
Algorithmic Logic-Based Verification with SeaHorn
(Invited Tutorial)

Arie Gurfinkel
Software Engineering Institute

Carnegie Mellon University
http://arieg.bitbucket.org

Abstract—In this tutorial, I will present SEAHORN, a software
verification framework. The key distinguishing feature of SEA-
HORN is its modular design that separates the concerns of the
syntax of the programming language, its operational semantics,
and the verification semantics. SEAHORN encompasses several
novelties: it (a) encodes verification conditions using an efficient
yet precise inter-procedural technique, (b) provides flexibility in
the verification semantics to allow different levels of precision,
(c) leverages the state-of-the-art in software model checking and
abstract interpretation for verification, and (d) uses Horn-clauses
as an intermediate language to represent verification conditions
which simplifies interfacing with multiple verification tools based
on Horn-clauses. SEAHORN provides users with a powerful
verification tool and provides researchers with an extensible and
customizable framework for experimenting with new software
verification techniques.

I. INTRODUCTION

Program verification – deciding whether a given program
satisfies its specification, is one of the oldest problems in
computer science. In his seminal paper, “Checking a Large
Routine” [1], Alan Turing outlined a methodology to formally
check whether a procedure (or a routine) is right. In particular,
he proposed flowcharts as a concise program representation,
and described a method based on the insight that a pro-
grammer should make a number of definite assertions which
can be proven individually, and from which the correctness
of the whole program follows easily. Almost two decades
later, Floyd [2] and Hoare [3], inspired by the works of
McCarthy [4] and Naur [5], independently, proposed a logic
based on a deductive system that is known today as the
Floyd-Hoare logic. The logic allowed proving correctness of
programs in a rigorous manner in ways foreshadowed by
Turing. Another decade later, Dijkstra [6] developed the first
semi-algorithmic view of the Floyd-Hoare logic based on the
notion of predicate transformers. The field of software veri-
fication has been growing rapidly ever since. Today, Abstract
Interpretation [7], Model Checking [8], [9], and Symbolic
Execution [10] are probably the most predominant algorithmic
(i.e., fully automated) verification techniques.

This material is based upon work funded and supported by the Department
of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally
funded research and development center. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Department of
Defense. This material has been approved for public release and unlimited
distribution. DM-0002704

We argue that a significant disadvantage of the existing
techniques is that each individual technique relies on its own
specific set of intermediate representations and interpretation
of the program’s semantics. This makes it difficult, if not
impossible, to effectively combine multiple techniques and
reuse results between techniques.

We suggest an alternative, that we call Algorithmic Logic-
Based Verification that is completely automated (i.e., algo-
rithmic) and uses logic as its intermediate representation.
In particular, we use Constrained Horn Clauses (CHCs), a
fragment of First Order Logic, as the basis for the intermediate
representation.

Our approach separates the concerns of the programming
language syntax, operational- and verification-semantics. The
main idea is that the verification process can be partitioned
into generating a Verification Condition (VC) in CHC, and
determining satisfiability of VC using logic-based decision
procedures. This basic idea is not new. For example, CHCs
are similarly used as a basis of Constraint Logic Programming
(CLP) [11]. What makes our approach unique is the use of
novel powerful decision engines, called SMT solvers, that
have been recently developed and perfected in the verification
community.

In this tutorial, I will present SEAHORN, a state-of-the-
art CHC-based automated verification framework. SEAHORN
aims at providing developers and researchers a collection
of modular and reusable verification components that can
reduce the burden of building a new software verifier. Similar
to modern compilers, SEAHORN is split into three main
components: the front-end, the middle-end, and the back-end.

The front-end deals with the syntax of the input program-
ming language and generates an internal intermediate repre-
sentation. The middle-end encodes the verification condition
as CHC. SEAHORN provides several out-of-the-box encodings
that have been shown useful in practice. Finally, the back-
end discharges the verification conditions using a variety
of state-of-the-art SMT-based model checking and abstract
interpretation-based solvers.

This versatile and flexible design supports multiple VC
encodings and multiple verification engines. It also simplifies
targeting new programming languages or language specifi-
cations by providing a translation to CHCs. SEAHORN an
interesting verification infrastructure that allows developers
and researchers to experiment with new techniques.

http://arieg.bitbucket.org

{ Pre: y ≥ 0 }
〈1〉xold = x;
〈2〉yold = y;
〈3〉while (y > 0) {
〈4〉 x = x+ 1;
〈5〉 y = y − 1;
〈6〉}
{ Post: x = xold + yold }

C1 : pre(x, y) ← y ≥ 0.
C2 : I(x, y, xold, yold) ← pre(x, y), xold = x, yold = y.
C3 : I(x′, y′, xold, yold) ← I(x, y, xold, yold), y > 0,

x′ = x+ 1, y′ = y − 1.
C4 : exit(x, xold, yold) ← I(x, y, xold, yold), y ≤ 0.
C5 : error() ← exit(x, xold, yold), x 6= xold + yold.
C6 : ⊥ ← error().

(a) (b)

Fig. 1: A program and its verification conditions expressed as a set of CHCs.

II. CONSTRAINED HORN CLAUSES

In this section, we give a brief overview of Constrained
Horn Clauses. More details are available in [12].

Given the sets F of function symbols, P of predicate
symbols, and V of variables, a Constrained Horn Clause
(CHC) is a formula:

∀V · (φ ∧ p1[X1] ∧ · · · ∧ pk[Xk]→ h[X]), for k ≥ 0

where φ is a constraint over F and V with respect to some
background theory A; Xi, X ⊆ V are (possibly empty) vectors
of variables; pi[Xi] is an application p(t1, . . . , tn) of an n-ary
predicate symbol p ∈ P for first-order terms ti constructed
from F and Xi; and h[X] is either defined analogously to
pi or is P-free (i.e., no P symbols occur in h). We usually
assume that the background theory A is a combination of
Linear Arithmetic, Arrays, and Bit-Vectors.

We call h the head of the clause and φ∧p1[X1]∧· · ·∧pk[Xk]
— the body. A clause is called a query if its head is P-
free. Otherwise, it is called a rule. A rule with body true
is called a fact. A clause is linear if its body contains at
most one predicate symbol, otherwise, it is called non-linear.
We often follow the CLP convention of writing Horn clauses
as h[X] ← φ, p1[X1], . . . , pk[Xk] with all free variables
implicitly universally quantified.

A set of CHCs is satisfiable if there exists an interpretation
J of the predicate symbols P such that each constraint φ is
true under J .

CHCs naturally represent verification conditions obtained
from Dijkstra’s weakest liberal precondition calculus [6]. To
illustrate, Figure 1(a) shows a simple imperative program with
a pre-condition y ≥ 0 and a post-condition x = xold + y =
yold. The corresponding verification condition is shown in
Figure 1(b). The predicate pre represents the precondition.
The predicate I represents the loop invariant (which must be
discovered to discharge our proof obligation). The predicate
exit represents the program state at the end of the execution.
Finally, the predicate error represents the error condition (i.e.,
the negation of the desired post-condition.

The program in Figure 1(a) satisfies its pre- post-condition
pair iff the set of CHCs in Figure 1(b) is satisfiable. For
example, giving this clauses to a CHC-solver SPACER [13],

we get that the system is satisfiable, and the the safe inductive
invariant is

I(x, y, xold, yold)↔ x+ y = xold + yold ∧ y ≥ 0 .

III. SEAHORN VERIFICATION FRAMEWORK

SEAHORN [14] is an analysis framework for verification
of safety properties of programs. It is based on the LLVM
compiler toolkit [15]. SEAHORN is a completely automated
program analysis tool that checks user-supplied assertions.
Additionally, SEAHORN provides many built-in instrumenta-
tions, such as checks for buffer and signed integer overflow.
Moreover, SEAHORN is also a framework that simplifies
development and integration of new verification techniques.

The design of SEAHORN provides users, developers, and
researchers with an extensible and customizable environment
for experimenting with and implementing new software veri-
fication techniques. SEAHORN is implemented in C++ in the
LLVM compiler infrastructure [15]. Its architecture is shown in
Figure 2. SEAHORN has been developed in a modular fashion;
its architecture is layered in three parts:
Front-End: Takes an LLVM based program (e.g., C) input

program and generates LLVM IR bitcode. Specifically,
it performs the pre-processing and optimization of the
bitcode for verification purposes.

Middle-End: Takes as input the optimized LLVM bitcode and
emits verification condition as Constrained Horn Clauses
(CHC). The middle-end is in charge of selecting the
encoding of the VCs and the degree of precision.

Back-End: Takes CHC as input and outputs the result of
the analysis. In principle, any verification engine that
digests CHC clauses could be used to discharge the
VCs. Currently, SEAHORN employs several SMT-based
model checking engines based on PDR/IC3 [16], includ-
ing SPACER [13], [17] and GPDR [18]. Complementary,
SEAHORN uses the abstract interpretation-based analyzer
IKOS (Inference Kernel for Open Static Analyzers) [19]
for providing numerical invariants.

The effectiveness and scalability of SEAHORN are demon-
strated by the results of the Software Verification Competition
(SV-COMP 2015) [20].

We conclude with the discussion of the main features of
SEAHORN:

Legacy
Front-End

Inter
procedural

Encoding = {Small,
 Large}

Precision = {Register,
 Pointer,

 Memory}

LLVM bitcode

SPACER

Z3-PDR

Back End

IKOS

CEX

or

Horn ClauseProgram

Middle EndFront End

Fig. 2: Overview of SEAHORN architecture.

1) It decouples a programming language syntax and seman-
tics from the underlying verification technique. Program-
ming languages include a diverse assortments of features,
many of which are purely syntactic. Handling them fully
is a major effort for new tool developers. We tackle this
problem in SEAHORN by separating the language syntax,
its operational semantics, and the underlying verification
semantics – the semantics used by the verification en-
gine. Specifically, we use the LLVM front-end(s) to deal
with the idiosyncrasies of the syntax. We use LLVM
intermediate representation (IR), called the bitcode, to
deal with the operational semantics, and apply a variety
of transformations to simplify it further. Finally, we use
Constrained Horn Clauses (CHC) to logically represent
the verification condition (VC).

2) It provides an efficient and precise analysis of programs
with procedure using inter-procedural verification tech-
niques. SEAHORN summarizes the input-output behavior
of procedures efficiently without inlining. Moreover, it
uses program transformations that lifts deep assertions
closer to the main procedure. This increases context-
sensitivity of intra-procedural analyses (used both in ver-
ification and compiler optimization), and has a significant
impact on our inter-procedural verification algorithms.

3) It allows developers to customize the verification seman-
tics and offers users verification semantics of various
degrees of precision. SEAHORN is fully parametric in the
(small-step operational) semantics used for the generation
of VCs. The level of abstraction in the built-in semantics
varies from considering only LLVM numeric registers
to considering the whole heap (modeled as a collection
of non-overlapping arrays). In addition to generating
VCs based on small-step semantics [21], it can also
automatically lift small-step semantics to large-step [22],
[23] (a.k.a. Large Block Encoding, or LBE).

4) It uses Constrained Horn Clauses (CHC) as its interme-
diate verification language. CHC provide a convenient
and elegant way to formally represent many encoding
styles of verification conditions. The recent popularity of
CHC as an intermediate language for verification engines
makes it possible to interface SEAHORN with a variety
of new and emerging tools.

5) It builds on the state-of-the-art in Software Model Check-
ing (SMC) and Abstract Interpretation (AI). SMC and AI
have independently led over the years to the production
of analysis tools that have a substantial impact on the
development of real world software. Interestingly, the
two exhibit complementary strengths and weaknesses (see
e.g., [24]–[27]). While SMC so far has been proved
stronger on software that is mostly control driven, AI is
quite effective on data-dependent programs. SEAHORN
combines SMT-based model checking techniques with
program invariants supplied by an abstract interpretation-
based tool.

6) Finally, it is implemented on top of the open-source
LLVM compiler infrastructure. The latter is a well-
maintained, well-documented, and continuously improv-
ing framework. It allows SEAHORN users to easily
integrate program analyses, transformations, and other
tools that targets LLVM. Moreover, since SEAHORN
analyses LLVM IR, this allows to exploit a rapidly-
growing frontier of LLVM front-ends, encompassing a
diverse set of languages. SEAHORN itself is released as
open-source as well (source code can be downloaded
from http://seahorn.github.io).

ACKNOWLEDGMENT

The author would like to thank the group of amazing collab-
orators without whom this work would not have been possible:
Nikolaj Bjørner, Temegshen Kahsai, Anvesh Komuravell, and
Jorge A. Navas.

REFERENCES

[1] A. Turing, “Checking a Large Routine,” 1949.
[2] R. W. Floyd, “Assigning meanings to programs,” Symposium Applied

Mathematics, no. 10, pp. 19–32, 1967.
[3] C. A. R. Hoare, “An axiomatic basis for computer programming,”

Commun. ACM, vol. 12, no. 10, pp. 576–580, 1969.
[4] J. McCarthy, “A Basis for a Mathematical Theory of Computation,” pp.

33–70, 1963.
[5] P. Naur, “Proof of algorithms by general snapshots,” vol. 6, pp. 310–316,

1966.
[6] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal deriva-

tion of programs,” Commun. ACM, vol. 18, no. 8, pp. 453–457, 1975.
[7] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the Fourth Annual Symposium on Principles
of Programming Languages, 1977, pp. 238–252.

http://seahorn.github.io

[8] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching-time temporal logic,” in Logics of
Programs, Workshop, Yorktown Heights, New York, May 1981, 1981,
pp. 52–71.

[9] J. Queille and J. Sifakis, “Specification and verification of concurrent
systems in CESAR,” in International Symposium on Programming, 5th
Colloquium, Torino, Italy, April 6-8, 1982, Proceedings, 1982, pp. 337–
351.

[10] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[11] J. Jaffar and J.-L. Lassez, “Constraint logic programming,” in POPL,
1987, pp. 111–119.

[12] N. Bjørner, A. Gurfinkel, K. McMillan, and A. Rybalchenko, “Horn
Clause Solving for Program Verification,” in Proceedings of a Sympo-
sium on Logic in Computer Science celebrating Yuri Gurevich’s 75th
Birthday, 2015.

[13] A. Komuravelli, A. Gurfinkel, and S. Chaki, “SMT-based model check-
ing for recursive programs,” in CAV, 2014, pp. 17–34.

[14] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The
SeaHorn Verification Framework,” in Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I, ser. Lecture Notes
in Computer Science, D. Kroening and C. S. Pasareanu, Eds.,
vol. 9206. Springer, 2015, pp. 343–361. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-21690-4 20

[15] C. Lattner and V. S. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in CGO, 2004, pp. 75–
88.

[16] A. R. Bradley, “IC3 and beyond: Incremental, inductive verification,” in
CAV, 2012, p. 4.

[17] A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke, “Automatic
abstraction in smt-based unbounded software model checking,” in CAV,
2013, pp. 846–862.

[18] K. Hoder and N. Bjørner, “Generalized property directed reachability,”
in SAT, 2012, pp. 157–171.

[19] G. Brat, J. A. Navas, N. Shi, and A. Venet, “IKOS: A framework for
static analysis based on abstract interpretation,” in SEFM, 2014, pp.
271–277.

[20] D. Beyer, “Software Verification and Verifiable Witnesses (Report on
SV-COMP 2015),” in TACAS, 2015.

[21] J. C. Peralta, J. P. Gallagher, and H. Saglam, “Analysis of imperative
programs through analysis of constraint logic programs,” in SAS, 1998,
pp. 246–261.

[22] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani,
“Software model checking via large-block encoding,” in FMCAD, 2009,
pp. 25–32.

[23] A. Gurfinkel, S. Chaki, and S. Sapra, “Efficient Predicate Abstraction
of Program Summaries,” in NFM, 2011, pp. 131–145.

[24] A. Gurfinkel and S. Chaki, “Combining predicate and numeric abstrac-
tion for software model checking,” STTT, vol. 12, no. 6, pp. 409–427,
2010.

[25] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “Craig Interpretation,”
in SAS, 2012, pp. 300–316.

[26] P. Garoche, T. Kahsai, and C. Tinelli, “Incremental invariant generation
using logic-based automatic abstract transformers,” in NASA Formal
Methods, 5th International Symposium, NFM 2013, 2013, pp. 139–154.

[27] N. Bjørner and A. Gurfinkel, “Property directed polyhedral abstraction,”
in Verification, Model Checking, and Abstract Interpretation - 16th
International Conference, VMCAI 2015, 2015, pp. 263–281.

http://dx.doi.org/10.1007/978-3-319-21690-4_20

	Introduction
	Constrained Horn Clauses
	SeaHorn Verification Framework
	References

