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The Lab 

Download SeaHorn  v.0.1.0-rc2 
•  http://github.com/seahorn/seahorn/releases 

(Optionally) If you need a virtual machine, see instructions at: 
•  http://arieg.bitbucket.org/ssft15.html 

Clone http://github.com/seahorn/seahorn-tutoral for examples 
 
PLEASE DO THIS BEFORE THE LAB J 
 
For THIS lecture, additional material at 
•  http://arieg.bitbucket.org/pdf/gurfinkel_ssft15.pdf 
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Constrained Horn Clauses (CHC) 

A Constrained Horn Clause (CHC) is a FOL 
formula of the form        

  8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → h[X]), 
 where 
• A is a background theory (e.g., Linear Arithmetic, Arrays, 
Bit-Vectors, or combinations of the above) 
• Á is a constrained in the background theory A 
•  p1, …, pn, h are n-ary predicates 
• pi[X] is an application of a predicate to first-order terms 
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CHC Terminology 

Rule h[X] Ã p1[X1],…, pn[Xn], Á. 

Query false Ã p1[X1],…, pn[Xn], Á. 

Fact h[X] Ã Á. 

Linear CHC h[X] Ã p[X1], Á. 

Non-Linear CHC h[X] Ã p1[X1],…, pn[Xn], Á. 
for n > 1 

head body constraint 
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Example Horn Encoding 

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y) 

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0) 
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4  (x � y), p3(x, y).
h7i perr  (x < y), p3(x, y).
h8i p4  p4.
h9i ?  perr.
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CHC Satisfiability 

A model of a set of clauses ¦ is an interpretation of each predicate pi 
that makes all clauses in ¦ valid 
 
A set of clauses is satisfiable if it has a model, and is unsatisfiable 
otherwise  
 
A model is A-definable, it each pi is definable by a formula Ãi in A 
 
In the context of program verification 
•  a program satisfies a property iff corresponding CHCs are satisfiable 
•  verification certificates correspond to models 
•  counterexamples correspond to derivations of false 

 

 
 



8 
Building Verifiers from Comp and SMT 
Gurfinkel, 2015 

© 2015 Carnegie Mellon University 

SOLVING CHC WITH SMT 
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IC3, PDR, and Friends (1) 

IC3: A SAT-based Hardware Model Checker 
•  Incremental Construction of Inductive Clauses for Indubitable Correctness 
•  A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011 

 
PDR: Explained and extended the implementation 
•  Property Directed Reachability 
•  N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property 

directed reachability. FMCAD 2011 
 
PDR with Predicate Abstraction (easy extension of IC3/PDR to SMT) 
•  A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit 

Predicate Abstraction. TACAS 2014 
•  J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014 
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IC3, PDR, and Friends (2) 

GPDR: Non-Linear CHC with Arithmetic constraints 
•  Generalized Property Directed Reachability 
•  K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 

2012 
 
SPACER: Non-Linear CHC with Arithmetic 
•  fixes an incompleteness issue in GPDR and extends it with under-

approximate summaries 
•  A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for 

Recursive Programs. CAV 2014 
 
PolyPDR: Convex models for Linear CHC 
•  simulating Numeric Abstract Interpretation with PDR 
•  N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 

2015 
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Cormac Flanagan, K. Rustan M. Leino: Houdini, an Annotation Assistant for ESC/Java. FME 2001: 500-517 
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Program Verification by Houdini 

Inductive Invariant 

Lemma2 

Lemma1 
Lemma3 

Safe? 
Yes No 

guess new  
lemmas 
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Guessing Lemmas by Evolving Approximations 

Inductive Invariant 

Lemma2 

Lemma1 
Lemma3 

Safe? 

Inductive Invariant 

Lemma2 

Lemma1 
Lemma3 

Safe? 

Inductive Invariant 

Lemma2 

Lemma1 
Lemma3 

Safe? 
No No No 

verifier verifier verifier 

approx. 1 approx. 2 approx. 3 
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Linear CHC Satisfiability 

Satisfiability of a set of linear CHCs is reducible to satisfiability of 
THREE clauses of the form 
 
 
 
 
where, X’ = {x’ | x 2 X},  P a fresh predicate, and Init, Bad, and Tr are 
constraints 
Proof: 
add extra arguments to distinguish between predicates 
      

Q(y) Æ Á → W(y, z)  

 P(id=‘Q’, y) Æ Á → P(id=‘W’, y, z) 

Init(X) ! P (X)

P (X) ! Bad(X)

P (X) ^ Tr(X,X 0) ! P (X 0)
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Programs, Cexs, Invariants 

A program P = (V, Init, Tr, Bad) 
•  Notation: F(X) = 9 u . (X Æ Tr) Ç Init 

P is UNSAFE if and only if there exists a number N s.t. 
 
 
 
P is SAFE if and only if there exists a safe inductive invariant Inv s.t. 

Inductive 

Safe 

Init(X0) ^
 

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN ) 6) ?

Init ) Inv

Inv(X) ^ Tr(X,X 0) ) Inv(X 0)

Inv ) ¬Bad
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IC3/PDR Algorithm Overview 

Input: Safety problem hInit(X),Tr(X,X 0
),Bad(X)i

F0  Init ;N  0 repeat
G PdrMkSafe([F0, . . . , FN ],Bad)
if G = [ ] then return Reachable;
80  i  N · Fi  G[i]

F0, . . . , FN  PdrPush([F0, . . . , FN ])

if 90  i < N · Fi = Fi+1 then return Unreachable;

N  N + 1 ; FN  ;
until 1;

bounded 
safety 

strengthen 
result 
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IC3/PDR in Pictures PdrMkSafe 
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IC3/PDR in Pictures 
Cex Queue 

Trace 

Frame F0 Frame F1 
lemma 

cex 

PdrMkSafe 



19 
Building Verifiers from Comp and SMT 
Gurfinkel, 2015 

© 2015 Carnegie Mellon University 

Inductive 

IC3/PDR in Pictures PdrPush 
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Inductive 

IC3/PDR in Pictures PdrPush 

PDR Invariants 

      Fi → ¬ Bad     Init → Fi 

      Fi → Fi+1         Fi Æ Tr → Fi+1 
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IC3/PDR 
Input: A safety problem hInit(X),Tr(X,X 0

),Bad(X)i.
Output: Unreachable or Reachable
Data: A cex queue Q , where c 2 Q is a pair hm, ii, m is a cube over

state variables, and i 2 N. A level N . A trace F0, F1, . . .
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · Fi = ;.
repeat

Unreachable If there is an i < N s.t. Fi ✓ Fi+1 return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q return Reachable.

Unfold If FN ! ¬Bad , then set N  N + 1.

Candidate If for some m, m! FN ^ Bad , then add hm,Ni to Q .

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0

, then add hm0, ii to Q .

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that '! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0
, then add ' to

Fj , for j  i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and Fi�1 ^ Tr ^m0
is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0  i < N and a clause (' _  ) 2 Fi, if ' 62 Fi+1, Init ! '
and ' ^ Fi ^ Tr ! '0

, then add ' to Fj , for each j  i+ 1.

until 1;
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IC3 Data-Structures 

A trace F =  F0, …, FN is a sequence of frames. 
•  A frame Fi is a set of clauses. Elements of Fi are called lemmas. 
•  Invariants: 
– Bounded Safety: 8 i < N . Fi → ¬Bad  
– Monotonicity: 8 i < N . Fi+1 µ Fi 

–  Inductiveness: 8 i < N . Fi Æ Tr → F’i+1 

A priority queue Q of counterexamples to induction (CTI) 
•  (m, i) 2 Q is a pair, where m is a cube and i a level 
•  if (m, i) 2 Q then there exists a path of length (N-i) from a state in 

m to a state in Bad 
•  Q is ordered by level 
–  (m, i) < (k, j)   iff    i < j 
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Termination and Progress 

Unreachable If there is an i < N s.t. Fi ✓ Fi+1

return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q
return Reachable.

Unfold If FN ! ¬Bad , then set N  N + 1.

Candidate If for some m, m! FN ^ Bad ,
then add hm,Ni to Q .
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Inductive Generalization 

A clause ϕ is inductive relative to F iff 
•  Init → ϕ          (Initialization)       and        ϕ Æ F Æ Tr → ϕ’       (Inductiveness) 

 
Implemented by first letting ϕ = ¬m and generalizing ϕ by iteratively 
dropping literals while checking the inductiveness condition 
 
Theorem: Let F0, F1, …, FN be a valid IC3 trace. If ϕ is inductive relative 
to Fi, 0 · i < N, then, for all j · i, ϕ is inductive relative to Fj. 
•  Follows from the monotonicity of the trace 
–  if j < i then  Fj → Fi  
–  if Fj → Fi then  (ϕ Æ Fi Æ Tr → ϕ’) → (ϕ Æ Fj Æ Tr → ϕ’) 

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that ' ! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0
, then

add ' to Fj , for j  i+ 1.
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Prime Implicants 

A formula ϕ is an implicant of a formula psi iff ϕ ) Ã 

 

A propositional implicant of Ã is a conjunction of literals ϕ such that ϕ is 
an implicant of Ã 

•   ϕ is a conjunction of literals 
•   ϕ ) Ã 

•   ϕ is a partial assignment that makes Ã true 

A propositonal implicant ϕ of Ã is called prime if no subset of ϕ is an 
implicant of Ã 

•   ϕ is a conjunction of literals 
•   ϕ ) Ã 

•   8 p . (p ≠ ϕ Æ ϕ ) p) ) (p ; Ã) 
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Generalizing Predecessors 

Decide rule chooses a (generalized) predecessor m0 of m that is 
consistent with the current frame 
 
Simplest implementation is to extract a predecessor mo from a 
satisfying assignment of M ² FiÆTrÆm’ 
•  m0 cab be further generalized using ternary simulation by dropping literals 

and checking that m’ remains forced 
 
An alternative is to let m0 be an implicant (not necessarily prime) of    
FiÆ9 X’.(Tr Æ m’) 
•  finding a prime implicant is difficult because of the existential quantification 
•  we settle for an arbitrary implicant. The side conditions ensure it is not trivial 

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0

, then add hm0, ii to Q .
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Strengthening a trace 

Also known as Push or Propagate 
Bounded safety proofs are usually very weak towards the end 
•  not much is needed to show that error will not happen in one or two steps 

This tends to make them non-inductive 
•  a weakness of interpolation-based model checking, like IMPACT 
•  in IMPACT, this is addressed by forced covering heuristic 

Induction “applies” forced cover one lemma at a time 
•  whenever all lemmas are pushed Fi+1 is inductive (and safe) 
•  (optionally) combine strengthening with generalization 

Implementation 
•  Apply Induction from 0 to N whenever Conflict and Decide are not applicable 

Induction For 0  i < N and a clause (' _  ) 2 Fi, if ' 62 Fi+1, Init ! '
and ' ^ Fi ^ Tr ! '0

, then add ' to Fj , for each j  i+ 1.
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Long Counterexamples 

Whenever a counterexample m is blocked at level i, it is known that 
•  there is no path of length i from Init to m (because got blocked) 
•  there is a path of length (N-i) from m to Bad 

Can check whether there exists a path of length (i+1) from Init to m 
•  (Leaf) check eagerly by placing the CTI back into the queue at a higher level 
•  (No Leaf) check lazily by waiting until the same (or similar) CTI is discovered 

after N is increased by Unfold 
Leaf allows IC3 to discover counterexamples much longer than the 
current unfolding depth N 
•  each CTI re-enqueued by Leaf adds one to the depth of the longest possible 

counterexample found 
•  a real counterexample might chain through multiple such CTI’s 

Leaf If hm, ii 2 Q , 0 < i < N and Fi�1 ^ Tr ^m0
is unsatisfiable, then add

hm, i+ 1i to Q .
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Queue Management for Long Counterexamples 

A queue element is a triple (m, i, d) 
•  m is a CTI, i a level, d a depth 

 
Decide sets m and i as before, and sets d to 0 
Leaf increases i and d by one 
•  i determines how far the CTI can be pushed back 
•  d counts number of times the CTI was pushed forward 

Queue is ordered first by level, then by depth 
•  (m, i, d) < (k, j, e)  ,  i < j Ç (i=j Æ d < e) 

Overall exploration mimics iterative deepening with non-uniform 
exploration depth 
•  go deeper each time before backtracking 
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PDR FOR ARITHMETIC 
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Arithmetic PDR 
Input: A safety problem hInit(X),Tr(X,X 0

),Bad(X)i.
Output: Unreachable or Reachable
Data: A cex queue Q , where c 2 Q is a pair hm, ii, m is a cube over

state variables, and i 2 N. A level N . A trace F0, F1, . . .
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · Fi = ;.
repeat

Unreachable If there is an i < N s.t. Fi ✓ Fi+1 return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q return Reachable.

Unfold If FN ! ¬Bad , then set N  N + 1.

Candidate If for some m, m! FN ^ Bad , then add hm,Ni to Q .

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0

, then add hm0, ii to Q .

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that '! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0
, then add ' to

Fj , for j  i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and Fi�1 ^ Tr ^m0
is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0  i < N and a clause (' _  ) 2 Fi, if ' 62 Fi+1, Init ! '
and ' ^ Fi ^ Tr ! '0

, then add ' to Fj , for each j  i+ 1.

until 1;

Notation: F(A) = A(X) ^ Tr(X,X 0
) _ Init(X 0

).

Decide If hP, i+ 1i 2 Q and there is a model m(X,X 0
) s.t.

m |= F(F
i

) ^ P 0
, add hP#, ii to Q ,

where P# = MBP(X 0,m,F(F
i

) ^ P 0
).

Conflict For 0  i < N , given a counterexample

hP, i+ 1i 2 Q s.t. F(F
i

) ^ P 0
is unsatisfiable,

add P "
= Itp(F(F

i

)(Xo, X), P ) to F
j

for j  i+ 1.
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Craig Interpolation Theorem 

Theorem (Craig 1957) 
Let A and B be two First Order (FO) formulae such that A ) ¬B, then 
there exists a FO formula I, denoted ITP(A, B), such that 
     

 A ) I        I ) ¬B     
     atoms(I) 2 atoms(A) Å atoms(B) 
 
A Craig interpolant ITP(A, B) can be effectively constructed from a 
resolution proof of unsatisfiability of A Æ B 
 
In Model Cheching, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states 
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Alternative Definition of an Interpolant 

Let F = A(x, z) Æ B(z, y) be UNSAT, where x and y are distinct 
•  Note that for any assignment v to z either 
– A(x, v) is UNSAT, or 
– B(v, y) is UNSAT 

 
An interpolant is a circuit I(z) such that for every assignment v to z 
•  I(v) = A only if A(x, v) is UNSAT 
•  I(v) = B only if B(v, y) is UNSAT 

A proof system S has a feasible interpolation if for every refutation ¼ of F 
in S, F has an interpolant polynomial in the size of ¼ 
•  propositional resolution has feasible interpolation 
•  extended resolution does not have feasible interpolation 
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Farkas Lemma 

Let M = t1 ¸ b1 Æ … Æ tn ¸ bn, where ti are linear terms and bi are 
constants M is unsatisfiable iff 0 ¸ 1 is derivable from M by resolution  
 
M is unsatisfiable iff M ` 0 ¸ 1 
•  e.g., x + y > 10, -x > 5, -y > 3 ` (x+y-x-y) > (10 + 5 + 3) ` 0 > 18 

 
M is unsatisfiable iff there exist Farkas coefficients g1, …, gn such that  
•  gi ¸ 0 
•  g1£t1 + … + gn£tn = 0 
•  g1£b1 + … + gn£bn ¸ 1 
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Interpolation for Linear Real Arithmetic 

Let M = A Æ B be UNSAT, where 
•  A = t1 ¸ b1 Æ … Æ ti ¸ bi, and  
•  B = ti+1 ¸ bi Æ … Æ tn ¸ bn 

 
Let g1, …, gn be the Farkas coefficients witnessing UNSAT 
 
Then 
•  g1£(t1 ¸ b1) + … + gi£(ti ¸ bi) is an interpolant between A and B 
•  gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn) is an interpolant between B and A 

•  g1£t1 +…+gi£ti = - (gi+1£ti+1 + … + gn£tn) 
•  ¬(gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn)) is an interpolant between A and B 
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Craig Interpolation for Linear Arithmetic 

Useful properties of existing interpolation algorithms [CGS10] [HB12] 
•   I 2 ITP (A, B)  then ¬I 2 ITP (B, A) 
•   if A is syntactically convex (a monomial), then I is convex 
•   if B is syntactically convex, then I is co-convex (a clause) 
•   if A and B are syntactically convex, then I is a half-space 

A = F(Ri) 

I = lemma 
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Arithmetic Conflict 

Counterexample is blocked using Craig Interpolation 
•  summarizes the reason why the counterexample cannot be extended 

Generalization is not inductive 
•  weaker than IC3/PDR 
•  inductive generalization for arithmetic is still an open problem 
 

Notation: F(A) = (A(X) ^ Tr) _ Init(X 0
).

Conflict For 0  i < N , given a counterexample hP, i+ 1i 2 Q s.t.

F(Fi) ^ P 0
is unsatisfiable, add P "

= Itp(F(Fi), P 0
) to Fj for j  i+ 1.
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1.  find 

(e.g. specific pre-post pair 
that needs to be 
generalized) 

N |= '(x, y)

N⌫y

 (y) ⌘ 9x · '(x, y)Expensive to find a quantifier-free 

9x · '(x, y)Models of 

Lazy Quantifier 
Elimination! 

2. choose disjunct “covering” N 
using virtual substitution 

Model Based Projection 
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Model Based Projection 

Definition: Let ϕ be a formula, U a set of variables, and M a 
model of ϕ. Then Ã = MBP (U, M, ϕ) is a Model Based 
Project of U, M and ϕ iff 
1.   Ã is a monomial            (optional) 
2.  Vars(Ã) µ Vars(ϕ) \ U 
3.  M ² Ã 

4.   Ã ) 9 U . ϕ

For a fixed set of variables U and a formula ϕ, MBP is a 
function from models to formulas 
 
MBP is finite if its range (as a function defined above) is 
finite 
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MBP for Linear Rational Arithmetic 

e t 

` ` `

9` · (` = e ^ �1) _ (t < ` ^ ` < u) _ (` < u ^ �2)

⌘ (�1 _ (t < e ^ e < u) _ (e < u ^ �2))

_ (t < u _ (t < u ^ �2))

_ �2

pick a disjunct that covers a given model 

[1] Loos and Weispfenning, Applying Linear Quantifier Elimination, 1993 
[2] Tobias Nipkow, Linear Quantifier Elimination, 2008 
[3] Bjorner, Linear Quantifier Elimination as an Abstract Decision Procedure, 2010 
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Arithmetic Decide 

Compute a predecessor using an under-approximation of quantifier 
elimination – called Model Based Projection 
 
To ensure progress, Decide must be finite 
•  finitely many possible predecessors when all other arguments are fixed 

 
Alternatives 
•  Completeness can follow from the Conflict rule only 
–  for Linear Arithmetic this means using Fourier-Motzkin implicants 

•  Completeness can follow from an interaction of Decide and Conflict 

Notation: F(A) = (A(X) ^ Tr(X,X 0
) _ Init(X 0

).

Decide If hP, i+ 1i 2 Q and there is a model m(X,X 0
) s.t. m |= F(Fi) ^ P 0

,

add hP#, ii to Q , where P# = MBP(X 0,m,F(Fi) ^ P 0
).
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PDR FOR NON-LINEAR CHC 
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Non-Linear CHC Satisfiability 

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is 
reducible to satisfiability of THREE clauses of the form 
 
 
 
 
where, X’ = {x’ | x 2 X}, Xo = {xo | x 2 X}, P a fresh predicate, and Init, 
Bad, and Tr are constraints 
Proof: 
•  factor rules with more than 2 predicates in the body 

replace P1(x) Æ P2(y) Æ P3(z) Æ Á(x,y,z) → H(x, y, z) 
by P1(x) Æ W(y,z) Æ phi(x,y,z) → H(x,y,z). P2(y) Æ P3(z) → W(y, z). 

•  add extra arguments to distinguish between predicates 
 P(id=‘P2’, y) Æ P(id=‘P3’, z) → P(id=‘W’, y, z). 

Init(X) ! P (X)

P (X) ! Bad(X)

P (X) ^ P (Xo) ^ Tr(X,Xo, X 0) ! P (X 0)
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Non-linear CHC by reduction to linear CHC 

Can non-linear CHC satisfiability be reduced to 
(multiple) linear CHC satisfiability problems? 

Init(X) ! P (X)

P (X) ! Bad(X)

P (X) ^ P (Xo) ^ Tr(X,Xo, X 0) ! P (X 0)
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Generalized GPDR 
counterexample 

is a tree 

two 
predecessors 

theory-aware 
Conflict 

Input: A safety problem hInit(X),Tr(X,Xo, X 0
),Bad(X)i.

Output: Unreachable or Reachable
Data: A cex queue Q , where a cex hc0, . . . , cki 2 Q is a tuple, each

c
j

= hm, ii, m is a cube over state variables, and i 2 N. A level N .

A trace F0, F1, . . .
Notation: F(A,B) = Init(X 0

) _ (A(X) ^B(Xo

) ^ Tr), and
F(A) = F(A,A)
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · F

i

= ;
Require: Init ! ¬Bad
repeat

Unreachable If there is an i < N s.t. F
i

✓ F
i+1 return Unreachable.

Reachable if exists t 2 Q s.t. for all hc, ii 2 t, i = 0, return Reachable.

Unfold If F
N

! ¬Bad , then set N  N + 1 and Q ;.

Candidate If for some m, m! F
N

^ Bad , then add hhm,Nii to Q .

Decide If there is a t 2 Q, with c = hm, i+ 1i 2 t, m1 ! m, l0 ^mo

0 ^m0
1 is

satisfiable, and l0 ^mo

0 ^m0
1 ! F

i

^ F o

i

^Tr ^m0
then add

ˆt to Q, where

ˆt = t with c replaced by two tuples hl0, ii, and hm0, ii.

Conflict If there is a t 2 Q with c = hm, i+ 1i 2 t, s.t. F(F
i

) ^m0
is

unsatisfiable. Then, add ' = Itp(F(F
i

),m0
) to F

j

, for all 0  j  i+ 1.

Leaf If there is t 2 Q with c = hm, ii 2 t, 0 < i < N and F(F
i�1) ^m0

is

unsatisfiable, then add

ˆt to Q , where

ˆt is t with c replaced by hm, i+ 1i.

Induction For 0  i < N and a clause (' _  ) 2 F
i

, if ' 62 F
i+1,

F(� ^ F
i

)! �0, then add ' to F
j

, for all j  i+ 1.

until 1;
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Counterexamples to non-linear CHC 

A set S of CHC is unsatisfiable iff S can derive FALSE 
•  we call such a derivation a counterexample 

For linear CHC, the counterexample is a path  
For non-linear CHC, the counterexample is a tree 

FALSE 

s’4 2 s2 Æ so3 Æ Tr 

s2 2 Init s3 2 Init 

s’5 2 s0 Æ so
1 Æ Tr 

s0 2 Init s1 2 Init 
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GPDR Search Space 

At each step, one CTI in the frontier is chosen and its two children are 
expanded 

Le
ve

l 
Bad queue 

element 
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GPDR: Deciding predecessors 

Compute two predecessors at each application of GPDR/Decide 
 
Can explore both predecessors in parallel 
•  e.g., BFS or DFS exploration order 

Number of predecessors is unbounded 
•  incomplete even for finite problem (i.e., non-recursive CHC) 
•  Is compatible with MBP approach of APDR? 

No caching/summarization of previous decisions 
•  worst-case exponential for Boolean Push-Down Systems  

Decide If there is a t 2 Q, with c = hm, i+ 1i 2 t, m1 ! m, l0 ^mo

0 ^m0
1 is

satisfiable, and l0 ^mo

0 ^m0
1 ! F

i

^ F o

i

^Tr ^m0
then add

ˆt to Q, where

ˆt = t with c replaced by two tuples hl0, ii, and hm0, ii.
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Spacer 
Same queue as in 

IC3/PDR 

Same Conflict as 
in APDR/GPDR 

Three variants of 
Decide 

Cache Reachable 
states 

Input: A safety problem hInit(X),Tr(X,Xo, X 0
),Bad(X)i.

Output: Unreachable or Reachable
Data: A cex queue Q , where a cex c 2 Q is a pair hm, ii, m is a cube

over state variables, and i 2 N. A level N . A set of reachable

states Reach. A trace F0, F1, . . .
Notation: F(A,B) = Init(X 0

) _ (A(X) ^B(Xo

) ^ Tr), and
F(A) = F(A,A)
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · F

i

= ;, Reach = Init
Require: Init ! ¬Bad
repeat

Unreachable If there is an i < N s.t. F
i

✓ F
i+1 return Unreachable.

Reachable If Reach ^ Bad is satisfiable, return Reachable.

Unfold If F
N

! ¬Bad , then set N  N + 1 and Q ;.

Candidate If for some m, m! F
N

^ Bad , then add hm,Ni to Q .

Successor If there is hm, i+ 1i 2 Q and a model M M |=  , where
 = F(_Reach) ^m0

. Then, add s to Reach, where
s0 2MBP({X,Xo}, ).

DecideMust If there is hm, i+ 1i 2 Q , and a model M M |=  , where
 = F(F

i

,_Reach) ^m0
. Then, add s to Q , where

s 2MBP({Xo, X 0}, ).

DecideMay If there is hm, i+ 1i 2 Q and a model M M |=  , where
 = F(F

i

) ^m0
. Then, add s to Q , where so 2MBP({X,X 0}, ).

Conflict If there is an hm, i+ 1i 2 Q , s.t. F(F
i

) ^m0
is unsatisfiable. Then,

add ' = Itp(F(F
i

),m0
) to F

j

, for all 0  j  i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and F(F
i�1) ^m0

is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0  i < N and a clause (' _  ) 2 F
i

, if ' 62 F
i+1,

F(� ^ F
i

)! �0, then add ' to F
j

, for all j  i+ 1.

until 1;



50 
Building Verifiers from Comp and SMT 
Gurfinkel, 2015 

© 2015 Carnegie Mellon University 

Computing Reachable States 

Computing new reachable states by under-approximating forward image 
using MBP 
•  since MBP is finite, guarantee to exhaust all reachable states 

Second use of MBP 
•  orthogonal to the use of MBP in Decide 
•  REACH can contain auxiliary variables, but might get too large 

For Boolean CHC, the number of reachable states is bounded 
•  complexity is polynomial in the number of states 
•  same as reachability in Push Down Systems 

Successor If there is hm, i+ 1i 2 Q and a model M M |=  , where
 = F(_Reach) ^m0

. Then, add s to Reach, where
s0 2 MBP({X,Xo}, ).
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Must and May refinement 

DecideMust 
•  use computed summary to skip over a call site 

DecideMay 
•  use over-approximation of a calling context to guess an approximation of the 

call-site 
•  the call-site either refutes the approximation (Conflict) or refines it with a 

witness (Successor) 

DecideMust If there is hm, i+ 1i 2 Q , and a model M M |=  , where
 = F(F

i

,_Reach) ^m0
. Then, add s to Q , where

s 2 MBP({Xo, X 0}, ).

DecideMay If there is hm, i+ 1i 2 Q and a model M M |=  , where
 = F(F

i

) ^m0
. Then, add s to Q , where so 2 MBP({X,X 0}, ).
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Conclusion 

A program verifier is a compiler 
•  reusing an existing compiler is good idea, but comes with many caveats 

Verification is Logic 
•  reduce verification to decidability of logic formulas 
•  CHC is a great target fragment for many verification tasks 
•  Greatly simplifies reasoning by discharging program semantics 

An exciting direction with many extensions and open problems 
•  termination and model counting  
•  abstraction refinement and predicate abstraction 
•  abstract interpretation as model finding  
•  beyond arithmetic: arrays, memory, quantified models, separation logic, … 
•  program transformation for verification 
•  proof search strategies 
• … 
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