
© 2015 Carnegie Mellon University

Building Program Verifiers
from Compilers and Theorem
Provers

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel

based on joint work with Teme Kahsai,
Jorge A. Navas, Anvesh Komuravelli,
and Nikolaj Bjorner

2
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0002433

3
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Automated

Analysis

Software Model Checking
with Predicate Abstraction

e.g., Microsoft’s SDV

Automated Software Analysis

Program
Correct

Incorrect

Abstract Interpretation
with Numeric Abstraction

e.g., ASTREE, Polyspace

4
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Turing, 1936: “undecidable”

5
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University 5

Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949

6
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Three-Layers of a Program Verifier

Compiler
•  compiles surface syntax to some machine
•  embodies syntax with semantics

Verification Condition Generator
•  transforms a program and a property to verification condition in logic
•  employs different abstractions, refinements, proof-search strategies, etc.

Automated Theorem Prover / Reasoning Engine
•  discharges verification conditions
•  general purpose constraint solver
•  SAT, SMT, Abstract Interpreter, Temporal Logic Model Checker,…

7
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

http://seahorn.github.io	

8
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

SeaHorn Philosophy

Build a state-of-the-art Software Model Checker
•  useful to “average” users
– user-friendly, efficient, trusted, certificate-producing, …

•  useful to researchers in verification
– modular design, clean separation between syntax, semantics, and logic, …

Stand on the shoulders of giants
•  reuse techniques from compiler community to reduce verification effort
– SSA, loop restructuring, induction variables, alias analysis, …
– static analysis and abstract interpretation

•  reduce verification to logic
– verification condition generation
– Constrained Horn Clauses

Build reusable logic-based verification technology
•  “SMT-LIB” for program verification

9
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

The Plan

This Lecture
•  front-end: verification conditions, constrained horn clauses
•  from verification problems to decision problems in logic

Next Lecture
•  back-end: solving verification conditions
•  IC3/PDR algorithms and extensions for software verification
•  http://arieg.bitbucket.org/pdf/gurfinkel_ssft15.pdf

Labs
•  we will play with tools
•  get binary distribution from github.com/seahorn/seahorn
•  get seahorn-tutorial repo from github.com/seahorn-tutorial
•  pre-requisites: recent Linux or OSX + clang-3.6
•  can use provided VM to satisfy the pre-requisites

10
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

SeaHorn Verification Framework

Distinguishing Features
•  LLVM front-end(s)
•  Constrained Horn Clauses to represent Verification Conditions
•  Comparable to state-of-the-art tools at SV-COMP’15

Goals
•  be a state-of-the-art Software Model Checker
•  be a framework for experimenting and developing CHC-based verification

11
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Related Tools

CPAChecker
•  Custom front-end for C
•  Abstract Interpretation-inspired verification engine
•  Predicate abstraction, invariant generation, BMC, k-induction

SMACK / Corral
•  LLVM-based front-end
•  Reduces C verification to Boogie
•  Corral / Q verification back-end based on Bounded Model Checking with SMT

UFO
•  LLVM-based front-end (partially reused in SeaHorn)
•  Combines Abstract Interpretation with Interpolation-Based Model Checking
•  (no longer actively developed)

12
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

SeaHorn Usage

>	 sea	 pf	 FILE.c	
Outputs sat	 for unsafe (has counterexample); unsat for safe
Additional options
•  -‐-‐cex=trace.xml outputs a counter-example in SV-COMP’15 format
•  --show-invars displays computed invariants
•  -‐-‐track={reg,ptr,mem} track registers, pointers, memory content
•  -‐-‐step={large,small}	 verification condition step-semantics
– small == basic block, large == loop-free control flow block

•  -‐-‐inline inline all functions in the front-end passes
Additional commands
•  sea	 smt – generates CHC in extension of SMT-LIB2 format
•  sea	 clp -- generates CHC in CLP format (under development)
•  sea	 lfe-‐smt – generates CHC in SMT-LIB2 format using legacy front-end

13
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Verification Pipeline

clang	 |	 pp	 |	 ms	 |opt	 |	 horn	

front-end

compile pre-process

mixed
semantics

optimize

VC gen &
solve

14
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

INTERMEDIATE
REPRESENTATION

Constrained Horn Clauses

15
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

 8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → h[X]),
 where
• A is a background theory (e.g., Linear Arithmetic, Arrays,
Bit-Vectors, or combinations of the above)
• Á is a constrained in the background theory A
•  p1, …, pn, h are n-ary predicates
• pi[X] is an application of a predicate to first-order terms

16
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Example Horn Encoding

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y)

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0)
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4 (x � y), p3(x, y).
h7i perr (x < y), p3(x, y).
h8i p4 p4.
h9i ? perr.

17
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

CHC Terminology

Rule h[X] Ã p1[X1],…, pn[Xn], Á.

Query false Ã p1[X1],…, pn[Xn], Á.

Fact h[X] Ã Á.

Linear CHC h[X] Ã p[X1], Á.

Non-Linear CHC h[X] Ã p1[X1],…, pn[Xn], Á.
for n > 1

head body constraint

18
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

CHC Satisfiability

A model of a set of clauses ¦ is an interpretation of each predicate pi
that makes all clauses in ¦ valid

A set of clauses is satisfiable if it has a model, and is unsatisfiable
otherwise

A model is A-definable, it each pi is definable by a formula Ãi in A

19
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Relationship between CHC and Verification

A program satisfies a property iff corresponding CHCs are satisfiable
•  satisfiability-preserving transformations == safety preserving

Models for CHC correspond to verification certificates
•  inductive invariants and procedure summaries

Unsatisfiability (or derivation of FALSE) corresponds to counterexample
•  the resolution derivation (a path or a tree) is the counterexample

CAVEAT: In SeaHorn the terminology is reversed
•  SAT means there exists a counterexample – a BMC at some depth is SAT
•  UNSAT means the program is safe – BMC at all depths are UNSAT

20
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

FROM PROGRAMS TO
CLAUSES

21
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Hoare Triples

A Hoare triple {Pre} P {Post} is valid iff every terminating execution of P
that starts in a state that satisfies Pre ends in a state that satisfies Post
Inductive Loop Invariant

Function Application

Recursion

Pre) Inv {InvÆC} Body {Inv} InvÆ¬C) Post

{Pre} while C do Body {Post}

(PreÆp=a)) P {P} BodyF {Q} (QÆp,r=a,b)) Post

{Pre} b = F(a) {Post}

{Pre} b = F(a) {Post} ` {Pre} BodyF {Post}

{Pre} b = F(a) {Post}

22
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Weakest Liberal Pre-Condition

Validity of Hoare triples is reduced to FOL validity by applying a
predicate transformer

Dijkstra’s weakest liberal pre-condition calculus [Dijkstra’75]

 wlp (P, Post)

weakest pre-condition ensuring that executing P ends in Post

 {Pre} P {Post} is valid , Pre) wlp (P, Post)

23
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

A Simple Programming Language

Prog	 	 ::=	 def	 Main(x)	 {	 bodyM	 },	 …,	 def	 P	 (x)	 {	 bodyP	 }	
	
body	 	 ::=	 stmt	 (;	 stmt)*	
	
stmt	 	 ::=	 x	 =	 E	 |	 assert	 (E)	 |	 assume	 (E)	 |	 	
	 	 	 	 	 	 	 	 	 	 while	 E	 do	 S	 |	 y	 =	 P(E)	 |	
	 	 	 	 	 	 	 	 	 	 L:stmt	 |	 goto	 L	 	 	 	 	 	 	 	 	 	 	 	 	 (optional)	
	
E	 	 	 	 	 :=	 expression	 over	 program	 variables	

24
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Horn Clauses by Weakest Liberal Precondition

Prog	 ::=	 def	 Main(x)	 {	 bodyM	 },	 …,	 def	 P	 (x)	 {	 bodyP	 }	

wlp (x=E, Q) = let x=E in Q
wlp (assert(E) , Q) = E Æ Q
wlp (assume(E), Q) = E → Q
wlp (while	 E	 do	 S, Q) = I(w) Æ
 8w . ((I(w) Æ E) → wlp (S, I(w))) Æ ((I(w) Æ ¬E) → Q))
wlp (y	 =	 P(E), Q) = ppre(E) Æ (8 r. p(E, r) → Q[r/y])

ToHorn (def	 P(x)	 {S}) = wlp (x0=x;assume(ppre(x)); S, p(x0, ret))
ToHorn (Prog) = wlp (Main(), true) Æ 8{P 2 Prog} . ToHorn (P)

25
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Example of a WLP Horn Encoding

{y ¸ 0} P {x = xold+yold} is true iff the query C3 is satisfiable

{Pre:	 y¸	 0}	
	 xo	 =	 x;	
	 yo	 =	 y;	 	
	 while	 y	 >	 0	 do	
	 	 	 x	 =	 x+1;	
	 	 	 y	 =	 y−1;	
{Post:	 x=xo+yo}	

C1:	 I(x,y,x,y)	 Ã	 y>=0.	
C2:	 I(x+1,y-‐1,xo,yo)	 Ã	 I(x,y,xo,yo),	 y>0.	
C3:	 false	 Ã	 I(x,y,xo,yo),	 y·0,	 x≠xo+yo	 	

ToHorn

26
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Dual WLP

Dual weakest liberal pre-condition

 dual-wlp (P, Post) = ¬wlp (P, ¬Post)

s ² dual-wlp (P, Post) iff there exists an execution of P that starts in s
and ends in Post

dual-wlp (P, Post) is the weakest condition ensuring that an execution
of P can reach a state in Post

27
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Control Flow Graph

A CFG is a graph of basic blocks
•  edges represent different control flow

A CFG corresponds to a program syntax
•  where statements are restricted to the form
 Li:S ; goto Lj
 and S is control-free (i.e., assignments and
procedure calls)

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y)

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0)
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4 (x � y), p3(x, y).
h7i perr (x < y), p3(x, y).
h8i p4 p4.
h9i ? perr.

basic block

28
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Horn Clauses by Dual WLP

Assumptions
•  each procedure is represent by a control flow graph
–  i.e., statements of the form li:S ; goto lj , where S is loop-free

•  program is unsafe iff the last statement of Main() is reachable
–  i.e., no explicit assertions. All assertions are top-level.

For each procedure P(x), create predicates
•  l(w) for each label, pen(x0,x,w) for entry, pex (x0

,r) for exit

The verification condition is a conjunction of clauses:
pen(x0,x) Ã x

0
=x

li(x0
,w’) Ã lj(x0

,w) Æ ¬wlp (S, ¬(w=w’)), for each statement li: S; goto lj
p (x

0
,r) Ã pex(x0

,r)

false Ã Mainex(x, ret)

29
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Example Horn Encoding

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y)

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0)
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4 (x � y), p3(x, y).
h7i perr (x < y), p3(x, y).
h8i p4 p4.
h9i ? perr.

30
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

From CFG to Cut Point Graph

A Cut Point Graph hides (summarizes) fragments of a control flow graph
by (summary) edges

Vertices (called, cut points) correspond to some basic blocks

An edge between cut-points c and d summarizes all finite (loop-free)
executions from c to d that do not pass through any other cut-points

31
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Cut Point Graph Example

1

2

3 4

5

6

1

6

CFG CPG

32
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

From CFG to Cut Point Graph

A Cut Point Graph hides (summarizes) fragments of a control flow graph
by (summary) edges

Cut Point Graph preserves reachability of (not-summarized) control
location.

Summarizing loops is undecidable! (Halting program)

A cutset summary summarizes all location except for a cycle cutset of a
CFG. Computing minimal cutset summary is NP-hard (minimal feedback
vertex set).

A reasonable compromise is to summarize everything but heads of
loops. (Polynomial-time computable).

33
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Single Static Assignment

SSA == every value has a unique assignment (a definition)
A procedure is in SSA form if every variable has exactly one definition

SSA form is used by many compilers
•  explicit def-use chains
•  simplifies optimizations and improves analyses

PHI-function are necessary to maintain unique definitions in branching
control flow

 x = PHI (v0:bb0, …, vn:bbn)) (phi-assignment)

“x gets vi if previously executed block was bbi”

34
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Single Static Assignment: An Example
0:	 goto	 1	
1:	 x_0	 =	 PHI(0:0,	 x_3:5);	
	 	 	 y_0	 =	 PHI(y:0,	 y_1:5);	
	 	 	 if	 (x_0	 <	 N)	 goto	 2	 else	 goto	 6	 	
2:	 if	 (y_0	 >	 0)	 goto	 3	 else	 goto	 4	
	
3:	 x_1	 =	 x_0	 +	 y_0;	 goto	 5	 	
4:	 x_2	 =	 x_0	 –	 y_0;	 goto	 5	
	
5:	 x_3	 =	 PHI(x_1:3,	 x_2:4);	
	 	 	 y_1	 =	 -‐1	 *	 y_0;	
	 	 	 goto	 1	
6:	

int	 x,	 y,	 n;	
	
x	 =	 0;	
while	 (x	 <	 N)	 {	
	 	 if	 (y	 >	 0)	 	
	 	 	 	 x	 =	 x	 +	 y;	
	 	 else	
	 	 	 	 x	 =	 x	 –	 y;	
	 	 y	 =	 -‐1	 *	 y;	
}	

val:bb

35
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Large Step Encoding

Problem: Generate a
compact verification
condition for a loop-
free block of code

0:	 goto	 1	
1:	 x_0	 =	 PHI(0:0,	 x_3:5);	
	 	 	 y_0	 =	 PHI(y:0,	 y_1:5);	
	 	 	 if	 (x_0	 <	 N)	 goto	 2	 else	 goto	 6	
	
2:	 if	 (y_0	 >	 0)	 goto	 3	 else	 goto	 4	
	
3:	 x_1	 =	 x_0	 +	 y_0;	 goto	 5	
	
4:	 x_2	 =	 x_0	 –	 y_0;	 goto	 5	
	
5:	 x_3	 =	 PHI(x_1:3,	 x_2:4);	
	 	 	 y_1	 =	 -‐1	 *	 y_0;	
	 	 	 goto	 1	
6:	

36
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

	
1:	 x_0	 =	 PHI(0:0,	 x_3:5);	
	 	 	 y_0	 =	 PHI(y:0,	 y_1:5);	
	 	 	 if	 (x_0	 <	 N)	 goto	 2	 else	 goto	 6	
	
2:	 if	 (y_0	 >	 0)	 goto	 3	 else	 goto	 4	
	
3:	 x_1	 =	 x_0	 +	 y_0;	 goto	 5	
	
4:	 x_2	 =	 x_0	 –	 y_0;	 goto	 5	
	
5:	 x_3	 =	 PHI(x_1:3,	 x_2:4);	
	 	 	 y_1	 =	 -‐1	 *	 y_0;	
	 	 	 goto	 1	
	

Large Step Encoding: Extract all Actions
x1	 =	 x0	 +	 y0	
x2	 =	 x0	 –	 y0	
y1	 =	 -‐1	 *	 y0	

37
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

	
1:	 x_0	 =	 PHI(0:0,	 x_3:5);	
	 	 	 y_0	 =	 PHI(y:0,	 y_1:5);	
	 	 	 if	 (x_0	 <	 N)	 goto	 2	 else	 goto	 6	
	
2:	 if	 (y_0	 >	 0)	 goto	 3	 else	 goto	 4	
	
3:	 x_1	 =	 x_0	 +	 y_0;	 goto	 5	
	
4:	 x_2	 =	 x_0	 –	 y_0;	 goto	 5	
	
5:	 x_3	 =	 PHI(x_1:3,	 x_2:4);	
	 	 	 y_1	 =	 -‐1	 *	 y_0;	
	 	 	 goto	 1	
	

Example: Encode Control Flow
x1	 =	 x0	 +	 y0	
x2	 =	 x0	 –	 y0	
y1	 =	 -‐1	 *	 y0	

B2	 →	 x0	 <	 N	 	
B3	 →	 B2	 ∧	 y0	 >	 0	 	

B4	 →	 B2	 ∧	 y0	 ≤	 0	 	
B5	 →	 (B3	 ∧	 x3=x1)∨	 	
	 	 	 	 	 (B4	 ∧	 x3=x2)	

B5	 ∧	 x’0=x3	 ∧	 y’0=y1	

p1(x’0,y’0) Ã p1 (x0, y0), Á.

38
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

PROGRAM TRANSFORMATION
Mixed Semantics

39
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Deeply nested assertions

Assertion

Main

40
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Deeply nested assertions

Counter-examples are long
Hard to determine (from main) what is relevant

Assertion

Main

41
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Mixed Semantics

Stack-free program semantics combining:
•  operational (or small-step) semantics
–  i.e., usual execution semantics

•  natural (or big-step) semantics: function summary [Sharir-Pnueli 81]
–  (¾, ¾`) 2 ||f|| iff the execution of f on input state ¾ terminates and results in state ¾’

•  some execution steps are big, some are small

Non-deterministic executions of function calls
•  update top activation record using function summary, or
•  enter function body, forgetting history records (i.e., no return!)

Preserves reachability and non-termination
 Theorem: Let K be the operational semantics, Km the stack-free semantics,

and L a program location. Then,

K ² EF (pc=L) , Km ² EF (pc=L) and K ² EG (pc≠L) , Km ² EG (pc≠L)

[GWC’08,LQ’14]

42
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

def	 main()	
1:	 int	 x	 =	 nd();	
2:	 x	 =	 x+1;	 	
3:	 while(x>=0)	
4:	 	 	 x=f(x);	
5:	 	 	 if(x<0)	
6:	 	 	 	 	 	 Error;	
7:	 	
8:	 END;	
	
def	 f(int	 y):	 ret	 y	 	 	
9:	 	 if(y¸10){	
10:	 	 	 	 y=y+1;	
11:	 	 	 	 y=f(y);	
12:	 else	 if(y>0)	
13:	 	 	 y=y+1;	 	
14:	 y=y-‐1	
15:	

Summary of f(y)
 (1·y·9 Æ y’=y)
Ç (y·0 Æ y’=y-1)

1

2

3

4

6:Error

9

10

11

12

y ¸ 10

y · 9
y’ = y+1

y’ = f(y)

5

7 8:END

13

14

15

y · 0

y’= y+1

y’= y-1

x ¸ 0

x’=nd()

x’ = f(x)

x < 0
x ¸ 0

x < 0

x’=x+1 y’=x

y’=y

 (1·x·9 Æ x’=x)
Ç (x·0 Æ x’=x-1)

x=3

x=4

x=4

x=4

y=4

y > 0

y=4

y=4

y=5

y=4

43
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Mixed Semantics as Program Transformation

Mixed Semantics

44
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Mixed Semantics: Summary

Every procedure is inlined at most once
•  in the worst case, doubles the size of the program
•  can be restricted to only inline functions that directly or indirectly call errror()

function
Easy to implement at compiler level
•  create “failing” and “passing” versions of each function
•  reduce “passing” functions to returning paths
•  in main(), introduce new basic block bb.F for every failing function F(), and

call failing.F in bb.F
•  inline all failing calls
•  replace every call to F to non-deterministic jump to bb.F or call to passing F

Increases context-sensitivity of context-insensitive analyses
•  context of failing paths is explicit in main (because of inlining)
•  enables / improves many traditional analyses

45
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

SOLVING CHC WITH SMT

46
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Programs, Cexs, Invariants

A program P = (V, Init, ½, Bad)
•  Notation: F(X) = 9 u . (X Æ ½) Ç Init

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(v0) ^

N�1̂

i=0

⇢(vi, vi+1)

!
^ Bad(vN) 6) ?

Init(u)) Inv(u)

Inv(u) ^ ⇢(u, v)) Inv(v)

Inv(u)) ¬Bad(u)

47
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

IC3/PDR Algorithm Overview

Input: Safety problem hInit(X),Tr(X,X 0
),Bad(X)i

F0 Init ;N 0 repeat
G PdrMkSafe([F0, . . . , FN],Bad)
if G = [] then return Reachable;
80 i N · Fi G[i]

F0, . . . , FN PdrPush([F0, . . . , FN])

if 90 i < N · Fi = Fi+1 then return Unreachable;

N N + 1 ; FN ;
until 1;

bounded
safety

strengthen
result

48
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

IC3/PDR in Pictures PdrMkSafe

49
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

IC3/PDR in Pictures
Cex Queue

Trace

Frame R0 Frame R1
lemma

cex

PdrMkSafe

50
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Inductive

IC3/PDR in Pictures PdrPush

51
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Inductive

IC3/PDR in Pictures PdrPush

PDR Invariants

 Ri → ¬ Bad Init → Ri

 Ri → Ri+1 Ri Æ ½ → Ri+1

52
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Spacer: Solving CHC in Z3

Spacer: solver for SMT-constrained Horn Clauses
•  stand-alone implementation in a fork of Z3
•  http://bitbucket.org/spacer/code

Support for Non-Linear CHC
•  model procedure summaries in inter-procedural verification conditions
•  model assume-guarantee reasoning
•  uses MBP to under-approximate models for finite unfoldings of predicates
•  uses MAX-SAT to decide on an unfolding strategy

Supported SMT-Theories
•  Best-effort support for arbitrary SMT-theories
– data-structures, bit-vectors, non-linear arithmetic

•  Full support for Linear arithmetic (rational and integer)
•  Quantifier-free theory of arrays
– only quantifier free models with limited applications of array equality

53
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

RESULTS

54
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

SV-COMP 2015

4th Competition on Software Verification held (here!) at TACAS 2015
Goals
•  Provide a snapshot of the state-of-the-art in software verification to the

community.
•  Increase the visibility and credits that tool developers receive.
•  Establish a set of benchmarks for software verification in the community.

Participants:
•  Over 22 participants, including most popular Software Model Checkers and

Bounded Model Checkers
Benchmarks:
•  C programs with error location (programs include pointers, structures, etc.)
•  Over 6,000 files, each 2K – 100K LOC
•  Linux Device Drivers, Product Lines, Regressions/Tricky examples
•  http://sv-comp.sosy-lab.org/2015/benchmarks.php

http://sv-comp.sosy-lab.org/2015/

55
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Results for DeviceDriver category

�

��

���

����

��
�
��
��
��

�����
����

����������
�����
�������

�����������
����������

������

� ��� ���� ���� ���� ����

�����������������

56
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Detecting Buffer Overflow in Auto-pilot software

Show absence of Buffer Overflows in
•  paparazzi and mnav autopilots

Automatically instrument buffer accesses with runtime checks
Use SeaHorn to validate that run-time checks never fail
•  somewhat slower than pure abstract interpretation
•  much more precise!

LLVM Pass to insert
BO checks

57
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Conclusion

SeaHorn (http://seahorn.github.io)
•  a state-of-the-art Software Model Checker
•  LLVM-based front-end
•  CHC-based verification engine
•  a framework for research in logic-based verification

The future
•  making SeaHorn useful to users of verification technology
– counterexamples, build integration, property specification, proofs, etc.

•  targeting many existing CHC engines
– specialize encoding and transformations to specific engines
– communicate results between engines

•  richer properties
–  termination, liveness, synthesis

58
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Contact Information

Arie Gurfinkel, Ph. D.
Sr. Researcher
CSC/SSD
Telephone: +1 412-268-5800
Email: info@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

