM=1t, > b, A... Al, > D,, where t are linear terms and b, are
constants M is unsatisfiable iff 0 > 1 is derivable from M by resolution

M is unsatisfiable iff M~ 0 > 1
eeg,x+y>10,-x>5,-y>3F (xty-x-y)>(10+5+3)-0> 18

M is unsatisfiable iff there exist Farkas coefficients g, ..., g, such that
*gi >0

e gxt;+...+g,xt, =0
e gixby+ ... +g,xb, > 1

% WATERLOO 63

Interpolation for Linear Real Arithmetic

Let M = A A B be UNSAT, where
e A=t;>b;A... At >Db;, and
eB=t. >bA...AL >Db,

Let g4, ..., g, be the Farkas coefficients withessing UNSAT

Then
* gy x(t; > by) + ... + gix(t > b) is an interpolant between A and B
* g+ X (tiyy > b)) + ... + g,x (t, > b,) is an interpolant between B and A

¢ g1><t1 *.. +g|><t — (gi+1><ti+’| t...0F antn)
—(gis4x(tq > Db) + ... +g,x (t, > b,)) is an interpolant between A and B

%) WATERLOO

64

Craig Interpolation for Linear Arithmetic

~menma

Useful properties of existing interpolation algorithms [CGS10] [HB12]
e 1€ ITP (A, B) then -l € ITP (B, A)

 if Ais syntactically convex (a monomial), then | is convex
o if B is syntactically convex, then | is co-convex (a clause)
 if A and B are syntactically convex, then | is a half-space

IIIIIIIIIIII

65

