
February 2019

Automatic Program Verification with
SEAHORN

Arie GURFINKEL a,1 and Jorge A. NAVAS b

a Department of Electrical and Computer Engineering, University of Waterloo
b SRI International

Abstract. In this paper, we present SEAHORN, a software verification framework.
The key distinguishing feature of SEAHORN is its modular design that separates
the concerns of the syntax of the programming language, its operational semantics,
and the verification semantics. SEAHORN encompasses several novelties: it (a) en-
codes verification conditions using an efficient yet precise inter-procedural tech-
nique, (b) provides flexibility in the verification semantics to allow different levels
of abstraction, (c) uses Horn-clauses as an intermediate language to represent verifi-
cation conditions which simplifies interfacing with multiple verification tools based
on Horn-clauses, and (d) leverages the state-of-the-art in software model checking
and abstract interpretation for verification. SEAHORN provides users with a power-
ful verification tool and researchers with an extensible and customizable framework
for experimenting with new software verification techniques.

Keywords. software Model Checking, program verification, Constrained Horn
Clauses, Abstract Interpretation

1. Introduction

In this paper, we describe the SEAHORN verification framework. SEAHORN extends
the LLVM [78] compiler infrastructure with verification techniques based on Software
Model Checking and Abstract Interpretation. The framework provides many components
that can be combined together for a variety of analysis needs. Many useful analyzers
(e.g., memory safety, overflow checker, null pointer checker, etc.) are provided out of the
box. The paper presents an overview of the framework and detailed description of the two
verification engines: SPACER for Model Checking and CRAB for Abstract Interpretation.

In the rest of this section, we summarize the key unique features of the framework.
First, SEAHORN decouples a programming language syntax and semantics from the un-
derlying verification technique. Different programming languages include a diverse as-
sortments of features, many of which are purely syntactic. Handling them fully is a ma-
jor effort for new tool developers. We tackle this problem in SEAHORN by separating
the language syntax, its operational semantics, and the underlying verification semantics
– the semantics used by the verification engine. Specifically, we use the LLVM front-
end(s) to deal with the idiosyncrasies of the syntax. We use LLVM intermediate repre-

1Corresponding Author: Arie Gurfinkel, Department of Electrical and Computer Engineering, University of
Waterloo, Canada, E-mail: arie.gurfinkel@uwaterloo.ca.

February 2019

sentation (IR), called the bitcode, to deal with the operational semantics, and apply a
variety of transformations to simplify it further. In principle, since the bitcode has been
formalized [102], this provides us with a well-defined formal semantics. Finally, we use
Constrained Horn Clauses (CHC) to logically represent the verification conditions (VC).

Second, SEAHORN provides an efficient and precise analysis of programs with pro-
cedures using inter-procedural (i.e., modular) verification techniques. SEAHORN sum-
marizes the input-output behavior of procedures efficiently without inlining. The expres-
siveness of the summaries is not limited to linear arithmetic, but extends to richer log-
ics, including, for instance, arrays. Furthermore, SEAHORN includes a program trans-
formation that lifts deep assertions closer to the main procedure. This increases context-
sensitivity of intra-procedural analyses (used both in verification and compiler optimiza-
tion), and has a significant impact on our inter-procedural verification algorithms.

Third, SEAHORN allows developers to customize the verification semantics and of-
fers users with verification semantics of various degrees of abstraction. SEAHORN is
fully parametric in the (small-step operational) semantics used for the generation of
VCs. The level of abstraction in the built-in semantics varies from considering only
LLVM numeric registers to considering the whole heap (modeled as a collection of non-
overlapping arrays). In addition to generating VCs based on small-step semantics [90],
SEAHORN can also automatically lift small-step semantics to large-step [6, 57] (a.k.a.
Large Block Encoding, or LBE).

Fourth, SEAHORN uses Constrained Horn Clauses (CHC) as its intermediate verifi-
cation language. CHC provide a convenient and elegant way to formally represent many
encoding styles of verification conditions. The recent popularity of CHC as an interme-
diate language for verification engines makes it possible to interface SEAHORN with a
variety of new and emerging tools.

Fifth, SEAHORN builds on the state-of-the-art in Software Model Checking (SMC)
and Abstract Interpretation (AI). SMC and AI have independently led over the years to
the production of analysis tools that have a substantial impact on the development of real
world software. Interestingly, the two exhibit complementary strengths and weaknesses
(see e.g., [1, 9, 46, 56]). While SMC so far has been proved stronger on software that
is mostly control driven, AI is quite effective on data-dependent programs. SEAHORN

combines SMT-based model checking techniques with program invariants supplied by
an Abstract Interpreter.

Finally, SEAHORN is open-sourced and is implemented on top of the open-source
LLVM compiler infrastructure. LLVM is a well-maintained, well-documented, and con-
tinuously improving framework. This allows SEAHORN users to easily integrate program
analyses, transformations, and other tools that targets LLVM. Moreover, since SEAHORN

analyses LLVM IR, this allows to exploit a rapidly-growing frontier of LLVM front-ends,
encompassing a diverse set of languages. SEAHORN itself is released as open-source as
well (source code can be downloaded from http://seahorn.github.io).

The design of SEAHORN provides users, developers, and researchers with an exten-
sible and customizable environment for experimenting with and implementing new soft-
ware verification techniques. SEAHORN is implemented in C++ in the LLVM compiler
infrastructure [78]. The overall approach is illustrated in Figure 1. SEAHORN has been
developed in a modular fashion; its architecture is layered in three parts:

February 2019

Problem Encoding:
-sequential safety
-information flow
-inconsistencies
-equivalence
-multi-thread safety
Abstraction level:
- integers, FP
- pointers
- memory contents
- procedures
Proof scope:
- small vs large step

LLVM Opt:
- SSA
- DCE
- Peephole
- CFG Simplification

Devirtualization
and

Exception Lowering

Property Checkers:
-Buffer overflow
-Null dereferences
- etc

Mixed-Semantics /
Slicing Assertions

C/C++

LLVM bitcode CHCs

Model checking

Memory Abstraction
(sea-dsa)

Abstract
Interpretation

BMC

ML-based Learning
Synthesis

Clang

McSema

x86

Solidity

CLP Boogie MCMT

Figure 1. Overview of SEAHORN architecture.

Front-End: Takes an LLVM based program (e.g., C) input program and generates
LLVM IR bitcode. Specifically, it performs the pre-processing and optimization of
the bitcode for verification purposes. More details are reported in Section 2.

Middle-End: Takes as input the optimized LLVM bitcode and emits verification condi-
tion as Constrained Horn Clauses (CHC). The middle-end is in charge of selecting
the encoding of the VCs and the degree of abstraction. VCs can be exported to dif-
ferent formats such as Constraint Logic Programming (CLP), Boogie or MCMT
(Model Checking Modulo Theories). More details are reported in Section 3.

Back-End: Takes CHC as input and outputs the result of the analysis. In principle,
any verification engine that digests CHC clauses could be used to discharge
the VCs. Currently, SEAHORN employs an SMT-based model checking engine
SPACER [74]. Complementary, SEAHORN uses the abstract interpretation-based
analyzer CRAB for providing numerical invariants. More details are reported in
Section 4.

Related Work. Automated analysis of software is an active area of research. There is a
large number of tools with different capabilities and trade-offs [5,7,8,18,20–22,32,82].
Our approach on separating the program semantics from the verification engine has been
previously proposed in numerous tools. From those, the tool SMACK [91] is the clos-
est to SEAHORN. Like SEAHORN, SMACK targets programs at the LLVM-IR level.
However, SMACK targets Boogie intermediate verification language [35] and Boogie-
based verifiers to construct and discharge the proof obligations. SEAHORN differs from
SMACK in several ways: (i) SEAHORN uses CHC as its intermediate verification lan-
guage, which allows to target different solvers and verification techniques (ii) it tightly
integrates and combines both state-of-the-art software model checking techniques and
abstract interpretation and (iii) it provides an automatic inter-procedural analysis to rea-
son modularly about programs with procedures.

February 2019

Inter-procedural and modular analysis is critical for scaling verification tools and
has been addressed by many researchers (e.g., [2, 67, 74, 77, 80, 96]). Our approach of
using mixed-semantics [63] as a source-to-source transformation has been also explored
in [77]. While in [77], the mixed-semantics is done at the verification semantics (Boogie
in this case), in SEAHORN it is done in the front-end level allowing mixed-semantics to
interact with compiler optimizations.

Constrained Horn clauses have been proposed [12] as an intermediate (or exchange)
format for representing verification conditions. However, they have long been used in
the context of static analysis of imperative and object-oriented languages (e.g., [81, 90])
and more recently adopted by an increasing number of solvers (e.g., [13, 42, 67, 74, 80])
as well as other verifiers such as UFO [3], HSF [53], VeriMAP [33], Eldarica [93], and
TRACER [68].

A previous version of this paper has appeared in [58].

2. Pre-processing for Verification

In our experience, performance of even the most advanced verification algorithms is sig-
nificantly impacted by the front-end transformations. In SEAHORN, the front-end plays
a very significant role in the overall architecture.

In principle, SEAHORN can take any input program that can be translated into
LLVM bitcode. However, SEAHORN has been highly customized to analyze C pro-
grams as translated by clang, and thus, analysis of C code is the most prominent SEA-
HORN’s strength. More recently, SEAHORN has increasingly supported analysis of C++
programs, and we plan to continue doing that.

Our goal is to make SEAHORN not to be limited to C or C++ programs, but applica-
ble (with various degrees of success) to a broader set of languages based on LLVM (e.g.,
Objective C, Rust, and Swift). For instance, we have recently added support for two very
different languages: x86 binary programs using the McSema [98] tool, and Solidity smart
contracts using a just-in-time compiler for Ethereum EVM code [37]. Although the ver-
ification results have been relatively modest compared with verification of C programs,
they demonstrate the broad applicability of SEAHORN.

Once we have obtained LLVM bitcode, the front-end is split into two main sub-
components. The first one is a pre-processor that performs optimizations and transfor-
mations. This pre-processing is largely optional. Its main goal is to transform the LLVM
bitcode to make the verification task easier. The second part is focused on a reduced set
of transformations mostly required to produce correct results even if the pre-processor
is disabled. It also performs SSA transformation and internalizes functions, but in addi-
tion, lowers switch instructions into if-then-elses, ensures only one exit block per
function, inlines global initializers into the main procedure, and identifies assert-like
functions.

The front-end can optionally inline functions. This is often useful to simplify verifi-
cation tasks, and is also necessary for precise Bounded Model Checking (and, currently,
is required for counterexample generation).

One typical problem in proving safety of large programs is that assertions can be
nested very deep inside the call graph. As a result, counterexamples are longer and it is
harder to decide for the verification engine what is relevant for the property of interest.

February 2019

main ()
p1 (); p1 ();
assert (c1);

p1 ()
p2 ();
assert (c2);

p2 ()
assert (c3);

mainnew ()
if (*) goto p1entry;
else p1new ();
if (*) goto p1entry;
else p1new ();
if (¬c1) goto error;
assume (false);

p1entry :
if (*) goto p2entry;
else p2new ();
if (¬c2) goto error;

p2entry :
if (¬c3) goto error;
assume (false);

error : assert (false);

p1new ()
p2new ();
assume (c2);

p2new ()
assume (c3);

Figure 2. A program before (left) and after (right) mixed-semantics transformation.

To mitigate this problem, the front-end provides a transformation based on the concept of
mixed-semantics2 [63,77]. It relies on the simple observation that any call to a procedure
P either fails inside the call and therefore P does not return, or returns successfully from
the call. Based on this, any call to P can be instrumented as follows:

• if P may fail, then make a copy of P’s body (in main) and jump to the copy.
• if P may succeed, then make the call to P as usual. Since P is known not to fail

each assertion in P can be safely replaced with an assume.

Upon completion, only the main function has assertions and each procedure is inlined
at most once. The explanation for the latter is that a function call is inlined only if it
fails and hence, its call stack can be ignored. Mixed-semantics transformation preserves
reachability and non-termination properties [63]. Since this transformation is not very
common in other verifiers, we illustrate it on an example.

Example 1 (Mixed-semantics transformation) On the left in Figure 2 we show a small
program consisting of a main procedure calling two other procedures p1 and p2 with
three assertions c1, c2, and c3. On the right, we show the new program after the
mixed-semantics transformation. First, when main calls p1 it is transformed into a non-
deterministic choice between (a) jumping into the entry block of p1 or (b) calling p1.
The case (a) represents the situation when p1 fails and it is done by inlining the body of
p1 (labeled by p1entry) into main and adding a goto statement to p1entry. The case (b)
considers the case when p1 succeeds and hence it simply duplicates the function p1 but
replacing all the assertions with assumptions since no failure is possible. Note that while
p1 is called twice, it is inlined only once. Furthermore, each inlined function ends up
with an “assume (false)” indicating that execution dies. Hence, any complete execution
of a transformed program corresponds to a bad execution of the original one. Finally, an
interesting side-effect of mixed-semantics is that it can provide some context-sensitivity
to context-insensitive intra-procedural analyses.

3. Verification Conditions

SEAHORN provides out-of-the-box verification semantics with different degrees of ab-
straction. Furthermore, to accommodate a variety of applications, SEAHORN is designed

2The semantics is called mixed because it combines small- and big-step operational semantics.

February 2019

int x = 1;
int y = 0;
while (∗) {

x = x+ y;
y = y+1;

}
assert(x≥ y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y
y = y+1

l3 :
b2 = x≥ y

l4 : lerr :

T

F

T F

〈1〉 p0.
〈2〉 p1(x,y)←

p0,x = 1,y = 0.
〈3〉 p2(x,y)← p1(x,y) .
〈4〉 p3(x,y)← p1(x,y) .
〈5〉 p1(x′,y′)←

p2(x,y),
x′ = x+ y,
y′ = y+1.

〈6〉 p4← (x≥ y),p3(x,y).
〈7〉 perr← (x < y),p3(x,y).
〈8〉 p4← p4.

(a) (b) (c)

Figure 3. (a) Program, (b) Control-Flow Graph, and (c) Verification Conditions.

to be easily extended with a custom semantics as well. In this section, we illustrate the
various dimensions of semantic flexibility present in SEAHORN.

Encoding Verification Conditions. SEAHORN is parametric in the semantics used for
VC encoding. It provides two different semantics encodings: (a) a small-step encoding
(exemplified in Figure 3) and (b) a large-step encoding. Large-step encoding is similar
to the Large Block Encoding (LBE) of [6]. A user can choose the encoding depending
on the particular application. In practice, large-step is often more efficient but small-step
might be more useful if a fine-grained proof or counterexample is needed. For example,
SEAHORN used the large-step encoding in SV-COMP [59].

Regardless of the encoding, SEAHORN uses Constrained Horn Clauses (CHC) to
encode the VCs. Given the sets F of function symbols, P of predicate symbols, and V
of variables, a Constrained Horn Clause (CHC) is a formula in First Order Logic of the
following form:

∀V · (φ ∧ p1[X1]∧·· ·∧ pk[Xk]→ h[X]), for k ≥ 0

where φ is a constraint over F and V with respect to some background theory T ;
Xi,X ⊆ V are (possibly empty) vectors of variables; pi[Xi] is an application p(t1, . . . , tn)
of an n-ary predicate symbol p ∈P for first-order terms ti constructed from F and Xi;
and h[X] is either defined analogously to pi or is P-free (i.e., no P symbols occur in
h). Here, h is called the head of the clause and φ ∧ p1[X1]∧ . . .∧ pk[Xk] is called the
body. A clause is called a query if its head is P-free, and otherwise, it is called a rule.
A rule with body true is called a fact. We say a clause is linear if its body contains at
most one predicate symbol, otherwise, it is called non-linear. In this paper, we follow
the Constraint Logic Programming (CLP) convention of representing Horn clauses as
h[X]← φ , p1[X1], . . . , pk[Xk], by omitting explicit universal quantification, replacing im-
plication by an arrow and conjunction by a comma, and writing clauses as rules with the
head on the left.

A set of CHCs is satisfiable if there exists a First Order Logic interpretation I of
the predicate symbols P such that each constraint φ is true under I . Without loss of

February 2019

generality, deciding whether a program A satisfies a safety property αsafe is reducible
to establishing the (un)satifiability of CHCs encoding the VCs of A . We illustrate the
process on the following example. Additional examples of the encoding are available
in [10].

Example 2 (Small-step encoding of VCs using CHCs) Figure 3(a) shows a program
that increments two variables x and y in a non-deterministic loop. After the loop is exe-
cuted we would like to prove that x cannot be less than y. Ignoring overflow , it is easy
to see that the program is safe since x and y are initially non-negative numbers and x is
greater than y. Since the loop increases x by a greater amount than y, at its exit x cannot
be smaller than y. Figure 3(b) depicts, its corresponding Control Flow Graph (CFG) and
Figure 3(c) shows its VCs encoded as a set of CHCs.

The set of CHCs in Figure 3(c) essentially represents the small-step operational
semantics of the CFG. Each basic block is encoded as a CHC. A basic block label li in the
CFG is translated into a predicate pi(X1, . . . ,Xn) such that pi ∈P and {X1, . . . ,Xn} ⊆ V
is the set of live variables at the entry of block li. A CHC can model both the control flow
and data of each block in a succinct way. For instance, the fact 〈1〉 represents that the
entry block l0 is reachable. Clause 〈2〉 describes that if l0 is reachable then l1 should be
reachable too. Moreover, its body contains the constraints x = 1∧y = 0 representing the
initial state of the program. Clause 〈5〉 models the loop body by stating that the control
flow moves to l2 from l1 after transforming the state of the program variables through
the constraints x′ = x+ y and y′ = y+1, where the primed versions represent the values
of the variables after the execution of the arithmetic operations. Based on this encoding,
the program in Figure 3(a) is safe if and only if the set of recursive clauses in Figure 3(c)
augmented with the query perr is unsatisfiable. Note that since we are only concerned
about proving safety (and not termination) any safe final state can be represented by an
infinite loop (e.g., clause 〈8〉)).

SEAHORN middle-end offers a very simple interface for developers to implement an en-
coding of the verification semantics that fits their needs. At the core of the SEAHORN

middle-end lies the concept of a symbolic store. A symbolic store simply maps program
variables to symbolic values. The other fundamental concept is how different parts of a
program are symbolically executed. The small-step verification semantics is provided by
implementing a symbolic execution interface that symbolically executes LLVM instruc-
tions relative to the symbolic store. This interface is automatically lifted to large-step
semantics as necessary.

Modeling statements with different degrees of abstraction. The SEAHORN middle-end
includes verification semantics with different levels of abstraction. Those are, from the
coarsest to the finest:

Registers only: only models LLVM numeric registers. In this case, the constraints part
of CHC is over the theory of Linear Integer Arithmetic (LIA).

Registers + Pointers (without memory content): models
numeric and pointer registers. This is sufficient to capture pointer arithmetic and
determine whether a pointer is NULL. Memory addresses are also encoded as inte-
gers. Hence, the constraints remain over LIA.

February 2019

Registers + Pointers + Memory: models numeric and pointer registers and the heap.
The heap is modeled by a collection of non-overlapping arrays. The constraints
are over the combined theories of arrays and LIA.

Memory encoding. For concrete semantics, SEAHORN assumes object-based memory
model. Each allocation site (heap, stack, and globals) returns a memory object represent-
ing a sequence of bytes. The objects are disjoint. Each pointer points to some object and
pointer arithmetic is restricted to stay within an object.

For verification condition, an abstract memory model is used that restricts the num-
ber of memory objects to be finite. As usual, an abstract memory object represents all
concrete objects allocated at a given syntactic allocation site. The memory is further
partitioned into regions, where a region is one or more memory objects, such that each
memory instruction uses or modifies exactly one memory region. The abstract memory
model is context-sensitive – each procedure has its own memory regions.

Memory regions are computed statically using a specialized context-sensitive alias
analysis call SEADSA [60]. As the name suggests, SEADSA is a variant of Data Struc-
ture Analysis (DSA) [79]. DSA itself is an extension of Steensgaard’s (a.k.a. unification-
based) pointer analysis [97].

In SEADSA, the memory is partitioned into a heap, a stack, and global objects. The
analysis builds for each function a DS graph where each node represents an abstract
memory region. Distinct nodes express disjoint sets of memory objects. Edges in the
graph represent points-to relationships between nodes. Each node is typed and deter-
mines the number of fields and outgoing edges in a node. A node can have one outgoing
edge per field, but each field can have at most one outgoing edge. This restriction is key
to scalability and it is preserved by unifying nodes whenever it is violated.

Given a DS graph, each node is mapped to an array in the VC. Then, each memory
read (load) and write (store) in LLVM bitcode is associated with a unique node (i.e.,
the array). For memory writes, SEAHORN creates a new array variable representing the
new state of the array after the write operation.

Inter-procedural proofs. For most real programs verifying a function separately from
each possible caller (i.e., context-sensitivity) is necessary for scalability. The version of
SEAHORN for SV-COMP 2015 [59] achieved full context-sensitivity by inlining all pro-
gram functions. Although inlining is often an effective solution for small and medium-
size programs it is well known that suffers from an exponential blow up in the size of
the original program. Even more importantly, inlining cannot produce inter-procedural
proofs nor counterexamples which are often highly desired.

We tackled this problem in [58], by providing an encoding that allows inter-
procedural proofs. We illustrate this procedure via an example in Figure 4. The upper
box shows a program with three procedures: main, foo, and bar. The program swaps two
numbers x and y. The procedure foo adds two numbers and bar subtracts them. At the
exit of main we want to prove that the program indeed swaps the two inputs. To show
all relevant aspects of the inter-procedural encoding we add a trivial assertion in bar that
checks that whenever x and y are non-negative the input x is greater or equal than the
return value.

The lower box of Figure 4 illustrates the corresponding verification conditions en-
coded as CHCs. The new encoding follows a small-step style as the intra-procedural en-
coding shown in Figure 3 but with two major distinctions. First, notice that the CHCs

February 2019

main()
x = nondet();
y = nondet();
xold = x;
yold = y;
x = foo(x,y);
y = bar(x,y);
x = bar(x,y);
assert (x = yold ∧ y = xold);

foo(x,y)
res = x+ y;
return res;

bar(x,y)
res = x− y;
assert (¬ (x≥ 0∧ y≥ 0∧ x < res));
return res;

mentry.
massrt(xold ,yold ,x,y,eout)←

mentry,
xold = x,yold = y,
f(x,y,x1),
b(x1,y,y1, false,e),
b(x1,y1,x2,e,eout).

merr(eout)←
massrt(xold ,yold ,x,y,e),¬ e,
eout = ¬ (x = yold ,y = xold).

merr(eout)←
massrt(xold ,yold ,x,y,eout),eout .

fentry(x,y).
fexit(x,y,res)←

fentry(x,y),
res = x+ y.

f(x,y,res)← fexit(x,y,res).
bentry(x,y).
bexit(x,y,res,eout)←

bentry(x,y),
res = x− y,
eout = (x≥ 0∧ y≥ 0∧ x < res).

b(x,y,z,true,true).
b(x,y,z, false,eout)← bexit(x,y,z,eout)

Figure 4. A program with procedures (upper) and its verification condition (lower).

are not linear anymore (e.g., the rule denoted by massrt). Each function call has been re-
placed with a summary rule (f and b) representing the effect of calling to the functions
f oo and bar, respectively. The second difference is how assertions are encoded. In the
intra-procedural case, a program is unsafe if the query perr is satisfiable, where perr is
the head of a CHC associated with a special basic block to which all can-fail blocks are
redirected. However, with the presence of procedures assertions can be located deeply in
the call graph of the program, and therefore, we need to modify the CHCs to propagate
error to the main procedure.

In our example, since a call to bar can fail we add two arguments ein and eout to the
predicate b where ein indicates if there is an error before the function is called and eout
indicates whether the execution of bar produces an error. By doing this, we are able to
propagate the error in clause massrt across the two calls to bar. We indicate that no error
is possible at main before any function is called by unifying false with ein in the first
occurrence of b. Within a can-fail procedure we skip the body and set eout to true as soon
as an assertion can be violated. Furthermore, if a function is called and ein is already true
we can skip its body (e.g., first clause of b). Functions that cannot fail (e.g., f oo) are
unchanged. The above program is safe if and only if the query merr(true) is unsatisfiable.

Finally, it is worth mentioning that this propagation of error is not required if the
mixed-semantics transformation described in Section 2 is applied.

4. Verification Engines

In principle, SEAHORN can be used with any Horn clause or LLVM-based verifica-
tion tool. In the following, we describe two such tools developed by ourselves. Notably,

February 2019

the tools discussed below are based on the contrasting techniques of SMT-based model
checking and Abstract Interpretation, showcasing the wide applicability of SEAHORN.

4.1. SMT-Based Model Checking with SPACER

SPACER is an efficient SMT-based Model Checker for deciding satisfiability of Con-
strained Horn Clauses (CHC) [73–75]. Of course, since CHC satisfiability is undecid-
able, we use the term decision procedure informally. SPACER is a sound procedure, but
it is not complete (i.e., not formally a decision procedure, and does not terminate on all
inputs). In contrast to other SMT-based Model Checking algorithms (for example, those
based on based on interpolation [2,53,66,80]), the reasoning in SPACER is compositional
(or modular). That is, the transition relation is not unrolled. SPACER reasons about a
body of individual procedure (or predicate) at a time, and communicates information be-
tween procedures (or predicates) using summaries. This is crucial for scaling SMT-based
Model Checking to programs. Unlike hardware circuits, an unrolling of a program (i.e.,
unrolling loops and inlining procedures) increases the size of an SMT formula represent-
ing a verification condition (VC) exponentially. The approach taken by SPACER avoids
the exponential explosion by limiting the information that can be exchanged between
procedures to well-defined summaries. The summaries also provide a form of caching to
prevent exploring the same procedure in the same calling context multiple times.

SPACER is integrated into SMT-solver Z3 [34] and is currently the default CHC
engine in Z3. It supports CHC with constraints in the (combined) theories of Linear
Real Arithmetic [9], Linear Integer Arithmetic [75], Arrays [73], with basic support for
theories of Bit Vectors and Abstract Data Types. Both quantifier free and universally
quantified solutions for the theory of arrays are supported [61].

In this section, we give a high-level overview of SPACER algorithm. Many imple-
mentation details and optimizations are omitted since they often change between differ-
ent versions of the implementation. SPACER builds on three main concepts: Craig Inter-
polation, Model Based Projection, and an IC3/PDR-style Model Checking algorithm. In
the rest of this section, we describe each component in turn, starting with interpolation.

4.1.1. Craig Interpolation

Let A and B be two formulas in First Order Logic such that A∧B is unsatisfiable. A Craig
interpolant (or simply an interpolant) is a formula I such that

A =⇒ I I =⇒ ¬B

and the only uninterpreted constants and functions in I are those that are shared between
A and B. For example, consider the following two formulas A and B in Linear Integer
Arithmetic:

A = (a < x∧ x < b) B = (a = 1∧b = 1)

The conjunction A∧B is unsatisfiable: if a = b = 1 then there cannot be an integer x
strictly between a and b. The shared uninterpreted constants are a and b. There is an
interpolant, but it is not unique. Several possible interpolants are:

February 2019

I1 = (a < b) I2 = ¬(a = 1∧b = 1) I3 = (a 6= b)

All of the above formulas Ii (for 1≤ i≤ 3) is an interpolant. We write ITP(A,B) for some
interpolant between A and B if it exists.

It is well known that interpolants can be computed directly from a resolution refu-
tation of satisfiability of A and B. In case of SMT, interpolation is a combination of in-
terpolation over propositional resolution [62] and special procedures for theory lemmas
and their derivation [19,54]. We refer the reader to the references above for more details.

In the case of SPACER, the interpolation problem is more restricted and simplified.
We are only interested in computing an interpolant ITP(A,B) in the case where B is a
conjunction of literals and every uninterpreted symbol of B is shared with A. In this case,
the simplest choice for an ITP(A,B) is ¬B. Since A∧B is unsatisfiable, it follows that
A =⇒ ¬B, and obviously ¬B implies itself. Note that in the example above, I2 is simply
¬B. On one hand, using ¬B as an interpolant defeats the purpose of interpolation. On
the other, it provides a default case, that is often avoided, but is possible when a different
interpolant is hard to compute. This is especially convenient for a system like Z3 that
does not consistently produce easy-to-interpolate proofs.

Under the restrictions above, another alternative for an interpolant a negation of a
Minimal Unsatisfiable Subset (MUS) of B. The reasoning is the same as for using ¬B.
Such an interpolant does not do much generalization, but might filter irrelevant facts.

In practice, interpolant computation used by SPACER is a mix of proof-based and
MUS-based procedure. A proof, and, in particular, theory lemmas of the proof, are exam-
ined to extract the interaction of B literals with the refutation. If the interaction is fairly
clear, an interpolating unsat core is extracted by using interpolation-style reasoning. If
the interaction is not clear, an MUS for B is computed. This style of reasoning enables
SPACER to construct an interpolants such as I1, I2, and I3 in the example above. However,
the exact interpolant constructed depends on the proof produced by Z3.

4.1.2. Model-Based Projection

Let ϕ be a satisfiable formula with uninterpreted constants (or variables) Vars(ϕ). Let
U be a subset of variables in Vars(ϕ), and M |= ϕ be a model of ϕ . A formula ψ is a
Model Based Projection (MBP) of U relative to M iff (a) M |= ψ , (b) ψ =⇒ ∃U ·ϕ ,
(c) Vars(ψ) ⊆ Vars(ϕ)\U , and (d) ψ is a monomial (i.e., a conjunction of literals). In-
tuitively, MBP under-approximates projection (or quantifier elimination). Alternatively,
MBP ψ can be seen as a generalization of the model M: ψ contains the model, yet, it is
a formula (i.e., has a finite representation) and is contained in the projection ∃U ·ϕ .

We write MBP(∃U ·ϕ,M) for an MBP procedure that given an existentially quan-
tified formula and a model, returns a corresponding model-based projection. An MBP
procedure is finite if it is finite in the model argument. That is, the function λx ·MBP(∃U ·
ϕ,x) has a finite range. It is not difficult to see that a theory that admits quantifier elim-
ination has a finite MBP. Consider a formula ∃U ·ϕ . Assume that there is an equivalent
quantifier free formula ψ:

ψ ⇐⇒ ∃U ·ϕ

Let ψ1∨·· ·∨ψn be a DNF decomposition of ψ . Then, define MBP(∃U ·ϕ,M) = ψi such
that i = min{1≤ j ≤ n |M |= ψ j}.

February 2019

Conversely, a finite MBP provides a procedure for quantifier elimination. Let M1
be a model for ϕ , and ψ1 = MBP(∃U · ϕ,M1). Let M2 be a model for ϕ ∧¬ψ1, and
ψ2 = MBP(∃U ·ϕ,M2), etc. Since by assumption MBP is finite, the number of such ψi
is finite as well. Hence the formula ψ1 ∨ ·· · ∨ψn is well defined, quantifier free, and is
equivalent to ∃U ·ϕ .

A finite MBP for Linear Real Arithmetic has been introduced in [74]. Unlike quanti-
fier elimination for LRA, it can be computed in linear time (assuming the model is given
and evaluating literals in the model is constant time). A finite MBP for Linear Integer
Arithmetic and Abstract Data Types has been presented in [11]. MBP for the theory of
Arrays has been developed in [73]. Obviously, MBP for arrays is not finite.

We illustrate an MBP procedure for the combined theories of arrays and arithmetic
using an example below. Let ϕ denote the formula

(b = a[i1← v1])∨ (a[i2← v2][i3]> 5∧a[i4]> 0)

where a and b are array variables whose index and value sorts are both Int, the sort of
integers, and all other variables have sort Int. Here, for an array a, we use a[i← v] to
denote a store of v into a at index i and use a[i] to denote the value of a at index i. Suppose
that we want to existentially quantify the array variable a. Let M |= ϕ . We will consider
two possibilities for M:

1. Let M |= b = a[i1 ← v1], i.e., M satisfies the array equality containing a. In this
case, our MBP procedure substitutes the term b[i1 ← x] for a in ϕ , where x is a
fresh variable of sort Int. That is, the result of MBP is ∃x ·ϕ[b[i1← x]/a].

2. Let M |= b 6= a[i1← v1]. We use the second disjunct of ϕ for MBP. Furthermore,
let M |= i2 6= i3. We then reduce the term a[i2 ← v2][i3] to a[i3] to obtain a[i3] >
5∧ a[i4] > 0, using the relevant disjunct of the select-after-store axiom of ARR.
We then introduce fresh variables x3 and x4 to denote the two select terms on a,
obtaining x3 > 5∧ x4 > 0. Finally, we add i3 = i4 ∧ x3 = x4 if M |= i3 = i4 and
add i3 6= i4 otherwise, choosing the relevant case of Ackermann reduction, and
existentially quantify x3 and x4.

Model-Based Projection is crucial for SPACER. It is used both in computing prede-
cessors and summaries. However, since its inception, it has found many other applica-
tions as well. For example, in [11] it is used in a procedure for deciding satisfiability of
quantified formulas. In [40] to discover a simulation relation between different version
of a program. In [72] it is extended with Skolemization and is used to synthesize im-
plementation from assume-guarantee contracts. The Skolemization procedure is further
improved in [39].

4.1.3. SPACER Algorithm

Without loss of generality, we assume that set of CHCs encoding safety of procedural
programs is transformed into an equisatisfiable set of just three clauses with a single
predicate symbol of the following form:

Inv(x)← Init(x) ¬Bad(x)← Inv(x)

Inv(x′)← Inv(x), Inv(xo),Tr(x,xo,x′)
(1)

February 2019

The notation x† stands for a vector of variables obtained from x by adding † to every
variable, where † ∈ {′,o }. For example, (x1,x2,x3)

′ is (x′1,x
′
2,x
′
3). Intuitively, Inv is the

program invariant, x denotes the pre-state of a program transition, x′ denotes the post-
state, and xo denotes the summary of a procedure call (if one is made). Any verification
condition for sequential programs can be transformed into the form of (1) by adding extra
state variables that denote active program location and active procedure being executed.

In the special case of verification conditions of procedure-free sequential programs,
xo variables do not appear in Tr and the conjunct Inv(xo) can be dropped. The resulting
three clauses simplify to the following:

Inv(x)← Init(x) ¬Bad(x)← Inv(x)

Inv(x′)← Inv(x),Tr(x,x′)
(2)

In the case of (2), Inv denotes a regular inductive invariant of a transition system.
To simplify the notation, we introduce a special function FTr, called a forward trans-

former, that replaces Inv in the rule by a pair of formulas φA(x) and φB(x). Formally, it is
defined as follows:

FTr(ϕA,ϕB) ≡ Init(x′)∨
(
ϕA(x)∧ϕB(xo)∧Tr(x,xo,x′)

)
Abusing notation, we write FTr(ϕA) for FTr(ϕA,ϕA), and F (ϕA,ϕB) when Tr is clear
from the context or is irrelevant. Using function F , the CHC in (1) are equivalently
expressed as two First Order Logic formulas:

∀x,x′,xo ·F (Inv, Inv) =⇒ Inv(x′) ∀x · Inv(x) =⇒ ¬Bad(x)

SPACER is a parameterized algorithm (or a set of rules) that is instantiated for a
given logical theory T given three ingredients: (a) a model-producing satisfiability solver
for T (i.e., an SMT solver that supports theory T), (b) an MBP procedure MBP for T ,
and (c) an interpolation procedure ITP for T . Here, we present a version that is limited
to quantifier free solutions. Extension of SPACER for quantified solutions is described
in [61].

The main data-structures operated by SPACER are a sequence of may summaries
[F0,F1, . . .] called a trace, a must summary called R, and a queue of proof obligations Q.
Each element Fi of a trace is called a frame, and each element ` ∈ Fi is called a lemma
(or a may summary). Intuitively, Fi over-approximates all the states reachable by Tr in up
to i steps (derivations). The set R, also called the reachable states, under-approximates
all the reachable states. Finally, elements of Q, called proof-obligations, represent states
the algorithm is trying to proof reachable or unreachable.

The rules defining SPACER are shown in Alg. 1. The rules are applied non-
deterministically although, only some order of application guarantees progress. Each rule
is presented as a guarded command “[grd] cmd”, where cmd can be executed only if
grd holds. If multiple guards are true, any one of the corresponding commands can be
executed.

As described above, SPACER maintains a set of reachability queries Q, a sequence of
may summaries {Fi}i∈N, and a must summary R. Intuitively, a query 〈ϕ, i〉 corresponds
to checking if ϕ is reachable for recursion depth i, Fi over-approximates the reachable

February 2019

Input: Formulas Init(x),Tr(x,xo,x′),Bad(x)

Output: An inductive invariant or UNSAFE

if (Init∧Bad) satisfiable then return UNSAFE

// initialize data structures

Q := /0 // set of pairs 〈ϕ, i〉, i ∈ N
N := 0 // max level, or recursion depth

F0 = Init,Fi =>, ∀i > 0 // may summary sequence

R = Init // must summary

forever non-deterministically do
(Candidate) [(FN ∧Bad) satisfiable]

Q := Q∪〈ϕ,N〉, for some ϕ =⇒ FN ∧Bad

(MustPredecessor) [〈ϕ, i+1〉 ∈ Q, M |= F (Fi,R)∧ϕ ′]
Q := Q∪〈MBP(∃xo,x′ ·F (Fi,R)∧ϕ ′,M), i〉

(MayPredecessor) [(ϕ, i+1) ∈ Q, M |= F (Fi)∧ϕ ′]
Q := Q∪〈MBP(∃x,x′ ·F (Fi)∧ϕ ′,M)[x/xo], i〉

(Leaf) [(ϕ, i) ∈ Q, F (Fi−1) =⇒ ¬ϕ ′, i < N]
Q := Q∪〈ϕ, i+1〉

(Successor) [〈ϕ, i+1〉 ∈ Q, M |= F (R)∧ϕ ′]
R := R∨MBP(∃x,xo ·F (R)∧ϕ ′,M)[x/x′]

(NewLemma) [〈ϕ, i+1〉 ∈ Q, F (Fi) =⇒ ¬ϕ ′]
Fj := Fj ∧ ITP(F (Fi),ϕ

′)[x/x′], ∀ j ≤ i+1

(Induction) [(ϕ ∨ψ) ∈ Fi, F (ϕ ∧Fi) =⇒ ϕ ′]
Fj := Fj ∧ϕ , ∀ j ≤ i+1

(Unfold) [FN =⇒ ¬Bad] N := N +1

(Safe) [Fi+1 =⇒ Fi] return Fi

(Unsafe) [(R∧Bad) satisfiable] return UNSAFE

Algorithm 1: Rule-based description of SPACER.

states for recursion depth i, and R under-approximates the reachable states. N denotes the
current bound on recursion depth. The sequence of may summaries and N correspond
to the trace of approximations and the maximum level in IC3/PDR, respectively. For
convenience, let F−1 be ⊥. MBP(ϕ,M), for a formula ϕ = ∃v ·ϕqf and model M |= ϕqf ,
denotes the result of some MBP function associated with ϕ for the model M.

Alg. 1 initializes N to 0 and, F0 and R to Init. Candidate initiates a backward search
for a counterexample beginning with a set of states in Bad. The potential counterex-
ample is expanded using either MustPredecessor or MayPredecessor. MustPredeces-
sor jumps over the call Inv(xo), in the last CHC of (1), utilizing the must summary R.
MayPredecessor, on the other hand, creates a query for the call using the may summary
of its calling context. Leaf moves an unreachable query to a higher recursion depth. Suc-

February 2019

cessor updates R when a query is known to be reachable. NewLemma updates may sum-
maries when a query is known to be unreachable. Induction strengthens may summaries
using induction relative to Fi. Unfold increments the bound on the recursion depth. Safe
returns Fi as invariant when the sequence of may summaries converges. Unsafe applies
when the must summary intersects with Bad.

SPACER is sound and if MBP utilizes finite MBP functions, SPACER also terminates
for a fixed N. Soundness follows from the fact that the following invariants are main-
tained by the main loop:

Init =⇒ F0 ∀0 < i≤ N ·F (Fi−1) =⇒ Fi

R =⇒ F N(Init) ∀0 < i≤ N ·Fi−1 =⇒ Fi

∀0 < i≤ N ·F i(Init) =⇒ Fi

Thus, {Fi}i∈N and R, respectively, over- and under-approximate reachable states.
The rules in Alg. 1 leave out many important implementation details. For efficiency,

queries are restricted to cubes (i.e., conjunction of literals). For Linear Arithmetic, the
implementation relies on the fact that MBP is linear in time and space. Q is maintained
as a priority queue, processing queries of smaller recursion depths first. Additional con-
straints are imposed on the rules and their ordering to ensure termination for a fixed N.
For the rule Unsafe, the implementation also produces a counterexample in addition to
returning UNSAFE.

4.2. Abstract Interpretation with CRAB

In this section, we first introduce CRAB [31] (CoRnucopia of ABstractions), a language-
agnostic static analyzer based on the theory of Abstract Interpretation [25]. CRAB does
not analyze directly LLVM bitcode but instead it analyzes a goto-based Control-Flow
Graph language. This allows decoupling the analyzer from the input language so that it
can be reused for analyzing other languages beyond LLVM bitcode (e.g., in [48]). Then,
we describe CLAM (CRAB for Llvm Abstraction Manager), the static analyzer of LLVM
bitcode based on CRAB, which is integrated in SEAHORN as one of its back-end solvers.

Note that we have decided to implement CRAB on top of a imperative language and
not directly on Constrained Horn Clauses. This is motivated by the necessity to orient
the analysis in Abstract Interpretation. That is, the interpreter needs to know the order
in which to execute the instructions. While it is possible to map logical definitions into
instructions, in practice, we chose to avoid this complication by going directly from
LLVM to the intermediate representation used by CRAB.

4.2.1. CRAB Target Language

CRAB programs are written in the goto-based language described in Figure 5. A program
P consists of a non-empty sequence of basic blocks, each one denoted by a unique iden-
tifier bb, containing zero or more instructions I in three-address form. Operands can only
be one of these three basic types: integers, booleans, and pointers, or arrays of a basic
type. All instructions are strongly typed. The language does not support floating point
operations.

February 2019

P ::= B+

B ::= bb : I∗ goto bb1, . . .bbn | bb : I∗ [return v1, . . . ,vn]
I ::= Ia | Ib | Ip | IA | v′1, . . . ,v

′
m := f un(v1, . . . ,vn)

v := havoc () | assume (vb) | assume (b) | assert (vb) | assert (b)
Ia ::= vi := a

vi := sign_extension (vi) | vi := zero_extension (vi) | vi := truncate (vi)
vi := booltoint (vb)

Ib ::= vb := b | vb := inttobool (vi)
Ip ::= vp := p | vp := alloc (sz) | vs := load (vp) | store (vs, vp) | vp := &fun
IA ::= vA := array_init (vi,v′i,vs,sz,endian) | vs := array_select (vA,vi,sz,endian)

array_write (vA,vi,vs,sz,endian) | v′A := vA
a ::= n | vi | a1 opa an
b ::= true | false | ¬ b | b1 opb b2 | a1 opr a2 | p1 opp p2
p ::= null | vp +a

Figure 5. CRAB goto-based language to represent Control Flow Graphs.

Integer, boolean, pointer, and array variables are denoted with symbols vi, vb, vp,
vA, respectively. Variables of any type are denoted by v. Scalar (non-array) variables are
denoted by vs. Integer variables are sized (i.e., of different bit-width). The set of integer,
boolean, pointer, and array variables are disjoint.

Arithmetic and boolean instructions. Arithmetic and boolean expressions are described
by a and b. CRAB supports standard operations opa and opb for these expressions. For
arithmetic expressions, CRAB supports addition, subtraction, multiplication, signed/un-
signed division, signed/unsigned remainder, and standard bitwise operations: and, or,
xor, left shift, logical and arithmetic right shift. For boolean expressions, CRAB supports
the operations and, or, and xor.

Control flow and assertions. Control flow is modeled by goto and assume instructions.
The instruction v := havoc() assigns non-deterministically any value allowed by v’s type
to v. Properties can only be defined by adding assert instructions.

Pointer instructions. The instruction vp := alloc(sz) allocates a fresh memory object
of size sz and returns a pointer to it. The instructions vs := load(vp) and store(vs,vp)
read and write memory. Pointer arithmetic can be expressed by vp := v′p +a. CRAB also
supports function pointers vp := &fun. For pointer comparisons opp, CRAB supports
pointer equality and disequality.

Array instructions. CRAB language supports unidimensional arrays. The importance of
arrays is inherited from the importance of arrays in imperative languages and even more
important, because the program memory can be modeled as an array. Arrays are inter-
preted as sequences of consecutive bytes which are disjoint from each other. We describe
informally the semantics of the array operations. We define first BS(vA,vi,sz,endian) as
the byte sequence:{

vA[vi] · vA[vi +1] · · ·vA[vi + sz−1] if endian = big

vA[vi + sz−1] · vA[vi + sz−2] · · ·vA[vi] if endian = little

Similarly, we define BS(vs,endian) as the byte sequence:

February 2019{
vs(0) · · ·vs(n−1) if endian = big

vs(n−1) · · ·vs(0) if endian = little

The instruction vA := array_init (vi,v′i,vs,sz,endian) creates a fresh array vA such
that for all vi ≤ j < v′i∧(j mod sz = 0), each byte sequence BS(vA, j,sz,endian) is equal
to BS(vs,endian). Array reads vs := array_select (vA,vi,sz,endian) assigns the byte se-
quence BS(vA,vi,sz,endian) to BS(vs,endian). array_write (vA,vi,vs,sz,endian) writes
the byte sequence BS(vs,endian) into BS(vA,vi,sz,endian). Finally, v′A := vA assigns all
contents of vA to v′A.

Endianess can be optionally provided. However, if it is not available then array ab-
stract domains are limited when reasoning about byte aliasing because they cannot make
any assumption about endianess.

Function calls. CRAB assumes call-by-value parameter passing. Functions can return
multiple values. This is specially useful for purifying functions. Function purification
converts functions into new equivalent functions that have no side effects.

Conversion between types. Conversion between operand types is allowed but it must
be done through explicit casts. CRAB supports sign and zero extension, truncation, and
conversions between boolean and integers. Conversion between integers and pointers is
not currently supported.

CRAB language design choices. The design of the CRAB language has been care-
fully chosen based on our experience in building abstract interpreters and front-ends.
For instance, the language distinguishes between boolean and integer variables although
boolean can be also modeled as integers if desired. The distinction between boolean and
integers can make easier the translation to the CRAB language if the front-end already
makes that separation. Moreover, it can simplify the code of an abstract interpreter be-
cause boolean and arithmetic instructions can be analyzed by different abstract domains:
boolean instructions with a finite domain and numerical instructions with a numerical
abstract domain. The distinction between pointer and arrays instructions is another good
example. Typically, abstract domains reasoning about pointers (e.g., [85, 100]) are very
different from domains reasoning about arrays (e.g., [29, 49, 65]). The former focuses
on aliasing while the latter focuses more on the problem of weak versus strong updates.
Again, having specialized instructions for pointers and arrays can simplify the code of
the abstract interpreter. Moreover, there are situations where either the input language is
simple enough that aliasing is not an issue (e.g., [48]) or the front-end can resolve alias-
ing at translation time (see Section 4.2.7). For those cases, array domains are sufficient
to reason precisely about memory.

Compared to other intermediate representations such as LLVM IR, control flow is
expressed in a more declarative way by having goto and assume instead of conditional
branches. Unlike LLVM IR, CRAB language is not intended to be executed, and thus,
it allows expressing non-determinism through havoc instructions which is very useful
for program abstractions (e.g., model a cast from an integer to a pointer). Another key
difference with LLVM IR is that the CRAB language does not require the input program
to be written in Static Single Assignment (SSA), and, therefore, it does not have φ -nodes.
This special instruction is used to represent all the possible values of a variable can take at
a merge point in the Control Flow Graph (CFG). The analysis of φ -nodes using abstract

February 2019

Fixpoint Iterator

Abstract Transformer:
forward semantics
backward semantics
inter-procedural semantics

Abstract Domains Invariants

Checkers

Figure 6. CRAB architecture.

interpretation is specially challenging with relational numerical domains [43]. For that
reason, Crab language does not allow φ -nodes.

4.2.2. Tool Architecture

The design of Crab is very similar to other abstract interpreters such as ASTRÉE [14],
CLOUSOT [38] and IKOS [16]. Crab is parametric both in the fixpoint iterators and ab-
stract domains. The main architecture of the tool is depicted in Figure 6. We omit for
now the details about how to adapt this architecture to inter-procedural analysis. This is
described in in Section 4.2.6. Crab has two operation modes: the inference mode and the
checking mode.

Inference mode. CRAB takes as input the CFG as described in previous section. Then,
it solves iteratively the semantic equations extracted directly from the CFG. Solving
these equations is performed by the Fixpoint Iterator. The fixpoint iterator is in charge
of finding good iteration strategies and in charge of applying widening and narrowing
in effective ways, while optimizing time and memory consumption. Solving semantic
equations requires to both interact with Abstract Domains (e.g., join, meet, widening,
and narrowing) and with Abstract Transformer to apply the corresponding semantics to
each CFG instruction (e.g., forward semantics, backward semantics, or inter-procedural
semantics). Figure 7 shows an example of semantic equations extracted from a sample
CFG.

Finally, after Fixpoint Iterator has found a stable solution (a.k.a. invariants), these
are stored in an invariant database. When inference mode is enabled, no warning is
displayed when some possible error is detected. This is because either the fixpoint has
not been reached yet and it might be unsound to report the program is safe, or a warning
can be ruled out after refinement using narrowing or dual narrowing operators [23, 28].

Checking mode. Upon completion of the inference phase, CRAB uses the invariants
stored in the database to check if certain properties can be violated, issuing warning
messages. This is done by Checkers. Currently, CRAB can perform some built-in checks
(division by zero, null-dereference, etc) and user-defined assertions (assert instructions).

February 2019

bb1:
i := 0
x := 1
y := 0
n := havoc();
assume (n > 0)
goto bb2

bb2: goto bb3; bb4

bb3:
assume (i < n)
x := x+ y
y := y+1
i := i+1
goto bb2

bb4:
assume (i >= n)
assert (x >= y)

X0 = >

X1 = forget(n,post({i = 0;x := 1;y := 0},

X0))u(n > 0)

X2 = X2
`
(X1tX3)

X3 = post({x := x+ y;y := y+1; i := i+1},

(X2u(i < n)))

X4 = X2u(i≥ n)u(x < y)

Figure 7. Crab CFG and its forward semantic equations. Each Xi (1 ≤ i ≤ 4) represents the invariants that
hold at the exit of block bbi. The initial abstract state is X0 => (top). The assertion holds if X4 =⊥ (bottom).

For efficiency, invariants are only stored per CFG basic block. Thus, instructions might
be re-analyzed but only up to the end of each basic block. This saves us from storing
invariants per instruction at a very small cost.

4.2.3. Fixpoint Iterator

CRAB computes first a weak topological ordering (WTO) of the CFG following Bour-
doncle’s algorithm [15]. The WTO produces a good order in which basic blocks should
be analyzed, and the set of basic blocks in the CFG where the fixpoint algorithm needs
to apply widening to ensure termination.

The current fixpoint iterator used in Crab is based on [4], and it interleaves widen-
ing and narrowing operations for each inner loop until reaching convergence before an-
alyzing outer loops. Thresholds are used to improve the precision of the widening (as
in [14, 38]). The thresholds are collected statically from the constants appearing in as-
sume and assert instructions.

The Fixpoint iterator is very generic since it focuses only on solving semantic equa-
tions. The particular semantics is given by the Abstract Transformer. The advantage is
that it can be replaced by any method as long as one focuses on iterative solving tech-
niques [50, 51, 64, 76, 83, 94].

4.2.4. Abstract Domains

Abstract domains are in charge of interpreting in the abstract the operators t,
`
, . . ., and

transfer functions appearing during the solving of semantic equations. A very simplified
view of the abstract domain interface in CRAB is shown in Figure 8.

The forward (post) and backward (pre) transfer functions are used by Abstract
Transformer, and the Fixpoint iterator calls the other operations while computing the
fixpoint of the semantic functions. The inter-procedural semantics is implemented by the
Abstract Transformer calling directly abstract domain operations (project,u, forget, . . .).

February 2019

Constructors
makeTop : D
makeBottom : D
Forward and backward transfer functions
post : Instr+×D 7→ D
pre : Instr+×D 7→ D
forget : Var+×D 7→ D
project : Var+×D 7→ D
Fixpoint iterator operations
isBottom : D 7→ B (emptiness test)
v : D×D 7→ B (inclusion test)
t : D×D 7→ D (join)
u : D×D 7→ D (meet)`

: D×D 7→ D (widening)a
: D×D 7→ D (narrowing)

Figure 8. Simplified Abstract Domain API.

Intervals and Congruences. Intervals [24] expresses constraints of the form x = [lb,ub]
meaning that lb≤ x and x≤ ub where x is an integer variable and lb,ub∈Z∪{−∞,+∞}.

Congruences [52] expresses constraints of the form aZ+ b where a and b are in-
tegers. For instance, all even (odd) numbers are represented as 2Z+ 0 (2Z+ 1). Both
domains are combined via a reduced product as described in [52].

These non-relational domains are represented by environments from variables to
abstract values. CRAB uses functional maps [89] to implement efficiently these environ-
ments as in [14, 16, 38].

Zones (a.k.a Difference-Bounds Matrices) [84] expresses constraints of the form
x− y ≤ k, where x,y are integer variables and k ∈ Z. CRAB uses an efficient sparse im-
plementation of difference-bounds matrices that achieves sparsity by dynamically sep-
arating interval constraints from constraints that can only be expressed through differ-
ences [45]. In our experience, Zones is one of our most important domains because it can
compute non-trivial relationships between variables while still being efficient in practice
(see e.g., [48]).

Flat Boolean Domain is a finite lattice ⊥ ≤ T ≤ >, ⊥ ≤ F ≤ > that discovers which
boolean variables are definitely true T or false F. This domain is always combined with
a numerical domain so that information can flow between integer to boolean variables.

DisInt [38] is an extension of Intervals to a finite disjunction. Elements in this domain
are normalized sequences of non-overlapping, sorted intervals [ao,b0], . . . , [an,bn] such
that only a0 can be −∞ and bn can be +∞. This domain retains the scalability of the
Interval domain while being able to reason about simple disequalities. For instance, the
disequality 6= 0 can be expressed by the sequence of intervals [−∞,−1] and [1,+∞].

Boxes [55] expresses finite boolean combinations of Intervals. Boxes provides an effi-
cient implementation of the exact disjunction of Intervals based on Linear Decision Dia-
grams [17]. This domain is very useful for path-sensitive analyses. This domain reasons

February 2019

simultaneously about both boolean and integer variables producing much more precise
results than the Flat Boolean Domain combined with, for instance, Intervals.

Numerical domain with uninterpreted functions. The Terms domain [44] can improve
the precision of a numerical domain by inferring equivalence amongst sub-expressions
based on the theory of uninterpreted functions. Terms is strictly more precise than [87],
and it can enhance numerical domains in different ways by: (a) providing some relational
information (equalities) to domains such as Intervals and Congruences, (b) improving
precision in presence of non-linear operations (e.g., x ≤ 10∧ y =

√
x+ y2 ∧ z =

√
x+

y2→ x ≤ 10∧ y = z), and (c) improving precision in presence of array operations (e.g.,
b = write(a, i,x,sz)∧ y = select(a, i,sz)→ x = y).

Intervals over machine arithmetic. Most CRAB numerical domains reason about un-
bounded integers. This forces us to check for integer overflow in order to produce sound
verification results. The exception is the Wrapped Interval Domain [88] which infers
interval constraints obeying the laws of machine arithmetic, and thus, it can produce
correct intervals in the presence of integer wraparounds.

Interface to Apron and Elina domains. CRAB provides interfaces to external abstract
domains libraries such as Apron [69] and Elina [95]. Thus, domains such as Oc-
tagons [86] (±x± y ≤ k, where x,y are integer variables and k ∈ Z) and Polyhedra [30]
(linear inequalities of the form ∑i ci · xi ≤ ki where xi are integer variables, ci,ki ∈ Z) are
also available.

Nullity domain is a finite lattice ⊥≤ N≤>, ⊥≤ NN≤> that discovers which pointer
variables are definitely null N or non-null NN.

Array content domains lift abstract domains for scalar variables to reason about arrays.
CRAB provides several array content domains that strike different balances between pre-
cision and cost. Array Smashing [14] treats the whole array as a single symbolic vari-
able. The transfer function for array_write can only weaken the previous abstract state
(weak update). Array Smashing can represent universally quantified invariants if they
hold uniformly for all array elements.

On the other extreme, Array Expansion [14] treats individually each array element
as a single scalar variable. This domain can be more precise because the transfer func-
tion for array_write can overwrite the old value (strong update) and can reason about
byte aliasing. However, it might not scale if arrays are too large, and it cannot express
universally quantified properties.

Similar to ASTRÉE, CRAB also implements the combination of both domains via a
reduced product. Arrays are initially populated using strong updates by the Array Ex-
pansion domain. If the size of the array is greater than certain threshold or arrays are
accessed using non-constant indexes then they are smashed. A smashed array can be
expanded again as in [14]. In CRAB, once an array is smashed it is not expanded again.

CRAB also provides an array content domain [41] based on Array Partition-
ing [49,65]. The domain is useful when an invariant does not hold for all array elements
but instead on some contiguous segment. The domain selects a small set of partition
variables, maintaining disjunctive information about properties which hold over the seg-
ments delimited by the partition variables. This domain can express properties such as
array sortedness but it can suffer from scalability issues. More efficient array domains
such as [29] can be also implemented in CRAB.

February 2019

Combination of domains. Most of the abstract domains described above are typically
not enough to prove non-trivial properties. However, their combination can produce very
powerful analyses [26]. The main method for combining numerical abstract domains in
CRAB is the reduced product [25]. Given two domains D1 and D2, the reduced prod-
uct is equivalent to running simultaneously both domains while communicating infor-
mation between the two domains. This communication is called reduction. CRAB pro-
vides a generic reduced product domain that redirects each abstract operation to each
sub-domain, performing a simple reduction: ⊥ if any of the sub-domains is ⊥. More
complex reductions are carefully implemented on a case-by-case basis (e.g., Intervals
and Congruences, Terms and Zones, Array Smashing and Expansion, etc).

4.2.5. Backward Analysis

When an invariant is too weak to prove an assertion, we can propagate backwards the pre-
decessors of the error states and use the abstract states at those points to prove that there
is no an execution starting from the entry of the program that can reach an error state.
This approach is good at handling some disjunctive invariants which many of CRAB ab-
stract domains cannot represent precisely. A typical scenario is when an assertion after a
join point might not be provable due to loss of precision at the join.

The CRAB backward analysis is based on computing necessary preconditions. A
necessary precondition of a set of states F is the set of initial states that guarantee that
some of its executions will stay in F . Similar to [92], CRAB computes in the abstract nec-
essary preconditions starting from the set of error states. These error states are obtained
by representing in the abstract the negation of an assertion condition. If the set of initial
states is empty then the set of error states must be unreachable, and thus, the assertion
definitely holds.

As described in [27], the precision of the backward analysis can be improved by
considering only preconditions that might be reachable from the entry of the program.
For any basic block b, CRAB intersects in the abstract (u operator) the preconditions
from the error states at b with the invariants that hold at b. Next, a new forward analysis
is run starting from the new preconditions computed by the backward analysis in an
attempt to produce more precise invariants. This interleaving process between a forward
and backward analysis gives an infinite descending chain of approximated preconditions
and invariants whose termination is ensured by narrowing.

4.2.6. Inter-Procedural Analysis

The architecture shown in Figure 6 is limited to intra-procedural analysis. However,
inter-procedural analysis is also available in CRAB. Based on our experience, different
programs are more amenable to different inter-procedural analyses. To support this view,
CRAB is also parametric on the inter-procedural analysis. For a new inter-procedural
analysis only these two main steps need to be implemented in CRAB:

• Define the inter-procedural semantics for call and return.
• Find an effective ordering to traverse the call graph while computing globally sta-

ble solutions. Depending on the program, these are the common cases that might
need to be considered:

(1) Incomplete call graph and recursive functions
(2) Incomplete call graph and non-recursive functions

February 2019

(3) Complete call graph and recursive functions
(4) Complete call graph and non-recursive functions

Cases (1) and (2) require running simultaneously a pointer analysis together with
the abstract domain chosen to reason about the desired property in order to resolve
indirect calls. Case (3) can be solved by computing a global fixpoint for each
strongly connected component in the call graph. Weak topological ordering [15]
can be used to identify widening points. Finally, (4) is the simplest case because
the call graph is a directed acyclic graph (DAG).

CRAB implements an inter-procedural analysis based on CGS [101]. The inter-
procedural analysis makes the main assumption that the call graph is complete and thus,
all the function calls have been already resolved by the client (Section 4.2.7 described
how we can ensure that for LLVM programs). A cycle in the call graph is treated by
analyzing all the functions in the cycle in an intra-procedural manner. Therefore, the call
graph analyzed by CRAB can be considered in practical terms as a DAG. The analysis
performs a context-insensitive, summary-based inter-procedural analysis consisting of
two phases:

• Bottom-up (callees before callers): traverse the call graph in reverse topological
order while computing summaries for each function. Summaries are abstract states
relating input with output function parameters. Summaries are computed by first
inferring invariants for the function using the intra-procedural analysis and then by
producing the actual summary during the transfer function of return. While com-
puting invariants, the analysis might need to reuse other summaries from callees.
This is implemented in the transfer function of call.

• Top-down (callers before callees): traverse the call graph in topological order start-
ing from main. At each call, the inter-procedural semantics for call reuses the
summary of the callee after formal/actual parameters renaming, as done already
during the bottom-up traversal. Moreover, it stores the preconditions associated to
that call in the callee. Note that at the time a function is analyzed, all its callers
have been already analyzed, and thus, all the preconditions are available. CRAB is
context-insensitive because it joins all the preconditions.

The inter-procedural analysis is quite fast since each function is analyzed exactly
once. However, the analysis can be imprecise since it is context-insensitive. A context-
sensitive analysis can be implemented by keeping separate the preconditions of each
function call and then running different analyses starting from each precondition.

4.2.7. Clam

CLAM (CRAB for Llvm Abstraction Manager) is an abstract interpreter for LLVM based
on CRAB. The main tasks performed by CLAM are:

1. Translating each LLVM function to a CRAB goto-based Control-Flow Graph.
2. Running CRAB analyses.
3. Assertion checking and/or communicating CRAB invariants to other SeaHorn

back-end solvers.

February 2019

CLAM allows users to choose among several parameters such as the abstract domain,
fixpoint parameters (widening delay, number of thresholds, etc.), and whether backward
or inter-procedural analysis should be enabled or not. SEAHORN users can choose CLAM

as the only back-end engine to discharge proof obligations. However, even if the abstract
domain can express precisely the program semantics, due to the join and widening op-
erations, it might lose some precision during the verification. As a consequence, CLAM

alone might not be sufficient as a back-end engine. Instead, a more suitable job for CLAM

is to supply program invariants to the other engines (e.g. SPACER). For this, the integra-
tion between CLAM and SPACER has been carefully tuned. CLAM invariants can be used
by SPACER in two different ways. First, invariants can be added as permanent lemmas
(i.e., initial may summaries) to initialize each frame Fi. In this case, the exploration done
by SPACER is limited to states that satisfy the invariants discovered by CLAM. Second,
CLAM invariants can be added only to restrict the transition relation during the Induc-
tion rule. This mode does not interfere with exploration, but can improve generalization
done by the rule.

The translation of integer instructions is straightforward. Most of LLVM instructions
with integer operands have their CRAB counterparts with the exceptions of φ and branch
instructions which are replaced with CRAB assignments and assume, respectively. Sim-
ilarly, CLAM can translate directly LLVM pointer instructions to CRAB pointer instruc-
tions (alloc, load, and store). Note that this syntactic-guided translation approach is
pretty simple, but it relies entirely on CRAB to reason about both LLVM registers and
memory.

Alternatively, CLAM can perform much of the memory reasoning at translation time
by leveraging SEADSA, which is already used during the generation of Constrained Horn
Clauses. CLAM can use SEADSA to disambiguate memory, i.e., resolve pointer aliasing,
which allows us to:

1. Resolve all indirect calls, producing a complete call graph.
2. Perform function purification, eliminating all function side-effects.
3. Translate LLVM load and store instructions to CRAB array instructions ar-

ray_select and array_write, respectively.

Steps 1 and 2 greatly simplify CRAB inter-procedural analysis. Step 3 allows leverag-
ing powerful CRAB array domains to infer rich invariants about integer memory values,
without complex abstract domains that would need also to reason about pointer aliasing.
In our experience, this relatively simple approach has been quite effective at reasoning
about C programs.

5. Conclusions

We have presented SEAHORN, a software verification framework with a modular de-
sign that separates the concerns of the syntax of the language, its operational semantics,
and the verification semantics. SEAHORN builds upon two verification engines: SPACER

and CRAB. Both SPACER and CRAB represent the state-of-the-art in SMT-based Model
Checking and Abstract Interpretation, respectively.

February 2019

We believe that SEAHORN is a versatile and highly customizable framework that
can help significantly in the time-consuming process of building new tools by allowing
researchers experimenting only on their particular techniques of interest.

The flexibility and practicality of SEAHORN have been demonstrated by ourselves
and other researchers over several projects. In our seminal work [58], we use SEAHORN

to prove proper API usage of Linux device drivers and memory safety of autopilot code.
In [99], SEAHORN is extended to go beyond safety properties for proving termination
of programs. In [70], SEAHORN is used to find code inconsistencies, code fragments
without normal terminating executions. In [71], SEAHORN is used to prove safety of
smart contracts. In this case, our Clang-based front-end was replaced with an in-house
developed front-end that translates Solidity smart contracts directly to LLVM bitcode. In
our most recent work, we have used SEAHORN to prove equivalence of x86 executable
programs [36]. We use McSema [98] to translate x86 code to LLVM bitcode and then
use the SEAHORN Bounded Model Checking engine to prove equivalence of a program
and an equivalent variant that is more resilient to cyber-security attacks.

While SEAHORN is already a full featured verification engine, significant work re-
mains to improve both usability and scalability. From the usability perspective, the main
questions are around user communication with the tool. Currently, each new property re-
quires non-trivial encoding of a problem domain to a low-level language. Adding support
for a new property is non-trivial research-driven effort. On the other side, the results from
SEAHORN are difficult to interpret by an average developer. Recently, we have proposed
that in the case of counterexamples, the tool must produce an executable that a developer
can examine [47]. Note that this is quite different than producing failing inputs, since
the executable contains not just the inputs to the original program, but also an executable
model of the whole verification environment. While this is a good first step, more work
remains to make this practical and robust in the presence of complex programming fea-
tures including procedures and dynamic memory allocation. From the scalability per-
spective, dealing with dynamic memory allocation and multi-threaded code are currently
the weakest links. We hope to address both by a more modular (but possibly incomplete)
reasoning techniques further combining Model Checking and Abstract Interpretation.

6. Acknowledgments

SEAHORN would have not been possible without numerous great collaborators. First of
all, we would like to thank Temesghen Kashai for being one of the original developers of
SEAHORN and main contributor for several years. We would like also to thank (alpha-
betical order) Nikolaj Bjørner, Graeme Gange, Jeff Gennari, Anvesh Komuravelli, Jakub
Kuderski, Peter Schachte, Edward Schwartz, Harald Søndergaard, and Peter Stuckey.

References

[1] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Craig Interpretation. In SAS, pages 300–316, 2012.
[2] A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An interpolation-based algorithm for inter-

procedural verification. In VMCAI, pages 39–55, 2012.
[3] A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. Ufo: A framework for abstraction- and

interpolation-based software verification. In CAV, pages 672–678, 2012.

February 2019

[4] G. Amato and F. Scozzari. Localizing widening and narrowing. In SAS, pages 25–42, 2013.
[5] S. Arlt, C. Rubio-González, P. Rümmer, M. Schäf, and N. Shankar. The gradual verifier. In NFM,

pages 313–327, 2014.
[6] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software model checking via

large-block encoding. In FMCAD, pages 25–32, 2009.
[7] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model checker blast. STTT,

9(5-6):505–525, 2007.
[8] D. Beyer and M. E. Keremoglu. Cpachecker: A tool for configurable software verification. In CAV,

pages 184–190, 2011.
[9] N. Bjørner and A. Gurfinkel. Property directed polyhedral abstraction. In VMCAI, pages 263–281,

2015.
[10] N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko. Horn clause solvers for program

verification. In Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion
of His 75th Birthday, pages 24–51, 2015.

[11] N. Bjørner and M. Janota. Playing with quantified satisfaction. In LPAR, pages 15–27, 2015.
[12] N. Bjørner, K. L. McMillan, and A. Rybalchenko. Program verification as satisfiability modulo theo-

ries. In SMT, pages 3–11, 2012.
[13] N. Bjørner, K. L. McMillan, and A. Rybalchenko. On solving universally quantified horn clauses. In

SAS, pages 105–125, 2013.
[14] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A

static analyzer for large safety-critical software. In PLDI, pages 196–207, 2003.
[15] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In In Proceedings of the In-

ternational Conference on Formal Methods in Programming and their Applications, pages 128–141.
Springer-Verlag, 1993.

[16] G. Brat, J. A. Navas, N. Shi, and A. Venet. IKOS: A framework for static analysis based on abstract
interpretation. In SEFM, pages 271–277, 2014.

[17] S. Chaki, A. Gurfinkel, and O. Strichman. Decision diagrams for linear arithmetic. In FMCAD, pages
53–60, 2009.

[18] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamaric. A reachability predicate for analyzing low-
level software. In TACAS, pages 19–33, 2007.

[19] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient generation of craig interpolants in satisfiability
modulo theories. ACM Trans. Comput. Log., 12(1):7:1–7:54, 2010.

[20] E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs. In TACAS, pages
168–176, 2004.

[21] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and
S. Tobies. Vcc: A practical system for verifying concurrent c. In TPHOL, pages 23–42, 2009.

[22] L. Cordeiro, B. Fischer, and J. Marques-Silva. Smt-based bounded model checking for embedded
ANSI-C software. IEEE Trans. Software Eng., 38(4):957–974, 2012.

[23] P. Cousot. Abstracting induction by extrapolation and interpolation. In VMCAI, pages 19–42, 2015.
[24] P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Programs. In Proceedings of

the second international symposium on Programming, Paris, France, pages 106–130, 1976.
[25] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In POPL, pages 238–252, 1977.
[26] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL, pages 269–

282, 1979.
[27] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. J. Log. Program.,

13(2&3):103–179, 1992.
[28] P. Cousot and R. Cousot. Comparing the galois connection and widening/narrowing approaches to

abstract interpretation. In PLILP, pages 269–295, 1992.
[29] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully automatic and

scalable array content analysis. In POPL, pages 105–118. ACM, 2011.
[30] P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among variables of a program.

In POPL, pages 84–97. ACM, 1978.
[31] Crab: A language-agnostic library for Abstract Interpretation. Available from https://github.com/

seahorn/crab.
[32] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-c: A software

February 2019

analysis perspective. In SEFM, pages 233–247, 2012.
[33] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. VeriMAP: A tool for verifying programs

through transformations. In TACAS, pages 568–574, 2014.
[34] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages 337–340, 2008.
[35] R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for checking object-oriented

programs. Technical Report MSR-TR-2005-70, Microsoft Research, 2005.
[36] B. Dutertre, I. Mason, and J. A. Navas. Proving equivalence of x86 programs with McSema and Sea-

Horn, 2018. Blog available at http://seahorn.github.io/seahorn/mcsema/equivalence/
x86/binary/2018/12/12/seahorn-and-mcsema.1.html.

[37] Ethereum. The Ethereum EVM JIT. Available at https://github.com/ethereum/evmjit.
[38] M. Fähndrich and F. Logozzo. Static contract checking with abstract interpretation. In FoVeOOS,

pages 10–30, 2010.
[39] G. Fedyukovich, A. Gurfinkel, and A. Gupta. Lazy but effective functional synthesis. In VMCAI, pages

92–113, 2019.
[40] G. Fedyukovich, A. Gurfinkel, and N. Sharygina. Property directed equivalence via abstract simulation.

In CAV, pages 433–453, 2016.
[41] G. Gange, J. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. A partial-order approach to array

content analysis. Technical report, https://arxiv.org/pdf/1408.1754.pdf, 2014.
[42] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Failure tabled constraint logic

programming by interpolation. TPLP, 13(4-5):593–607, 2013.
[43] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Horn clauses as an intermediate

representation for program analysis and transformation. TPLP, 15(4-5):526–542, 2015.
[44] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. An abstract domain of uninter-

preted functions. In B. Jobstmann and K. R. M. Leino, editors, VMCAI, pages 85–103, 2016.
[45] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Exploiting sparsity in difference-

bound matrices. In SAS, pages 189–211, 2016.
[46] P. Garoche, T. Kahsai, and C. Tinelli. Incremental invariant generation using logic-based automatic

abstract transformers. In NASA NFM, pages 139–154, 2013.
[47] J. Gennari, A. Gurfinkel, T. Kahsai, J. A. Navas, and E. J. Schwartz. Executable counterexamples in

software model checking. In VSTTE, pages 17–37, 2018.
[48] E. Gershuni, N. Amit, A. Gurfinkel, N. Narodytska, J. A. Navas, N. Rinetzky, L. Ryzhyk, and M. Sagiv.

Simple and precise static analysis of untrusted linux kernel extensions. In PLDI, 2019.
[49] D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array operations. In POPL,

pages 338–350. ACM, 2005.
[50] D. Gopan and T. W. Reps. Lookahead widening. In CAV, pages 452–466, 2006.
[51] D. Gopan and T. W. Reps. Guided static analysis. In SAS, pages 349–365, 2007.
[52] P. Granger. Static analysis of arithmetical congruences. International Journal of Computer Mathemat-

ics, 30:165–190, 1989.
[53] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing software verifiers from

proof rules. In PLDI, pages 405–416, 2012.
[54] A. Griggio, T. T. H. Le, and R. Sebastiani. Efficient interpolant generation in satisfiability modulo

linear integer arithmetic. Logical Methods in Computer Science, 8(3), 2010.
[55] A. Gurfinkel and S. Chaki. Boxes: A symbolic abstract domain of boxes. In SAS, pages 287–303,

2010.
[56] A. Gurfinkel and S. Chaki. Combining predicate and numeric abstraction for software model checking.

STTT, 12(6):409–427, 2010.
[57] A. Gurfinkel, S. Chaki, and S. Sapra. Efficient Predicate Abstraction of Program Summaries. In NFM,

pages 131–145, 2011.
[58] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn Verification Framework. In

CAV, pages 343–361, 2015.
[59] A. Gurfinkel, T. Kahsai, and J. A. Navas. SeaHorn: A framework for verifying C programs - (compe-

tition contribution). In TACAS, 2015.
[60] A. Gurfinkel and J. A. Navas. A context-sensitive memory model for verification of C/C++ programs.

In SAS, pages 148–168, 2017.
[61] A. Gurfinkel, S. Shoham, and Y. Vizel. Quantifiers on demand. In ATVA, pages 248–266, 2018.
[62] A. Gurfinkel and Y. Vizel. DRUPing for interpolates. In FMCAD, pages 99–106, 2014.

February 2019

[63] A. Gurfinkel, O. Wei, and M. Chechik. Model checking recursive programs with exact predicate ab-
straction. In ATVA, pages 95–110, 2008.

[64] N. Halbwachs and J. Henry. When the decreasing sequence fails. In SAS, pages 198–213, 2012.
[65] N. Halbwachs and M. Péron. Discovering properties about arrays in simple programs. In PLDI, pages

339–348. ACM, 2008.
[66] M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke, M. Lindenmann, A. Nutz, C. Schilling, and

A. Podelski. Ultimate Automizer with SMTInterpol - (Competition Contribution). In TACAS, pages
641–643, 2013.

[67] K. Hoder and N. Bjørner. Generalized property directed reachability. In SAT, pages 157–171, 2012.
[68] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. TRACER: A symbolic execution tool for verifica-

tion. In CAV, pages 758–766, 2012.
[69] B. Jeannet and A. Miné. A library of numerical abstract domains for static analysis. In A. Bouajjani

and O. Maler, editors, CAV, volume 5643 of LNCS, pages 661–667. Springer, 2009.
[70] T. Kahsai, J. A. Navas, D. Jovanovic, and M. Schäf. Finding inconsistencies in programs with loops.

In LPAR, pages 499–514, 2015.
[71] S. Kalra, S. Goel, M. Dhawan, and S. Sharma. ZEUS: analyzing safety of smart contracts. In NDSS,

2018.
[72] A. Katis, G. Fedyukovich, H. Guo, A. Gacek, J. Backes, A. Gurfinkel, and M. W. Whalen. Validity-

guided synthesis of reactive systems from assume-guarantee contracts. In TACAS, pages 176–193,
2018.

[73] A. Komuravelli, N. Bjørner, A. Gurfinkel, and K. L. McMillan. Compositional verification of proce-
dural programs using horn clauses over integers and arrays. In FMCAD, pages 89–96, 2015.

[74] A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-based model checking for recursive programs. In
CAV, pages 17–34, 2014.

[75] A. Komuravelli, A. Gurfinkel, and S. Chaki. Smt-based model checking for recursive programs. Formal
Methods in System Design, 48(3):175–205, 2016.

[76] L. Lakhdar-Chaouch, B. Jeannet, and A. Girault. Widening with thresholds for programs with complex
control graphs. In ATVA, pages 492–502, 2011.

[77] A. Lal and S. Qadeer. A program transformation for faster goal-directed search. In FMCAD, pages
147–154, 2014.

[78] C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong program analysis & transfor-
mation. In CGO, pages 75–88, 2004.

[79] C. Lattner and V. S. Adve. Automatic Pool Allocation: Improving Performance by Controlling Data
Structure Layout in the Heap. In PLDI, pages 129–142, 2005.

[80] K. McMillan and A. Rybalchenko. Solving Constrained Horn Clauses using Interpolation. Technical
report, MSR-TR-2013-6, 2013.

[81] M. Méndez-Lojo, J. A. Navas, and M. V. Hermenegildo. A flexible, (C)LP-based approach to the
analysis of object-oriented programs. In LOPSTR, pages 154–168, 2007.

[82] F. Merz, S. Falke, and C. Sinz. LLBMC: bounded model checking of C and C++ programs using a
compiler IR. In VSTTE, pages 146–161, 2012.

[83] B. Mihaila, A. Sepp, and A. Simon. Widening as abstract domain. In NASA NFM, pages 170–184,
2013.

[84] A. Miné. A few graph-based relational numerical abstract domains. In SAS, pages 117–132, 2002.
[85] A. Miné. Field-sensitive value analysis of embedded C programs with union types and pointer arith-

metics. In LCTES, pages 54–63, 2006.
[86] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–100,

2006.
[87] A. Miné. Symbolic methods to enhance the precision of numerical abstract domains. In VMCAI, pages

348–363, 2006.
[88] J. A. Navas, P. Schachte, H. Søndergaard, and P. J. Stuckey. Signedness-agnostic program analysis:

Precise integer bounds for low-level code. In R. Jhala and A. Igarashi, editors, APLAS, volume 7705
of LNCS, pages 115–130. Springer, 2012.

[89] C. Okasaki and A. Gill. Fast mergeable integer maps. In Notes of the ACM SIGPLAN Workshop on
ML, pages 77–86, September 1998.

[90] J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of imperative programs through analysis of
constraint logic programs. In SAS, pages 246–261, 1998.

February 2019

[91] Z. Rakamaric and M. Emmi. SMACK: Decoupling source language details from verifier implementa-
tions. In CAV, pages 106–113, 2014.

[92] X. Rival. Understanding the origin of alarms in astrée. In SAS, pages 303–319, 2005.
[93] P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants for horn-clause verification. In CAV,

pages 347–363, 2013.
[94] A. Simon and A. King. Widening polyhedra with landmarks. In APLAS, pages 166–182, 2006.
[95] G. Singh, M. Püschel, and M. T. Vechev. ELINA: ETH Library for Numerical Analysis, 2018. Available

at https://github.com/eth-sri/ELINA.
[96] N. Sinha, N. Singhania, S. Chandra, and M. Sridharan. Alternate and learn: Finding witnesses without

looking all over. In CAV, pages 599–615, 2012.
[97] B. Steensgaard. Points-to analysis in almost linear time. In POPL, pages 32–41, 1996.
[98] TrailOfBits. Framework for lifting x86, amd64, and aarch64 program binaries to llvm bitcode. Avail-

able at https://github.com/trailofbits/mcsema.
[99] C. Urban, A. Gurfinkel, and T. Kahsai. Synthesizing ranking functions from bits and pieces. In TACAS,

pages 54–70, 2016.
[100] A. Venet. A scalable nonuniform pointer analysis for embedded programs. In SAS, pages 149–164,

2004.
[101] A. Venet and G. P. Brat. Precise and efficient static array bound checking for large embedded C

programs. In PLDI, pages 231–242, 2004.
[102] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the LLVM intermediate

representation for verified program transformations. In POPL, pages 427–440, 2012.

