
© 2015 Carnegie Mellon University

Building Program Verifiers
from Compilers and Theorem
Provers

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel

based on joint work with Teme Kahsai,
Jorge A. Navas, Anvesh Komuravelli,
and Nikolaj Bjorner

2
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0002433

3
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

The Lab

Download SeaHorn v.0.1.0-rc2
•  http://github.com/seahorn/seahorn/releases

(Optionally) If you need a virtual machine, see instructions at:
•  http://arieg.bitbucket.org/ssft15.html

Clone http://github.com/seahorn/seahorn-tutoral for examples

PLEASE DO THIS BEFORE THE LAB J

For THIS lecture, additional material at
•  http://arieg.bitbucket.org/pdf/gurfinkel_ssft15.pdf

4
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

 8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → h[X]),
 where
• A is a background theory (e.g., Linear Arithmetic, Arrays,
Bit-Vectors, or combinations of the above)
• Á is a constrained in the background theory A
•  p1, …, pn, h are n-ary predicates
• pi[X] is an application of a predicate to first-order terms

5
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

CHC Terminology

Rule h[X] Ã p1[X1],…, pn[Xn], Á.

Query false Ã p1[X1],…, pn[Xn], Á.

Fact h[X] Ã Á.

Linear CHC h[X] Ã p[X1], Á.

Non-Linear CHC h[X] Ã p1[X1],…, pn[Xn], Á.
for n > 1

head body constraint

6
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Example Horn Encoding

int x = 1;
int y = 0;
while (⇤) {

x = x+ y;
y = y + 1;

}
assert(x � y);

l0 :
x = 1
y = 0

l1 : b1 = nondet()

l2 :
x = x+ y

y = y + 1

l3 :
b2 = x � y

l4 : lerr :

T

F

T F

h1i p0.
h2i p1(x, y)

p0, x = 1, y = 0.
h3i p2(x, y) p1(x, y) .
h4i p3(x, y) p1(x, y) .
h5i p1(x0

, y

0)
p2(x, y),
x

0 = x+ y,

y

0 = y + 1.
h6i p4 (x � y), p3(x, y).
h7i perr (x < y), p3(x, y).
h8i p4 p4.
h9i ? perr.

7
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

CHC Satisfiability

A model of a set of clauses ¦ is an interpretation of each predicate pi
that makes all clauses in ¦ valid

A set of clauses is satisfiable if it has a model, and is unsatisfiable
otherwise

A model is A-definable, it each pi is definable by a formula Ãi in A

In the context of program verification
•  a program satisfies a property iff corresponding CHCs are satisfiable
•  verification certificates correspond to models
•  counterexamples correspond to derivations of false

8
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

SOLVING CHC WITH SMT

9
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
•  Incremental Construction of Inductive Clauses for Indubitable Correctness
•  A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
•  Property Directed Reachability
•  N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property

directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to SMT)
•  A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit

Predicate Abstraction. TACAS 2014
•  J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014

10
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
•  Generalized Property Directed Reachability
•  K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT

2012

SPACER: Non-Linear CHC with Arithmetic
•  fixes an incompleteness issue in GPDR and extends it with under-

approximate summaries
•  A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for

Recursive Programs. CAV 2014

PolyPDR: Convex models for Linear CHC
•  simulating Numeric Abstract Interpretation with PDR
•  N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI

2015

11
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Cormac Flanagan, K. Rustan M. Leino: Houdini, an Annotation Assistant for ESC/Java. FME 2001: 500-517

12
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Program Verification by Houdini

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?
Yes No

guess new
lemmas

13
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Guessing Lemmas by Evolving Approximations

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?
No No No

verifier verifier verifier

approx. 1 approx. 2 approx. 3

14
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Linear CHC Satisfiability

Satisfiability of a set of linear CHCs is reducible to satisfiability of
THREE clauses of the form

where, X’ = {x’ | x 2 X}, P a fresh predicate, and Init, Bad, and Tr are
constraints
Proof:
add extra arguments to distinguish between predicates

Q(y) Æ Á → W(y, z)

 P(id=‘Q’, y) Æ Á → P(id=‘W’, y, z)

Init(X) ! P (X)

P (X) ! Bad(X)

P (X) ^ Tr(X,X 0) ! P (X 0)

15
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Programs, Cexs, Invariants

A program P = (V, Init, Tr, Bad)
•  Notation: F(X) = 9 u . (X Æ Tr) Ç Init

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN) 6) ?

Init) Inv

Inv(X) ^ Tr(X,X 0)) Inv(X 0)

Inv) ¬Bad

16
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

IC3/PDR Algorithm Overview

Input: Safety problem hInit(X),Tr(X,X 0
),Bad(X)i

F0 Init ;N 0 repeat
G PdrMkSafe([F0, . . . , FN],Bad)
if G = [] then return Reachable;
80  i  N · Fi G[i]

F0, . . . , FN PdrPush([F0, . . . , FN])

if 90  i < N · Fi = Fi+1 then return Unreachable;

N N + 1 ; FN ;
until 1;

bounded
safety

strengthen
result

17
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

IC3/PDR in Pictures PdrMkSafe

18
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

IC3/PDR in Pictures
Cex Queue

Trace

Frame F0 Frame F1
lemma

cex

PdrMkSafe

19
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Inductive

IC3/PDR in Pictures PdrPush

20
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Inductive

IC3/PDR in Pictures PdrPush

PDR Invariants

 Fi → ¬ Bad Init → Fi

 Fi → Fi+1 Fi Æ Tr → Fi+1

21
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

IC3/PDR
Input: A safety problem hInit(X),Tr(X,X 0

),Bad(X)i.
Output: Unreachable or Reachable
Data: A cex queue Q , where c 2 Q is a pair hm, ii, m is a cube over

state variables, and i 2 N. A level N . A trace F0, F1, . . .
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · Fi = ;.
repeat

Unreachable If there is an i < N s.t. Fi ✓ Fi+1 return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q return Reachable.

Unfold If FN ! ¬Bad , then set N N + 1.

Candidate If for some m, m! FN ^ Bad , then add hm,Ni to Q .

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0

, then add hm0, ii to Q .

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that '! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0
, then add ' to

Fj , for j  i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and Fi�1 ^ Tr ^m0
is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0  i < N and a clause (' _) 2 Fi, if ' 62 Fi+1, Init ! '
and ' ^ Fi ^ Tr ! '0

, then add ' to Fj , for each j  i+ 1.

until 1;

22
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

IC3 Data-Structures

A trace F = F0, …, FN is a sequence of frames.
•  A frame Fi is a set of clauses. Elements of Fi are called lemmas.
•  Invariants:
– Bounded Safety: 8 i < N . Fi → ¬Bad
– Monotonicity: 8 i < N . Fi+1 µ Fi

–  Inductiveness: 8 i < N . Fi Æ Tr → F’i+1

A priority queue Q of counterexamples to induction (CTI)
•  (m, i) 2 Q is a pair, where m is a cube and i a level
•  if (m, i) 2 Q then there exists a path of length (N-i) from a state in

m to a state in Bad
•  Q is ordered by level
–  (m, i) < (k, j) iff i < j

23
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Termination and Progress

Unreachable If there is an i < N s.t. Fi ✓ Fi+1

return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q
return Reachable.

Unfold If FN ! ¬Bad , then set N N + 1.

Candidate If for some m, m! FN ^ Bad ,
then add hm,Ni to Q .

24
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Inductive Generalization

A clause ϕ is inductive relative to F iff
•  Init → ϕ (Initialization) and ϕ Æ F Æ Tr → ϕ’ (Inductiveness)

Implemented by first letting ϕ = ¬m and generalizing ϕ by iteratively
dropping literals while checking the inductiveness condition

Theorem: Let F0, F1, …, FN be a valid IC3 trace. If ϕ is inductive relative
to Fi, 0 · i < N, then, for all j · i, ϕ is inductive relative to Fj.
•  Follows from the monotonicity of the trace
–  if j < i then Fj → Fi
–  if Fj → Fi then (ϕ Æ Fi Æ Tr → ϕ’) → (ϕ Æ Fj Æ Tr → ϕ’)

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that ' ! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0
, then

add ' to Fj , for j  i+ 1.

25
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Prime Implicants

A formula ϕ is an implicant of a formula psi iff ϕ) Ã

A propositional implicant of Ã is a conjunction of literals ϕ such that ϕ is
an implicant of Ã

•  ϕ is a conjunction of literals
•  ϕ) Ã

•  ϕ is a partial assignment that makes Ã true

A propositonal implicant ϕ of Ã is called prime if no subset of ϕ is an
implicant of Ã

•  ϕ is a conjunction of literals
•  ϕ) Ã

•  8 p . (p ≠ ϕ Æ ϕ) p)) (p ; Ã)

26
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Generalizing Predecessors

Decide rule chooses a (generalized) predecessor m0 of m that is
consistent with the current frame

Simplest implementation is to extract a predecessor mo from a
satisfying assignment of M ² FiÆTrÆm’
•  m0 cab be further generalized using ternary simulation by dropping literals

and checking that m’ remains forced

An alternative is to let m0 be an implicant (not necessarily prime) of
FiÆ9 X’.(Tr Æ m’)
•  finding a prime implicant is difficult because of the existential quantification
•  we settle for an arbitrary implicant. The side conditions ensure it is not trivial

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0

, then add hm0, ii to Q .

27
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Strengthening a trace

Also known as Push or Propagate
Bounded safety proofs are usually very weak towards the end
•  not much is needed to show that error will not happen in one or two steps

This tends to make them non-inductive
•  a weakness of interpolation-based model checking, like IMPACT
•  in IMPACT, this is addressed by forced covering heuristic

Induction “applies” forced cover one lemma at a time
•  whenever all lemmas are pushed Fi+1 is inductive (and safe)
•  (optionally) combine strengthening with generalization

Implementation
•  Apply Induction from 0 to N whenever Conflict and Decide are not applicable

Induction For 0  i < N and a clause (' _) 2 Fi, if ' 62 Fi+1, Init ! '
and ' ^ Fi ^ Tr ! '0

, then add ' to Fj , for each j  i+ 1.

28
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Long Counterexamples

Whenever a counterexample m is blocked at level i, it is known that
•  there is no path of length i from Init to m (because got blocked)
•  there is a path of length (N-i) from m to Bad

Can check whether there exists a path of length (i+1) from Init to m
•  (Leaf) check eagerly by placing the CTI back into the queue at a higher level
•  (No Leaf) check lazily by waiting until the same (or similar) CTI is discovered

after N is increased by Unfold
Leaf allows IC3 to discover counterexamples much longer than the
current unfolding depth N
•  each CTI re-enqueued by Leaf adds one to the depth of the longest possible

counterexample found
•  a real counterexample might chain through multiple such CTI’s

Leaf If hm, ii 2 Q , 0 < i < N and Fi�1 ^ Tr ^m0
is unsatisfiable, then add

hm, i+ 1i to Q .

29
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Queue Management for Long Counterexamples

A queue element is a triple (m, i, d)
•  m is a CTI, i a level, d a depth

Decide sets m and i as before, and sets d to 0
Leaf increases i and d by one
•  i determines how far the CTI can be pushed back
•  d counts number of times the CTI was pushed forward

Queue is ordered first by level, then by depth
•  (m, i, d) < (k, j, e) , i < j Ç (i=j Æ d < e)

Overall exploration mimics iterative deepening with non-uniform
exploration depth
•  go deeper each time before backtracking

30
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

PDR FOR ARITHMETIC

31
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Arithmetic PDR
Input: A safety problem hInit(X),Tr(X,X 0

),Bad(X)i.
Output: Unreachable or Reachable
Data: A cex queue Q , where c 2 Q is a pair hm, ii, m is a cube over

state variables, and i 2 N. A level N . A trace F0, F1, . . .
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · Fi = ;.
repeat

Unreachable If there is an i < N s.t. Fi ✓ Fi+1 return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q return Reachable.

Unfold If FN ! ¬Bad , then set N N + 1.

Candidate If for some m, m! FN ^ Bad , then add hm,Ni to Q .

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0

, then add hm0, ii to Q .

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that '! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0
, then add ' to

Fj , for j  i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and Fi�1 ^ Tr ^m0
is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0  i < N and a clause (' _) 2 Fi, if ' 62 Fi+1, Init ! '
and ' ^ Fi ^ Tr ! '0

, then add ' to Fj , for each j  i+ 1.

until 1;

Notation: F(A) = A(X) ^ Tr(X,X 0
) _ Init(X 0

).

Decide If hP, i+ 1i 2 Q and there is a model m(X,X 0
) s.t.

m |= F(F
i

) ^ P 0
, add hP#, ii to Q ,

where P# = MBP(X 0,m,F(F
i

) ^ P 0
).

Conflict For 0  i < N , given a counterexample

hP, i+ 1i 2 Q s.t. F(F
i

) ^ P 0
is unsatisfiable,

add P "
= Itp(F(F

i

)(Xo, X), P) to F
j

for j  i+ 1.

32
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A) ¬B, then
there exists a FO formula I, denoted ITP(A, B), such that

 A) I I) ¬B
 atoms(I) 2 atoms(A) Å atoms(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a
resolution proof of unsatisfiability of A Æ B

In Model Cheching, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

33
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Alternative Definition of an Interpolant

Let F = A(x, z) Æ B(z, y) be UNSAT, where x and y are distinct
•  Note that for any assignment v to z either
– A(x, v) is UNSAT, or
– B(v, y) is UNSAT

An interpolant is a circuit I(z) such that for every assignment v to z
•  I(v) = A only if A(x, v) is UNSAT
•  I(v) = B only if B(v, y) is UNSAT

A proof system S has a feasible interpolation if for every refutation ¼ of F
in S, F has an interpolant polynomial in the size of ¼
•  propositional resolution has feasible interpolation
•  extended resolution does not have feasible interpolation

34
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Farkas Lemma

Let M = t1 ¸ b1 Æ … Æ tn ¸ bn, where ti are linear terms and bi are
constants M is unsatisfiable iff 0 ¸ 1 is derivable from M by resolution

M is unsatisfiable iff M ` 0 ¸ 1
•  e.g., x + y > 10, -x > 5, -y > 3 ` (x+y-x-y) > (10 + 5 + 3) ` 0 > 18

M is unsatisfiable iff there exist Farkas coefficients g1, …, gn such that
•  gi ¸ 0
•  g1£t1 + … + gn£tn = 0
•  g1£b1 + … + gn£bn ¸ 1

35
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Interpolation for Linear Real Arithmetic

Let M = A Æ B be UNSAT, where
•  A = t1 ¸ b1 Æ … Æ ti ¸ bi, and
•  B = ti+1 ¸ bi Æ … Æ tn ¸ bn

Let g1, …, gn be the Farkas coefficients witnessing UNSAT

Then
•  g1£(t1 ¸ b1) + … + gi£(ti ¸ bi) is an interpolant between A and B
•  gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn) is an interpolant between B and A

•  g1£t1 +…+gi£ti = - (gi+1£ti+1 + … + gn£tn)
•  ¬(gi+1£(ti+1 ¸ bi) + … + gn£ (tn ¸ bn)) is an interpolant between A and B

36
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]
•  I 2 ITP (A, B) then ¬I 2 ITP (B, A)
•  if A is syntactically convex (a monomial), then I is convex
•  if B is syntactically convex, then I is co-convex (a clause)
•  if A and B are syntactically convex, then I is a half-space

A = F(Ri)

I = lemma

37
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Arithmetic Conflict

Counterexample is blocked using Craig Interpolation
•  summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
•  weaker than IC3/PDR
•  inductive generalization for arithmetic is still an open problem

Notation: F(A) = (A(X) ^ Tr) _ Init(X 0
).

Conflict For 0  i < N , given a counterexample hP, i+ 1i 2 Q s.t.

F(Fi) ^ P 0
is unsatisfiable, add P "

= Itp(F(Fi), P 0
) to Fj for j  i+ 1.

38
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

1.  find

(e.g. specific pre-post pair
that needs to be
generalized)

N |= '(x, y)

N⌫y

 (y) ⌘ 9x · '(x, y)Expensive to find a quantifier-free

9x · '(x, y)Models of

Lazy Quantifier
Elimination!

2. choose disjunct “covering” N
using virtual substitution

Model Based Projection

39
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Model Based Projection

Definition: Let ϕ be a formula, U a set of variables, and M a
model of ϕ. Then Ã = MBP (U, M, ϕ) is a Model Based
Project of U, M and ϕ iff
1.  Ã is a monomial (optional)
2.  Vars(Ã) µ Vars(ϕ) \ U
3.  M ² Ã

4.  Ã) 9 U . ϕ

For a fixed set of variables U and a formula ϕ, MBP is a
function from models to formulas

MBP is finite if its range (as a function defined above) is
finite

40
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

MBP for Linear Rational Arithmetic

e t

` ` `

9` · (` = e ^ �1) _ (t < ` ^ ` < u) _ (` < u ^ �2)

⌘ (�1 _ (t < e ^ e < u) _ (e < u ^ �2))

_ (t < u _ (t < u ^ �2))

_ �2

pick a disjunct that covers a given model

[1] Loos and Weispfenning, Applying Linear Quantifier Elimination, 1993
[2] Tobias Nipkow, Linear Quantifier Elimination, 2008
[3] Bjorner, Linear Quantifier Elimination as an Abstract Decision Procedure, 2010

41
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Arithmetic Decide

Compute a predecessor using an under-approximation of quantifier
elimination – called Model Based Projection

To ensure progress, Decide must be finite
•  finitely many possible predecessors when all other arguments are fixed

Alternatives
•  Completeness can follow from the Conflict rule only
–  for Linear Arithmetic this means using Fourier-Motzkin implicants

•  Completeness can follow from an interaction of Decide and Conflict

Notation: F(A) = (A(X) ^ Tr(X,X 0
) _ Init(X 0

).

Decide If hP, i+ 1i 2 Q and there is a model m(X,X 0
) s.t. m |= F(Fi) ^ P 0

,

add hP#, ii to Q , where P# = MBP(X 0,m,F(Fi) ^ P 0
).

42
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

PDR FOR NON-LINEAR CHC

43
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is
reducible to satisfiability of THREE clauses of the form

where, X’ = {x’ | x 2 X}, Xo = {xo | x 2 X}, P a fresh predicate, and Init,
Bad, and Tr are constraints
Proof:
•  factor rules with more than 2 predicates in the body

replace P1(x) Æ P2(y) Æ P3(z) Æ Á(x,y,z) → H(x, y, z)
by P1(x) Æ W(y,z) Æ phi(x,y,z) → H(x,y,z). P2(y) Æ P3(z) → W(y, z).

•  add extra arguments to distinguish between predicates
 P(id=‘P2’, y) Æ P(id=‘P3’, z) → P(id=‘W’, y, z).

Init(X) ! P (X)

P (X) ! Bad(X)

P (X) ^ P (Xo) ^ Tr(X,Xo, X 0) ! P (X 0)

44
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Non-linear CHC by reduction to linear CHC

Can non-linear CHC satisfiability be reduced to
(multiple) linear CHC satisfiability problems?

Init(X) ! P (X)

P (X) ! Bad(X)

P (X) ^ P (Xo) ^ Tr(X,Xo, X 0) ! P (X 0)

45
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Generalized GPDR
counterexample

is a tree

two
predecessors

theory-aware
Conflict

Input: A safety problem hInit(X),Tr(X,Xo, X 0
),Bad(X)i.

Output: Unreachable or Reachable
Data: A cex queue Q , where a cex hc0, . . . , cki 2 Q is a tuple, each

c
j

= hm, ii, m is a cube over state variables, and i 2 N. A level N .

A trace F0, F1, . . .
Notation: F(A,B) = Init(X 0

) _ (A(X) ^B(Xo

) ^ Tr), and
F(A) = F(A,A)
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · F

i

= ;
Require: Init ! ¬Bad
repeat

Unreachable If there is an i < N s.t. F
i

✓ F
i+1 return Unreachable.

Reachable if exists t 2 Q s.t. for all hc, ii 2 t, i = 0, return Reachable.

Unfold If F
N

! ¬Bad , then set N N + 1 and Q ;.

Candidate If for some m, m! F
N

^ Bad , then add hhm,Nii to Q .

Decide If there is a t 2 Q, with c = hm, i+ 1i 2 t, m1 ! m, l0 ^mo

0 ^m0
1 is

satisfiable, and l0 ^mo

0 ^m0
1 ! F

i

^ F o

i

^Tr ^m0
then add

ˆt to Q, where

ˆt = t with c replaced by two tuples hl0, ii, and hm0, ii.

Conflict If there is a t 2 Q with c = hm, i+ 1i 2 t, s.t. F(F
i

) ^m0
is

unsatisfiable. Then, add ' = Itp(F(F
i

),m0
) to F

j

, for all 0  j  i+ 1.

Leaf If there is t 2 Q with c = hm, ii 2 t, 0 < i < N and F(F
i�1) ^m0

is

unsatisfiable, then add

ˆt to Q , where

ˆt is t with c replaced by hm, i+ 1i.

Induction For 0  i < N and a clause (' _) 2 F
i

, if ' 62 F
i+1,

F(� ^ F
i

)! �0, then add ' to F
j

, for all j  i+ 1.

until 1;

46
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Counterexamples to non-linear CHC

A set S of CHC is unsatisfiable iff S can derive FALSE
•  we call such a derivation a counterexample

For linear CHC, the counterexample is a path
For non-linear CHC, the counterexample is a tree

FALSE

s’4 2 s2 Æ so3 Æ Tr

s2 2 Init s3 2 Init

s’5 2 s0 Æ so
1 Æ Tr

s0 2 Init s1 2 Init

47
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

GPDR Search Space

At each step, one CTI in the frontier is chosen and its two children are
expanded

Le
ve

l
Bad queue

element

48
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

GPDR: Deciding predecessors

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel
•  e.g., BFS or DFS exploration order

Number of predecessors is unbounded
•  incomplete even for finite problem (i.e., non-recursive CHC)
•  Is compatible with MBP approach of APDR?

No caching/summarization of previous decisions
•  worst-case exponential for Boolean Push-Down Systems

Decide If there is a t 2 Q, with c = hm, i+ 1i 2 t, m1 ! m, l0 ^mo

0 ^m0
1 is

satisfiable, and l0 ^mo

0 ^m0
1 ! F

i

^ F o

i

^Tr ^m0
then add

ˆt to Q, where

ˆt = t with c replaced by two tuples hl0, ii, and hm0, ii.

49
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Spacer
Same queue as in

IC3/PDR

Same Conflict as
in APDR/GPDR

Three variants of
Decide

Cache Reachable
states

Input: A safety problem hInit(X),Tr(X,Xo, X 0
),Bad(X)i.

Output: Unreachable or Reachable
Data: A cex queue Q , where a cex c 2 Q is a pair hm, ii, m is a cube

over state variables, and i 2 N. A level N . A set of reachable

states Reach. A trace F0, F1, . . .
Notation: F(A,B) = Init(X 0

) _ (A(X) ^B(Xo

) ^ Tr), and
F(A) = F(A,A)
Initially: Q = ;, N = 0, F0 = Init , 8i > 0 · F

i

= ;, Reach = Init
Require: Init ! ¬Bad
repeat

Unreachable If there is an i < N s.t. F
i

✓ F
i+1 return Unreachable.

Reachable If Reach ^ Bad is satisfiable, return Reachable.

Unfold If F
N

! ¬Bad , then set N N + 1 and Q ;.

Candidate If for some m, m! F
N

^ Bad , then add hm,Ni to Q .

Successor If there is hm, i+ 1i 2 Q and a model M M |= , where
 = F(_Reach) ^m0

. Then, add s to Reach, where
s0 2MBP({X,Xo},).

DecideMust If there is hm, i+ 1i 2 Q , and a model M M |= , where
 = F(F

i

,_Reach) ^m0
. Then, add s to Q , where

s 2MBP({Xo, X 0},).

DecideMay If there is hm, i+ 1i 2 Q and a model M M |= , where
 = F(F

i

) ^m0
. Then, add s to Q , where so 2MBP({X,X 0},).

Conflict If there is an hm, i+ 1i 2 Q , s.t. F(F
i

) ^m0
is unsatisfiable. Then,

add ' = Itp(F(F
i

),m0
) to F

j

, for all 0  j  i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and F(F
i�1) ^m0

is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0  i < N and a clause (' _) 2 F
i

, if ' 62 F
i+1,

F(� ^ F
i

)! �0, then add ' to F
j

, for all j  i+ 1.

until 1;

50
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Computing Reachable States

Computing new reachable states by under-approximating forward image
using MBP
•  since MBP is finite, guarantee to exhaust all reachable states

Second use of MBP
•  orthogonal to the use of MBP in Decide
•  REACH can contain auxiliary variables, but might get too large

For Boolean CHC, the number of reachable states is bounded
•  complexity is polynomial in the number of states
•  same as reachability in Push Down Systems

Successor If there is hm, i+ 1i 2 Q and a model M M |= , where
 = F(_Reach) ^m0

. Then, add s to Reach, where
s0 2 MBP({X,Xo},).

51
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Must and May refinement

DecideMust
•  use computed summary to skip over a call site

DecideMay
•  use over-approximation of a calling context to guess an approximation of the

call-site
•  the call-site either refutes the approximation (Conflict) or refines it with a

witness (Successor)

DecideMust If there is hm, i+ 1i 2 Q , and a model M M |= , where
 = F(F

i

,_Reach) ^m0
. Then, add s to Q , where

s 2 MBP({Xo, X 0},).

DecideMay If there is hm, i+ 1i 2 Q and a model M M |= , where
 = F(F

i

) ^m0
. Then, add s to Q , where so 2 MBP({X,X 0},).

52
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Conclusion

A program verifier is a compiler
•  reusing an existing compiler is good idea, but comes with many caveats

Verification is Logic
•  reduce verification to decidability of logic formulas
•  CHC is a great target fragment for many verification tasks
•  Greatly simplifies reasoning by discharging program semantics

An exciting direction with many extensions and open problems
•  termination and model counting
•  abstraction refinement and predicate abstraction
•  abstract interpretation as model finding
•  beyond arithmetic: arrays, memory, quantified models, separation logic, …
•  program transformation for verification
•  proof search strategies
• …

53
Building Verifiers from Comp and SMT
Gurfinkel, 2015

© 2015 Carnegie Mellon University

Contact Information

Arie Gurfinkel, Ph. D.
Sr. Researcher
CSC/SSD
Telephone: +1 412-268-5800
Email: info@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

