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Automated 

Analysis 

Software Model Checking 
with Predicate Abstraction 

e.g., Microsoft’s SDV 

Automated Software Analysis 

Program 
Correct 

Incorrect 

Abstract Interpretation 
with Numeric Abstraction 

e.g., ASTREE, Polyspace 
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Turing, 1936:  “undecidable” 
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Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949  
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Three-Layers of a Program Verifier 

Compiler 
•  compiles surface syntax to some machine  
•  embodies syntax with semantics 

Verification Condition Generator 
•  transforms a program and a property to verification condition in logic 
•  employs different abstractions, refinements, proof-search strategies, etc. 

 
Automated Theorem Prover / Reasoning Engine 
•  discharges verification conditions 
•  general purpose constraint solver 
•  SAT, SMT, Abstract Interpreter, Temporal Logic Model Checker,… 
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http://seahorn.github.io	  
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SeaHorn Philosophy 

Build a state-of-the-art Software Model Checker  
•  useful to “average” users 
– user-friendly, efficient, trusted, certificate-producing, … 

•  useful to researchers in verification 
– modular design, clean separation between syntax, semantics, and logic, … 

Stand on the shoulders of giants 
•  reuse techniques from compiler community to reduce verification effort 
– SSA, loop restructuring, induction variables, alias analysis, … 
– static analysis and abstract interpretation 

•  reduce verification to logic 
– verification condition generation 
– Constrained Horn Clauses 

Build reusable logic-based verification technology 
•  “SMT-LIB” for program verification 
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The Plan 

This Lecture 
•  front-end: verification conditions, constrained horn clauses 
•  from verification problems to decision problems in logic 

Next Lecture 
•  back-end: solving verification conditions 
•  IC3/PDR algorithms and extensions for software verification 
•  http://arieg.bitbucket.org/pdf/gurfinkel_ssft15.pdf 

Labs 
•  we will play with tools 
•  get binary distribution from github.com/seahorn/seahorn 
•  get seahorn-tutorial repo from github.com/seahorn-tutorial 
•  pre-requisites: recent Linux or OSX + clang-3.6 
•  can use provided VM to satisfy the pre-requisites 
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SeaHorn Verification Framework 

Distinguishing Features 
•  LLVM front-end(s) 
•  Constrained Horn Clauses to represent Verification Conditions 
•  Comparable to state-of-the-art tools at SV-COMP’15 

Goals 
•  be a state-of-the-art Software Model Checker 
•  be a framework for experimenting and developing CHC-based verification 
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Related Tools 

CPAChecker 
•  Custom front-end for C 
•  Abstract Interpretation-inspired verification engine  
•  Predicate abstraction, invariant generation, BMC, k-induction 

SMACK / Corral 
•  LLVM-based front-end 
•  Reduces C verification to Boogie 
•  Corral / Q verification back-end based on Bounded Model Checking with SMT 

UFO 
•  LLVM-based front-end (partially reused in SeaHorn) 
•  Combines Abstract Interpretation with Interpolation-Based Model Checking 
•  (no longer actively developed) 
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SeaHorn Usage 

>	  sea	  pf	  FILE.c	  
Outputs sat	  for unsafe (has counterexample); unsat for safe  
Additional options 
•  -‐-‐cex=trace.xml  outputs a counter-example in SV-COMP’15 format 
•  --show-invars displays computed invariants 
•  -‐-‐track={reg,ptr,mem} track registers, pointers, memory content 
•  -‐-‐step={large,small}	  verification condition step-semantics 
– small == basic block, large == loop-free control flow block 

•  -‐-‐inline inline all functions in the front-end passes 
Additional commands 
•  sea	  smt – generates CHC in extension of SMT-LIB2 format 
•  sea	  clp  -- generates CHC in CLP format (under development) 
•  sea	  lfe-‐smt – generates CHC in SMT-LIB2 format using legacy front-end 
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Verification Pipeline 

clang	  |	  pp	  |	  ms	  |opt	  |	  horn	  

front-end 

compile pre-process 

mixed 
semantics 

optimize 

VC gen & 
solve 
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INTERMEDIATE 
REPRESENTATION 

Constrained Horn Clauses 
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Constrained Horn Clauses (CHC) 

A Constrained Horn Clause (CHC) is a FOL 
formula of the form        

  8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → h[X]), 
 where 
• A is a background theory (e.g., Linear Arithmetic, Arrays, 
Bit-Vectors, or combinations of the above) 
• Á is a constrained in the background theory A 
•  p1, …, pn, h are n-ary predicates 
• pi[X] is an application of a predicate to first-order terms 
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Example Horn Encoding 

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y) 

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0) 
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4  (x � y), p3(x, y).
h7i perr  (x < y), p3(x, y).
h8i p4  p4.
h9i ?  perr.
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CHC Terminology 

Rule h[X] Ã p1[X1],…, pn[Xn], Á. 

Query false Ã p1[X1],…, pn[Xn], Á. 

Fact h[X] Ã Á. 

Linear CHC h[X] Ã p[X1], Á. 

Non-Linear CHC h[X] Ã p1[X1],…, pn[Xn], Á. 
for n > 1 

head body constraint 
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CHC Satisfiability 

A model of a set of clauses ¦ is an interpretation of each predicate pi 
that makes all clauses in ¦ valid 
 
A set of clauses is satisfiable if it has a model, and is unsatisfiable 
otherwise  
 
A model is A-definable, it each pi is definable by a formula Ãi in A 
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Relationship between CHC and Verification 

A program satisfies a property iff corresponding CHCs are satisfiable 
•  satisfiability-preserving transformations == safety preserving  

 
Models for CHC correspond to verification certificates 
•  inductive invariants and procedure summaries 

Unsatisfiability (or derivation of FALSE) corresponds to counterexample 
•  the resolution derivation (a path or a tree) is the counterexample 

CAVEAT: In SeaHorn the terminology is reversed 
•  SAT means there exists a counterexample – a BMC at some depth is SAT 
•  UNSAT means the program is safe – BMC at all depths are UNSAT 
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FROM PROGRAMS TO 
CLAUSES 
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Hoare Triples 

A Hoare triple {Pre} P {Post} is valid iff every terminating execution of P 
that starts in a state that satisfies Pre ends in a state that satisfies Post 
Inductive Loop Invariant 
 
 
 
Function Application 
 
 
 
Recursion 

Pre ) Inv         {InvÆC} Body {Inv}            InvÆ¬C ) Post 

{Pre} while C do Body {Post} 

(PreÆp=a) ) P                {P} BodyF {Q}          (QÆp,r=a,b) ) Post 

{Pre} b = F(a) {Post} 

{Pre} b = F(a) {Post}  ` {Pre} BodyF {Post} 

{Pre} b = F(a) {Post} 
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Weakest Liberal Pre-Condition 

Validity of Hoare triples is reduced to FOL validity by applying a 
predicate transformer 
 
 
Dijkstra’s weakest liberal pre-condition calculus [Dijkstra’75] 

  

 wlp (P, Post) 
 
weakest pre-condition ensuring that executing P ends in Post  
 
 
   {Pre} P {Post} is valid          ,       Pre ) wlp (P, Post) 
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A Simple Programming Language 

Prog	  	  ::=	  def	  Main(x)	  {	  bodyM	  },	  …,	  def	  P	  (x)	  {	  bodyP	  }	  
	  
body	  	  ::=	  stmt	  (;	  stmt)*	  
	  
stmt	  	  ::=	  x	  =	  E	  |	  assert	  (E)	  |	  assume	  (E)	  |	  	  
	  	  	  	  	  	  	  	  	  	  while	  E	  do	  S	  |	  y	  =	  P(E)	  |	  
	  	  	  	  	  	  	  	  	  	  L:stmt	  |	  goto	  L	  	  	  	  	  	  	  	  	  	  	  	  	  (optional)	  
	  
E	  	  	  	  	  :=	  expression	  over	  program	  variables	  
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Horn Clauses by Weakest Liberal Precondition 

Prog	  ::=	  def	  Main(x)	  {	  bodyM	  },	  …,	  def	  P	  (x)	  {	  bodyP	  }	  
 
wlp (x=E, Q) = let x=E in Q 
wlp (assert(E) , Q) = E Æ Q 
wlp (assume(E), Q) = E → Q 
wlp (while	  E	  do	  S, Q) = I(w) Æ  
                     8w . ((I(w) Æ E) → wlp (S, I(w))) Æ ((I(w) Æ ¬E) → Q)) 
wlp (y	  =	  P(E), Q) = ppre(E) Æ (8 r. p(E, r) → Q[r/y]) 
 
ToHorn (def	  P(x)	  {S}) = wlp (x0=x;assume(ppre(x)); S, p(x0, ret)) 
ToHorn (Prog) = wlp (Main(), true) Æ  8{P 2 Prog} . ToHorn (P)  
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Example of a WLP Horn Encoding 

{y ¸ 0} P {x = xold+yold} is true iff the query C3 is satisfiable 

{Pre:	  y¸	  0}	  
	  xo	  =	  x;	  
	  yo	  =	  y;	  	  
	  while	  y	  >	  0	  do	  
	  	  	  x	  =	  x+1;	  
	  	  	  y	  =	  y−1;	  
{Post:	  x=xo+yo}	  

C1:	  I(x,y,x,y)	  Ã	  y>=0.	  
C2:	  I(x+1,y-‐1,xo,yo)	  Ã	  I(x,y,xo,yo),	  y>0.	  
C3:	  false	  Ã	  I(x,y,xo,yo),	  y·0,	  x≠xo+yo	  	  

ToHorn 
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Dual WLP 

Dual weakest liberal pre-condition 
 

    dual-wlp (P, Post)  =  ¬wlp (P, ¬Post) 
 
s ² dual-wlp (P, Post) iff there exists an execution of P that starts in s 
and ends in Post 
 
dual-wlp (P, Post) is the weakest condition ensuring that an execution 
of P can reach a state in Post 
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Control Flow Graph 

A CFG is a graph of basic blocks 
•  edges represent different control flow 

 
A CFG corresponds to a program syntax 
•  where statements are restricted to the form 
         Li:S ; goto Lj  
   and S is control-free (i.e., assignments and 
procedure calls) 

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y) 

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0) 
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4  (x � y), p3(x, y).
h7i perr  (x < y), p3(x, y).
h8i p4  p4.
h9i ?  perr.

basic block 
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Horn Clauses by Dual WLP 

Assumptions 
•  each procedure is represent by a control flow graph 
–  i.e., statements of the form li:S ; goto lj , where S is loop-free 

•  program is unsafe iff the last statement of Main() is reachable 
–  i.e., no explicit assertions. All assertions are top-level. 

For each procedure P(x), create predicates 
•  l(w) for each label, pen(x0,x,w) for entry, pex (x0

,r) for exit 

The verification condition is a conjunction of clauses: 
pen(x0,x) Ã x

0
=x    

li(x0
,w’) Ã lj(x0

,w) Æ ¬wlp (S, ¬(w=w’)), for each statement li: S; goto lj 
p (x

0
,r) Ã pex(x0

,r)  

false Ã Mainex(x, ret) 
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Example Horn Encoding 

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y) 

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0) 
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4  (x � y), p3(x, y).
h7i perr  (x < y), p3(x, y).
h8i p4  p4.
h9i ?  perr.
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From CFG to Cut Point Graph 

A Cut Point Graph hides (summarizes) fragments of a control flow graph 
by (summary) edges  
 
Vertices (called, cut points) correspond to some basic blocks 
 
An edge between cut-points c and d summarizes all finite (loop-free) 
executions from c to d that do not pass through any other cut-points 
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Cut Point Graph Example 

1 

2 

3 4 

5 

6 

1 

6 

CFG CPG 
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From CFG to Cut Point Graph 

A Cut Point Graph hides (summarizes) fragments of a control flow graph 
by (summary) edges  
 
Cut Point Graph preserves reachability of (not-summarized) control 
location.  
 
Summarizing loops is undecidable! (Halting program) 
 
A cutset summary summarizes all location except for a cycle cutset of a 
CFG. Computing minimal cutset summary is NP-hard (minimal feedback 
vertex set). 
 
A reasonable compromise is to summarize everything but heads of 
loops. (Polynomial-time computable). 
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Single Static Assignment 

SSA == every value has a unique assignment (a definition) 
A procedure is in SSA form if every variable has exactly one definition 
 
SSA form is used by many compilers 
•  explicit def-use chains 
•  simplifies optimizations and improves analyses  

PHI-function are necessary to maintain unique definitions in branching 
control flow 
 
       x = PHI ( v0:bb0, …, vn:bbn) )                      (phi-assignment) 
 
“x gets vi if previously executed block was bbi” 
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Single Static Assignment: An Example 
0:	  goto	  1	  
1:	  x_0	  =	  PHI(0:0,	  x_3:5);	  
	  	  	  y_0	  =	  PHI(y:0,	  y_1:5);	  
	  	  	  if	  (x_0	  <	  N)	  goto	  2	  else	  goto	  6	  	  
2:	  if	  (y_0	  >	  0)	  goto	  3	  else	  goto	  4	  
	  
3:	  x_1	  =	  x_0	  +	  y_0;	  goto	  5	  	  
4:	  x_2	  =	  x_0	  –	  y_0;	  goto	  5	  
	  
5:	  x_3	  =	  PHI(x_1:3,	  x_2:4);	  
	  	  	  y_1	  =	  -‐1	  *	  y_0;	  
	  	  	  goto	  1	  
6:	  

int	  x,	  y,	  n;	  
	  
x	  =	  0;	  
while	  (x	  <	  N)	  {	  
	  	  if	  (y	  >	  0)	  	  
	  	  	  	  x	  =	  x	  +	  y;	  
	  	  else	  
	  	  	  	  x	  =	  x	  –	  y;	  
	  	  y	  =	  -‐1	  *	  y;	  
}	  

val:bb 
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Large Step Encoding 

Problem: Generate a 
compact verification 
condition for a loop-
free block of code 

0:	  goto	  1	  
1:	  x_0	  =	  PHI(0:0,	  x_3:5);	  
	  	  	  y_0	  =	  PHI(y:0,	  y_1:5);	  
	  	  	  if	  (x_0	  <	  N)	  goto	  2	  else	  goto	  6	  
	  
2:	  if	  (y_0	  >	  0)	  goto	  3	  else	  goto	  4	  
	  
3:	  x_1	  =	  x_0	  +	  y_0;	  goto	  5	  
	  
4:	  x_2	  =	  x_0	  –	  y_0;	  goto	  5	  
	  
5:	  x_3	  =	  PHI(x_1:3,	  x_2:4);	  
	  	  	  y_1	  =	  -‐1	  *	  y_0;	  
	  	  	  goto	  1	  
6:	  
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1:	  x_0	  =	  PHI(0:0,	  x_3:5);	  
	  	  	  y_0	  =	  PHI(y:0,	  y_1:5);	  
	  	  	  if	  (x_0	  <	  N)	  goto	  2	  else	  goto	  6	  
	  
2:	  if	  (y_0	  >	  0)	  goto	  3	  else	  goto	  4	  
	  
3:	  x_1	  =	  x_0	  +	  y_0;	  goto	  5	  
	  
4:	  x_2	  =	  x_0	  –	  y_0;	  goto	  5	  
	  
5:	  x_3	  =	  PHI(x_1:3,	  x_2:4);	  
	  	  	  y_1	  =	  -‐1	  *	  y_0;	  
	  	  	  goto	  1	  
	  

Large Step Encoding: Extract all Actions 
x1	  =	  x0	  +	  y0	  
x2	  =	  x0	  –	  y0	  
y1	  =	  -‐1	  *	  y0	  
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1:	  x_0	  =	  PHI(0:0,	  x_3:5);	  
	  	  	  y_0	  =	  PHI(y:0,	  y_1:5);	  
	  	  	  if	  (x_0	  <	  N)	  goto	  2	  else	  goto	  6	  
	  
2:	  if	  (y_0	  >	  0)	  goto	  3	  else	  goto	  4	  
	  
3:	  x_1	  =	  x_0	  +	  y_0;	  goto	  5	  
	  
4:	  x_2	  =	  x_0	  –	  y_0;	  goto	  5	  
	  
5:	  x_3	  =	  PHI(x_1:3,	  x_2:4);	  
	  	  	  y_1	  =	  -‐1	  *	  y_0;	  
	  	  	  goto	  1	  
	  

Example: Encode Control Flow 
x1	  =	  x0	  +	  y0	  
x2	  =	  x0	  –	  y0	  
y1	  =	  -‐1	  *	  y0	  

B2	  →	  x0	  <	  N	  	  
B3	  →	  B2	  ∧	  y0	  >	  0	  	  

B4	  →	  B2	  ∧	  y0	  ≤	  0	  	  
B5	  →	  (B3	  ∧	  x3=x1)∨	  	  
	  	  	  	  	  (B4	  ∧	  x3=x2)	  

B5	  ∧	  x’0=x3	  ∧	  y’0=y1	  

p1(x’0,y’0) Ã p1 (x0, y0), Á. 
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PROGRAM TRANSFORMATION 
Mixed Semantics 
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Deeply nested assertions 

Assertion 

Main 
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Deeply nested assertions 

Counter-examples are long 
Hard to determine (from main) what is relevant 

Assertion 

Main 
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Mixed Semantics 

Stack-free program semantics combining: 
•  operational (or small-step) semantics 
–  i.e., usual execution semantics 

•  natural (or big-step) semantics: function summary [Sharir-Pnueli 81] 
–  (¾, ¾`) 2 ||f|| iff the execution of f on input state ¾ terminates and results in state ¾’ 

•  some execution steps are big, some are small 

Non-deterministic executions of function calls 
•  update top activation record using function summary, or 
•  enter function body, forgetting history records (i.e., no return!) 

Preserves reachability and non-termination 
 Theorem: Let K be the operational semantics, Km the stack-free semantics, 

and L a program location.  Then,            

K ² EF (pc=L) , Km ² EF (pc=L)     and    K ² EG (pc≠L) , Km ² EG (pc≠L) 

[GWC’08,LQ’14]  
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def	  main()	  
1:	  int	  x	  =	  nd();	  
2:	  x	  =	  x+1;	  	  
3:	  while(x>=0)	  
4:	  	  	  x=f(x);	  
5:	  	  	  if(x<0)	  
6:	  	  	  	  	  	  Error;	  
7:	  	  
8:	  END;	  
	  
def	  f(int	  y):	  ret	  y	  	  	  
9:	  	  if(y¸10){	  
10:	  	  	  	  y=y+1;	  
11:	  	  	  	  y=f(y);	  
12:	  else	  if(y>0)	  
13:	  	  	  y=y+1;	  	  
14:	  y=y-‐1	  
15:	  

Summary of f(y)  
  (1·y·9 Æ y’=y)   
Ç (y·0 Æ y’=y-1) 

1 

2 

3 

4 

6:Error 

9 

10 

11 

12 

y ¸ 10 

y · 9 
y’ = y+1 

y’ = f(y) 

5 

7 8:END 

13 

14 

15 

y · 0 

y’= y+1 

y’= y-1 

x ¸ 0 

x’=nd() 

x’ = f(x) 

x < 0 
x ¸ 0 

x < 0 

x’=x+1 y’=x 

y’=y 

   (1·x·9 Æ x’=x) 
Ç (x·0 Æ x’=x-1) 

x=3 

x=4 

x=4 

x=4 

y=4 

y > 0 

y=4 

y=4 

y=5 

y=4 
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Mixed Semantics as Program Transformation 

Mixed Semantics 
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Mixed Semantics: Summary 

Every procedure is inlined at most once 
•  in the worst case, doubles the size of the program 
•  can be restricted to only inline functions that directly or indirectly call errror() 

function 
Easy to implement at compiler level 
•  create “failing” and “passing” versions of each function 
•  reduce “passing” functions to returning paths 
•  in main(), introduce new basic block bb.F for every failing function F(), and 

call failing.F in bb.F 
•  inline all failing calls 
•  replace every call to F to non-deterministic jump to bb.F or call to passing F 

Increases context-sensitivity of context-insensitive analyses 
•  context of failing paths is explicit in main (because of inlining) 
•  enables / improves many traditional analyses 
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SOLVING CHC WITH SMT 
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Programs, Cexs, Invariants 

A program P = (V, Init, ½, Bad) 
•  Notation: F(X) = 9 u . (X Æ ½) Ç Init 

P is UNSAFE if and only if there exists a number N s.t. 
 
 
 
P is SAFE if and only if there exists a safe inductive invariant Inv s.t. 

Inductive 

Safe 

Init(v0) ^
 

N�1̂

i=0

⇢(vi, vi+1)

!
^ Bad(vN ) 6) ?

Init(u) ) Inv(u)

Inv(u) ^ ⇢(u, v) ) Inv(v)

Inv(u) ) ¬Bad(u)
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IC3/PDR Algorithm Overview 

Input: Safety problem hInit(X),Tr(X,X 0
),Bad(X)i

F0  Init ;N  0 repeat
G PdrMkSafe([F0, . . . , FN ],Bad)
if G = [ ] then return Reachable;
80  i  N · Fi  G[i]

F0, . . . , FN  PdrPush([F0, . . . , FN ])

if 90  i < N · Fi = Fi+1 then return Unreachable;

N  N + 1 ; FN  ;
until 1;

bounded 
safety 

strengthen 
result 
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IC3/PDR in Pictures PdrMkSafe 
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IC3/PDR in Pictures 
Cex Queue 

Trace 

Frame R0 Frame R1 
lemma 

cex 

PdrMkSafe 
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Inductive 

IC3/PDR in Pictures PdrPush 



51 
Building Verifiers from Comp and SMT 
Gurfinkel, 2015 

© 2015 Carnegie Mellon University 

Inductive 

IC3/PDR in Pictures PdrPush 

PDR Invariants 

      Ri → ¬ Bad     Init → Ri 

      Ri → Ri+1         Ri Æ ½ → Ri+1 
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Spacer: Solving CHC in Z3 

Spacer: solver for SMT-constrained Horn Clauses 
•  stand-alone implementation in a fork of Z3 
•  http://bitbucket.org/spacer/code 

Support for Non-Linear CHC 
•  model procedure summaries in inter-procedural verification conditions 
•  model assume-guarantee reasoning 
•  uses MBP to under-approximate models for finite unfoldings of predicates 
•  uses MAX-SAT to decide on an unfolding strategy 

Supported SMT-Theories 
•  Best-effort support for arbitrary SMT-theories 
– data-structures, bit-vectors, non-linear arithmetic 

•  Full support for Linear arithmetic (rational and integer) 
•  Quantifier-free theory of arrays 
– only quantifier free models with limited applications of array equality 
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RESULTS 
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SV-COMP 2015 

4th Competition on Software Verification held (here!) at TACAS 2015 
Goals 
•  Provide a snapshot of the state-of-the-art in software verification to the 

community.  
•  Increase the visibility and credits that tool developers receive.  
•  Establish a set of benchmarks for software verification in the community.  

Participants: 
•  Over 22 participants, including most popular Software Model Checkers and 

Bounded Model Checkers 
Benchmarks: 
•  C programs with error location (programs include pointers, structures, etc.) 
•  Over 6,000 files, each 2K – 100K LOC 
•  Linux Device Drivers, Product Lines, Regressions/Tricky examples 
•  http://sv-comp.sosy-lab.org/2015/benchmarks.php 

http://sv-comp.sosy-lab.org/2015/ 
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Results for DeviceDriver category 
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Detecting Buffer Overflow in Auto-pilot software 

Show absence of Buffer Overflows in 
•  paparazzi and mnav autopilots 

Automatically instrument buffer accesses with runtime checks 
Use SeaHorn to validate that run-time checks never fail 
•  somewhat slower than pure abstract interpretation 
•  much more precise! 

LLVM Pass to insert 
BO checks 
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Conclusion 

SeaHorn (http://seahorn.github.io) 
•  a state-of-the-art Software Model Checker 
•  LLVM-based front-end 
•  CHC-based verification engine 
•  a framework for research in logic-based verification 

 
The future 
•  making SeaHorn useful to users of verification technology 
– counterexamples, build integration, property specification, proofs, etc. 

•  targeting many existing CHC engines 
– specialize encoding and transformations to specific engines 
– communicate results between engines  

•  richer properties 
–  termination, liveness, synthesis 
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