The Science, Art and Magic of
Constrained Horn Clauses

Arie Gurfinkel and Nikolaj Bjarner

SYNASC 2019
215t International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing

== Microsoft % WKFESIIQTEC())FO

https://notebooks.azure.com/arie-gurfinkel/projects/spacerexamples

Software Model Checking of
Programs / Transitions Systems /
Push-down Systems

Satisfiability of Constrained
Horn Logic (CHC) fragment of
First Order Logic

Reduce Model Checking to
FOL Satisfiability

<_

https://notebooks.azure.com/arie-gurfinkel/projects/spacerexamples

&

Constrained Horn Clauses (CHC)

Is it short for Horner?

Is it related to hornets?

Is it Santa Clause blowing a Horn?

Alfred Horn

<_

https://notebooks.azure.com/arie-gurfinkel/projects/spacerexamples

Example CHC: Is this SAT?

V- <0 = P(x)
Ve, o' - Plx) Nz <5AN2' =x+1 = P(2)
Ve - Plx) Ax > 10 = false

This set of clauses is satisfiable
The model is an extension of the standard model of arithmetic with:

P(z)={x |z <5}
(5,4,3,2,...)

Zﬁ

| https://notebooks.azure.com/arie-gurfinkel/projects/spacerexamples

Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL
formula of the form

YV - (o Ap1[X1 A ApplXa]) = h|X]

where
e - constraint in a background theory T
e T - background theory
—Linear Arithmetic, Arrays, Bit-Vectors, or combinations
eV - variables, and X; are terms over V
°*D4, ..., P, h - N-ary predicates
e p;[X] - application of a predicate to first-order terms

IIIIIIIIIIII

CHC Satisfiability

I1 - set of CHCs
M - T-model of a set of IT
M satisfies T
M satisfies IT — through first-order interpretation of each predicate p;

A set of clauses is satisfiable if and only if it has a model
» This is the usual FOL satisfiability

T-solution of a set of CHCs II is a substitution o from predicates p,to T-
formulas such that Il is T-valid

In the context of program verification

Program &= ¢ iff CHCprogram = @
Inductive Invariant Solution to CHC

v”v"AVTEETaTﬂé’é Counter Example Trace = Resolution proof of CHC

Example CHC: Is this SAT?

Ve -2 <0 = P(x)
Ve, o' - Px) ANz <bAzx' =2+1 = P(z')
Ve - P(x) ANz > 10 = false

This set of clauses is satisfiable
The model is an extension of the standard model of arithmetic with:

P(zx)={x | x <5}
(5,4,3,2,...)

Zﬁ

| https://notebooks.azure.com/arie-gurfinkel/projects/spacerexamples

Validating the solution
Original CHC
Ve-x <0 = P(x)
Ve, o' - P(x) ANz <5Azx' =2+1 = P(z')
Ve - Plx) ANz > 10 = false

Validation of P(x) = {x | x <= 5}
FVr- -2 <0 = <5

FVz, 2 x<H5ANz<bA =z+1 = 2’ <5
FVr-x <5Ax>10 = false

<_

https://notebooks.azure.com/arie-gurfinkel/projects/spacerexamples

Example CHC: is this SAT?

Ve -z <0 = Q(x)
Ve, o' - Q) ANz <bAz' =z2+1 = Q(z)
Ve -Q(x) Nz >2 = false

This set of clauses is unsatisfiable
Justification is a refutation by resolution and instantiation

Zﬁ

| https://notebooks.azure.com/arie-gurfinkel/projects/spacerexamples

Example CHC: is this SAT?

Ve -z <0 = Q(x)
Ve,o' - Qx) ANz <b5A2 =z+1 = Q')
Ve -Q(zx) ANx > 2 = false

Refutation

Ve-x <0 = Q(x)
Q(0) Ve -Qx) ANz <5 = Q(z+1)
Q(1)
Ve -Qx) ANz <5 = Q(z+1)
Q(2)
Ve -Q(x) ANz > 2 = false
false

<_

https://notebooks.azure.com/arie-gurfinkel/projects/spacerexamples

10

Horn Clauses for Program Verification

(‘Ol]tl\"’(:” wo, LG"" WY ALLLAL 1D Caa LLLLA"V lJULLlL LW DULACDODUL Luaw.

with the edges are formulated as follows:

Pinit(To,w, L) &z =x¢ where r occurs in w
Pezxit(Zo, ret, T) « €(zg,w, T) for each label £, and re
plz,ret, L, L) popi(z, ret, L)
plz,ret, L, T) ¢ pezit(z, ret, T)
boislza.w'. e.) ¢ Lilza. w.e) A —e: A ~wln(S. (e =

5. incorrect :- Z=W+1, W>0, W+1<
read(A,W,U), read(A,?

Weakest Preconditions If we apply Boogie directly we obtain a translation
from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

ToHorn(program)

ToHorn(def p(z) {S}) :

wlp(z := E, Q)

6. p(I1,N,B) :- 1<I, I<N, D=I—1, T1=I+1. V=U+1.

read(A,D,U), write(A
7.o(I.N.A) :-I=1. N>1.

De Angelis et al. Verifying Array
Programs by Transforming
Verification Conditions. VMCAI'14

—x' =4

= wip(Main(), T) A /\ ToHorn(decl)

decl€ program

i havoc z,: assume zy = z;
P\ assume Ppre(Z); S, p(zg, ret)

=letz=FEinQ
wip((if E then S, else 5:).Q):
wip((5,0S,),Q) :

ulp(51 S52.Q):

wip(havoc z, Q) :

wip(assert ¢, Q) :

wlp(assume ¢, Q) :=

wip((while E do S),Q) :

wlp(((assume E; S;)0(assume -E; 5;)),Q)
LLQD(S Q) A wip(S;,Q)
Ip(S:, wip(S2,Q))

Il
g
g
>

Vo (((inv(w)AE) = urfp(S.inv(w))))
"AA((inv(w) A-E) - Q)

To translate a procedure call £ : y := g(£); £ within a procedure p, create
he clauses:

1) + plwo, w,), call(w;, ws), g(wsz, w3), return(w;, ws, wy)
p(w.;;.wI).call(w;.wz)
r=4z =Ex" =4{,,

e w” =wret' Jy, £ /=]

Bjgrner, Gurfinkel, McMillan, and Rybalchenko:

Horn Clause Solvers for Program Verification

%) WATERLOO

11

Horn Clauses for Concurrent / Distributed /

Parameterized Systems

{R(7p0') A dlsf(pl, 7pk)/\R(g7p17|17"'7pk7|k) } (6)
oES,
R(g plvlla 7pk7|k) — dlSt(plv apk)/\Inlt(gvll)/\"'/\Init(galk) (7)
Rgzphl 3. 7pk7|k « dist P1s---sPk) A gv'l 13 gl7|/ AR gvplylly-'-vpkvlk (8)
For assertions R1,..., Ry over V and E1,...,Ex over V, V', RE Il I; i E))(((()I)(ﬂ(l?)l’))(RC © k)) ©
gvplalv"'apkak < dist(po,P1,---,Px) A ((8,lo g:lp A OI'lj yieieisly
CM1: init(V) — Riy(V) . |]
CM2: Ri(V) A pi(V, V') — Ry(V") false < dist(p1,...,pr) A (jﬂ/\rspj =piN(glj) eEj)) ARConj(1,...,r) (10
CM3: (Viel..N\{j} Ri(V) A pi(V, V")) E;(V, V)
CM4: Ri(V)AE(V,V')Api (V,V') — Ri(V') Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-
CM5: Ri(V)A---ANRN(V) A error(V) — false ant. Sy is the symmetric group on {1,...,k}, i.e., the group of all permutations of k numbers; as an
optimisation, any generating subset of Sy, for instance transpositions, can be used instead of S;. In (10),
multi-threaded program P is safe we define r = max{m,k}.

Rybalchenko et al. Synthesizing Software
Verifiers from Proof Rules. PLDI'12

Hojjat et al. Horn Clauses for Communicating Timed
Systems. HCVS'14

Init(3, §,9) A Init(4,4,) A
Init(i,i,v) A Init(4, j,v) = I2(i, J, V)

L(i,5,9) A Tr(i,0,v') = I2(i,5,7) (3)
(initial) init(g, z1) A - - - Ainit(g,) = Inv(g, linit, T1, - - - , linit, Tk) I (’l j 5) A T?"(j 7 51) = I, (’I, j 51) (4)
1J)) b 1J)
(inductive) I’rL'U(g,Zl,ZEh...,Zi,wi,“.,fk,:l:k)/\s(g,xi,g’7x;)—)Inv(g',Zl,.’l:l,...,f;,zg,...,f}c,.' 1—2(2] 6) A 1—2(2 k 6) A I2(] k ﬁ) A
]))) b)) 5)
(non-interference) Inv(g,%1,Z1,-..,Lk, Tk) A — = . c 2 o =0 (
Inv(g,é*,zf,ég,m,...,ék,zk)/\ Tr(k,v,v) A k # (24 k ?é .7 = I2(7".7av)
: I>(i, j,v) = —Bad(i, j,v)
Inv(g, 1,21, .., bu—1,25-1,€,27) A s(g,27,9,-) = Inv(g’, b1, 21, . .., Lk, k)
(safe) Inv(g, b1, 21, .., £k, zk) Aerr(g, €1, Z1, . . ., m, Tm) — false Figure 3: VC(T) for two-quantifier invariants.
Figure 6. I-Ilorn clause er_lcoding for thread modularity at .leve?l k (where (£:,s,£,) and (£, s, -) refer to statement s on ar Gurfinkel et al. SMT-Based Verification of
from £; to £; and, respectively, from £ to some other location in the control flow graph) Parameterized Systems ESE 2016
S L veRs Ty oF Hoenicke et al. Thread Modularity at Many
@ WATERLOO | | evels. POPL'17 12

Program Verification with HORN(LIA)

Z = X; 1 = 0;

assume (y > 0);

while (i < vy) { ‘ IS SAT?
Z =2 + 1;
i=1+ 1;
}
assert(z == x + y); -\ /-
z=xXx&1 =08&y >0 = Inv(x, y, z, 1)

Inv(x, vy, z, i) & i <y & z1=z+1 & il=i+1 = Inv(x, y, zl, il)
Inv(x, vy, z, 1) & i >=y & z != x+y = false

% WATERLOO 13

In SMT-LIB

(set-logic HORN)

55 Inv(x, y, z, 1)

(declare-fun Inv (Int Int Int Int) Bool)

(assert
(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (> B @) (=CA) (=D 9))
(Inv A B C D)))

)
(assert
(forall ((A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int))
(=>
(and (Inv ABCD) (¢<DB) (=C1 (+C1)) (=D1 (+D
1))
(Inv A B C1 D1)
)
)
)
(assert

(forall ((A Int) (B Int) (C Int) (D Int))
(=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
false

)

(check-sat)
(get-model)

$ z3 add-by-one.smt2

sat

(model

(define-fun Inv ((x!@ Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool
(and (<= (+ x!2 (* (- 1) x!@) (* (- 1) x!3)) 0)
(<= (+ x!2 (* (- 1) x!@) (* (- 1) x!1)) @)

(<= (+ x!o x!I3 (* (- 1) x!2)) 0)))

Inv(x, y, z, 1)

y4 X + 1

Z <= X + Y

UNITVERSITY OF

WATERLOO

14

Logic-based Algorithmic Verification

ISimuIinkl
_— C/C++ concurrent
\’ /distributed
EON systems

@ ’ Java I

[Lustre L éé‘;ég CPR

‘l-osﬁe B -
Termination S t
for C T2 N ma
Contracts

m) | i

fs i -

HornDroid

<_

2V https://notebooks.azure.com/arie-gurfinkel/projects/spacerexamples | 15

INTERACTIVE TUTORIAL

<_

https://notebooks.azure.com/arie-gurfinkel/projects/spacerexamples

16

Procedures for Solving CHC(T)

Predicate abstraction by lifting Model Checking to HORN
» QARMC, Eldarica, ...
Maximal Inductive Subset from a finite Candidate space (Houdini)
e TACAS'18: hoice, FregHorn
Machine Learning
 PLDI'18: sample, ML to guess predicates, DT to guess combinations
Abstract Interpretation (Poly, intervals, boxes, arrays...)
o Approximate least model by an abstract domain (SeaHorn, ...)
Interpolation-based Model Checking
e Duality, QARMC, ...

~
SMT-based Unbounded Model Checking (IC3/PDR)

e Spacer, Implicit Predicate Abstraction

o

IIIIIIIIIIII

17

Spacer: Solving SMT-constrained CHC

Spacer: SAT procedure for SMT-constrained Horn Clauses
e now the default CHC solver in Z3
— https://qgithub.com/Z3Prover/z3
— dev branch at https://github.com/agurfinkel/z3

Supported SMT-Theories

 Linear Real and Integer Arithmetic
» Quantifier-free theory of arrays
» Universally quantified theory of arrays + arithmetic
o Best-effort support for many other SMT-theories
— data-structures, bit-vectors, non-linear arithmetic
Support for Non-Linear CHC

 for procedure summaries in inter-procedural verification conditions

 for compositional reasoning: abstraction, assume-guarantee, thread modular,
etc.

UNIVERSITY OF

WATERLOO

https://github.com/Z3Prover/z3

A little bit of complexity

Satisfiability of CHC over most interesting theories is undecidable
e e.9., CHC(Linear Real Arithmetic), CHC(Linear Integer Arithmetic)
e proof: many easy reductions, for example, counter automata

Satisfiability of Linear CHC over Propositional logic is decidable
 Finite state model checking of transition systems
o Complexity: linear in the size of the graph induced by the transition system

Satisfiability of Non-Linear CHC over Propositional logic is decidable
 Finite state model checking of pushdown systems

e Complexity: cubic in the size of the pushdown system

Decidability of some classes of CHC: Difference arithmetic (= timed automata)

UNIVERSITY OF

WATERLOO 19

SOLVING CONSTRAINED HORN
CLAUSES

IIIIIIIIIIII

20

A Magician’s Guide to Solving Undecidable Problems

Develop a procedure P for a decidable problem

Show that P is a decision procedure for the problem

e e.g., model checking of finite-state systems

Choose one of

Y

Extend procedure P to procedure Q that “solves” the undecidable problem

e Always terminate with some answer (over-approximation)

e Always make useful progress (under-approximation)

e Ensure that Q is still a decision procedure whenever P is

e Ensure that Q either always terminates or makes progress

UNIVERSITY OF

WATERLOO

21

>

Linear CHC Satisfiability

Satisfiability of a set of linear CHCs is reducible to satisfiability of THREE
clauses of the form

nit(X) — P(X)
P(X) A Tr(X,X') — P(X')
P(X) — =Bad(X)

where, X' ={x’ | x € X}, P a fresh predicate, and /nit, Bad, and Tr are

constraints

Proof:

add extra arguments to distinguish between predicates

Q(y) A ¢ = W(y, 2)
P(id='Q’, y) A ¢ — P(id="W, y, 2)

IIIIIIIIIIII

WATERLOO

22

IC3, PDR and friends

Init Tr Tr —-Bad

Finite State Machines
m (HW model checking)

[Bradley, VMCAI 2011]

Init Tr Tr —-Bad

Push Down Machines
(SW model checking)
[Hoder&B, SAT 2012]

IIIIIIIIIIII

% WATERLOO 23

IC3, PDR and friends

Init Tr Tr —-Bad

Finite State Machines
(HW model checking) -
[Bradley, VMCAI 2011]

Init Tr Tr —-Bad

Push Down Machines
(SW model checking) }
[Hoder, B, SAT 2012] -

Finite State
Incremental SAT solving [Bradley, VMCAI 11]
Fast prime implicants [Een& FMCAD 11]

Basis for predicate abstraction
[Cimatti& TACAS 14, Birgmeier& CAV 14]

Infinite State
Arithmetic + Farkas [H&B, SAT 12]
Arithmetic + Model Based Projection [K&, CAV 14]
Polyhedra + Convex Closure [B&G, VMCAI 15]

Arithmetic + Arrays [K&, FMCAD 15]

3V - EPR fragment [K’&, CAV 15]

3V + Arithmetic/Arrays [G&, ATVA 18]
24

IC3, PDR and friends

Init Tr Tr —-Bad

=P

Finite State Machines
(HW model checking)
[Bradley, VMCAI 2011]

Init Tr Tr —-Bad

Push Down Machines
(SW model checking)
[Hoder, B, SAT 2012]

Finite State

SAT

Infinite
State

SMT
Arithmetic
Arrays

Quantifiers

Search Strategies

[Bradley, VMCAI 11]

CTI — Counter Examples To Induction

[G&lvrii, FMCAD 15]
Under and over-approximations

[Vizel&G, CAV 14]
Use SAT for blocking
IC3 for pushing

N
an

Verification by Incremental Generalization

l T, N=0

e I
Yes A counterexample No, N:=N+1
h of length N exists? ﬁ
SMT
& / - D
Is a safe inductive YES
No + bounded proof invariant? -
SMT
4 I Y
Generalize proof |
candidate
\SMT / Inv

%) WATERLOO

MkSafe

IC3/PDR In Pictures: MkSafe

O€ x=3,y=0 x=1y=0

| | | | | 70/I

. e

Predecessor find M s.t. M = F; ATr Am’
find mst. (M Em)A(m = IV -TrAm')

NewLemma find {s.t. (F; ANTr = (YN (0 = —m)

IIIIIIIIIIII

%) WATERLOO 30

Push

IC3/PDR in Pictures: Push

<€ @) O\O<
< O O

Algorithm Invariants

InitEFi FiEBad

FiSFyyqy FinTryCF;y,

Inductive

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

e terminate the algorithm when a solution is found
Unfold

* increase search bound by 1
Candidate

e choose a bad state in the last frame

Decide
e extend a cex (backward) consistent with the current frame
e choose an assignmentss.t. (s AFiATr A cex’) is SAT
Conflict
e construct a lemma to explain why cex cannot be extended
k- FindaclauselLs.t. L = —cex, Init = L,and F;,ATr = L

Induction
e propagate a lemma as far into the future as possible

e (optionally) strengthen by dropping literals
%) WATERLOO

32

From Propositional PDR to Solving CHC

Theories with infinitely many models
e infinitely many satisfying assignments
e can’t simply enumerate (when computing predecessor)

e can’t block one assignment at a time (when blocking)

Non-Linear Horn Clauses

e multiple predecessors (when computing predecessors)

The problem is undecidable in general, but we want an algorithm that makes
progress
e doesn’t get stuck in a decidable sub-problem

e guaranteed to find a counterexample (if it exists)

%) WATERLOO

33

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

e terminate the algorithm when a solution is found

Unfold

e increase search bound by 1
Candidate

e choose a bad state in the last frame (Theory
Decide dependent

e extend a cex (backward) consistent with the current frame
e choose an assignmentss.t. (s AFiATr A cex’) is SAT
Conflict
e construct a lemma to explain why cex cannot be extended
k- FindaclauselLs.t. L = —cex, Init = L,and F;,ATr = L /
Induction

e propagate a lemma as far into the future as possible

e (optionally) strengthen by dropping literals

UNIVERSITY OF

WATERLOO

34

((F;ATr) v Init') = ¢/,

Looking for ¢’

CONFLICT (ARITHMETIC)

IIIIIIIIIIII

@' = —cex’

35

Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that A = —B, then there

exists a FO formula |, denoted ITP(A, B), such that

A=1 |= —B (1) € 2(A) N 5(B)

A Craig interpolant ITP(A, B) can be effectively constructed from a resolution
proof of unsatisfiability of AAB

In Model Checking, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

UNIVERSITY OF

WATERLOO 36

Examples of Craig Interpolation for Theories

Boolean logic
A=(-bAN(-aVbVc)Aa) B = (—a V —c)
ITP(A,B)=aAc

Equality with Uniterpreted Functions (EUF)
A= (f(a) =bAp(f(a))) B = (b=cA-p(c))

ITP(A, B) = p(b)
Linear Real Arithmetic (LRA)
A=(z4+2xz4+y>10A2z<5H) B=(rx<-5Ny< -3

ITP(A,B)=z+y>5

%) WATERLOO 37

Craig Interpolation for Linear Arithmetic

Proof

1= interpolant

Reachable

Useful properties of existing interpolation algorithms [CGS10] [HB12]
e | €ITP (A, B) then =l € ITP (B, A)

e if Ais syntactically convex (a monomial), then | is convex
e if B is syntactically convex, then | is co-convex (a clause)
e if Aand B are syntactically convex, then | is a half-space

%Y WATERLOO 38

Arithmetic Conflict

Notation: F(A) = (A(X) A Tr) V Init(X').

Conflict For 0 <i < N, given a counterexample (P,i+ 1) € @ s.t.
F(F;) A P’ is unsatisfiable, add PT = ITp(F(F;), P’') to F; for j < i+ 1.

Counterexample is blocked using Craig Interpolation

e summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
e weaker than IC3/PDR

 inductive generalization for arithmetic is still an open problem

Y

UNIVERSITY OF

WATERLOO

39

Computing Interpolants for IC3/PDR

Much simpler than general interpolation problem for A A B
e B is always a conjunction of literals
e Ais dynamically split into DNF by the SMT solver

e DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T)
proof produced by the solver

e every theory-lemma that mixes B-pure literals with other literals is interpolated to
produce a single literal in the final solution

e interpolation is restricted to clauses of the form (AB; = V A))

Interpolating (UNSAT) Cores
e improve interpolation algorithms and definitions to the specific case of PDR
e classical interpolation focuses on eliminating non-shared literals

e in PDR, the focus is on finding good generalizations

7] UNIVERSITY OF

WATERLOO

Farkas Lemma

letd = t;, =>b; A ... A t, = b, t;are linear terms and b, are constants

® is unsatisfiable iff 0 = 1 is derivable from @ by resolution

e x +2y > 10,

e —x > 5,

e —y > 3

e 0= (x+2y—x—-2y) > 10+ 5 +2-3) >21

Proof uses Farkas coefficients g4, ..., g,, such that
g, >0

gty + ..+ g,°t, =0

g, by + ..+ g,-bn > 1

IIIIIIII

41

Frakas Lemma Example Interpolants

> 10 X 1
FrTty rT+y>0
—z > —H Xl
—x > 9 X 1 .
—y >3 X 1 TrYy <~
0>13

% WATERLOO 42

Interpolation for Linear Real Arithmetic

Let A A B be UNSAT, where
’A:t12 bl/\.../\tiZ bi,and

Let g4, ..., g,, be the Farkas coefficients witnessing UNSAT

Then
egi-(ty — b))+ ... +g;-(t; —b) =0 is an interpolant between A and B
® giyq1 - (tjz1 — bjy1) + ... + g, (t, —b,) = 0 isaninterpolant between B and A

%) WATERLOO

Program Verification with HORN(LIA)

Z =X; 1= 0;

assume (y > 0);

while (1 < y) {
Z =27z + 1;
i=1+1;

}

assert(z == x + y);

z=X8&1=08&vy >0 = Inv(x, y, z, i)

Inv(x, y, z, i) & i <y & z1=z+1 & il=i+1 = 1Inv(x, y, z1, il)

%) WATERLOO a4

Lemma Generation Example

error

O« o

MkSafe

Transition Relation
X=XgAZ=Zt1 Ai=igtT Ay > g
Farkas explanation for unsat

Xog+ Vo <=2y X<=Xy,Zy<Z i<=ig+1

Pob

I>=yAX+y>2Z

| >=y, Xty >z

X+1<=Z

X+1>27

false

B Rz oF Learn lemma: | x+i<=1z

45

Interpolation Problem in Spacer

Given an arbitrary LRA formula A and a conjunction of literals s such that AA s
are UNSAT, compute an interpolant | such that

e s | | AA= FALSE |is over symbols common to s and A

Use an SMT solver to decide that s A A are UNSAT
e SMT solver uses LRA theory lemmas (called Farkas Theory Lemmas) of the form:
(s Ao A) A(ag A ... Aay))
where s; are literals from s and a; are literals from A
* Foreachsuchlemmal,;, ((s; A... Asg) A(ag A... Aap)is UNSAT
* Lett;be an interpolant corresponding to L

Then, an interpolant between s and A is a clause of the form
(-t; V... V =t,) with one literal per each theory lemma

e in practice, interpolation is optimized by examining and restructuring SMT
resolution proof, dealing with Boolean reasoning, and global optimization

7] UNIVERSITY OF

WATERLOO

Computing Interpolants in Spacer

Much simpler than general interpolation problem for A A B
e B is always a conjunction of literals
e Ais dynamically split into DNF by the SMT solver

e DPLL(T) proofs do not introduce new literals

Interpolation algorithm is reduced to analyzing all theory lemmas in a DPLL(T)
proof produced by the solver

e every theory-lemma that mixes B-pure literals with other literals is interpolated to
produce a single literal in the final solution

* interpolation is restricted to clauses of the form (AB; = V A)

Interpolating (UNSAT) Cores
e improve interpolation algorithms and definitions to the specific case of PDR
e classical interpolation focuses on eliminating non-shared literals

e in PDR, the focus is on finding good generalizations

7] UNIVERSITY OF

WATERLOO

s € pre(cex)

s=>3IX'.Tr(X,X') Acex(X')

Computing a predecessor s of a counterexample cex

DECIDE (ARITHMETIC)

IIIIIIIIIIII

48

Model Based Projection

Definition: Let ¢ be a formula, X a set of variables, and M a
model of @. Then Yy = MBP (X, M, ¢) is a Model Based
Projection of X, M, ¢ iff

1. Y is a monomial
2Vars(y) € Vars(p)\ X
M EY

4 YPv=>3X.¢

Model Based Projection under-approximates existential quantifier
elimination relative to a given model (i.e., satisfying assignment)

IIIIIIIIIIII

%' WATERLOO 49

Model Based Projection

[Expensive to find a quantifier-free ¢(§) = dz - 90(5, ?) }

1. Find model M of ¢ (x,y)

2. Compute a partition containing M

IIIIIIIIIIII

%) WATERLOO 50

Quantifier Elimination

Quantifier elimination procedure:
Input: formula 3 x Y(x)
Output: equivalent ¢ without existential quantifier. x is eliminated.
QELIM(Ax Y(x))=¢ andIxP(x) & @

Quantifier elimination in propositional logic
e QELIM(3 x U(x)) = Y(TRUE) V Y(FALSE)

Many theories support quantifier elimination (e.g., linear arithmetic)
e but not all. No quantifier elimination for EUF,

— e.g., (Ix f(x) # g(x)) cannot be expressed without the existential quantifier

Quantifier elimination is usually expensive

e e.g., propositional QELIM is exponential in the number of variables quantified

%) WATERLOO 51

Loos-Weispfenning Quantifier Elimination for LRA

¢ is LRA formula in Negation Normal Form
E is set of x=t atoms, U set of x <t atoms, and L set of s < x atoms

There are no other occurrences of x in $[x]

Jz.plz] = gloo] V. \/ lt]V \/ ot —¢]

r=tch rtelU

where
(x<tHt—e=t<t (s<a)t—e=s<t (z=c¢)ft— ¢ = false

The case of lower bounds is dual

e using —o° and t+e€

% WATERLOO 52

Fourier—-Motzkin Quantifier Elimination for LRA

dr - \;jsi <z ANz <ty
= N\ \, resolve(s; < x,x < t;,x)

Y /\j i <ty

Quadratic increase in the formula size per each eliminated variable

IIIIIIIIIIII

53

Quantifier Elimination with Assumptions

(/\j;éotogtf")AHCE'/\iSi<x/\/\jm<tj
— (/\j;éo tg < tj) AN, resolve(s; < xz,z < tg,x)

Quantifier elimination is simplified by a choice of a minimal upper bound
e For each choice of minimal upper bound, no increase in term size

e Dually, can use largest lower bound

How to chose an the assumptions?!

e MBP == use the order chosen by the model

IIIIIIIIIIII

54

MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model

e Use the Model to uniquely pick a substitution term for x
Mbp,(M,z = s N\ L)= L|x < s]
Mbp,(M,x # sNL)= Mbp,(M,s <xAL)if M(x)> M(s)

Mbp,(M,x # sNL)= Mbp,(M,—s < —x ANL)if M(x) < M(s)

Mbpw(M,/\Si < CU/\/\.%’ <tj) = /\Si <t0/\/\t0 < tj where M(to) < M(tz),Vz

MBP technigues have been developed for
e Linear Rational Arithmetic, Linear Integer Arithmetic

e Theories of Arrays, and Recursive Data Types

UNIVERSITY OF

WATERLOO

95

Arithmetic Decide
Notation: F(A) = (A(X) A Tr(X, X") V Init(X").

Decide If (P,i+ 1) € @ and there is a model m(X, X') s.t. m = F(F;) A P/,
add (Py,i) to @, where P, = MBP (X', m, F(F;) A P’).

Compute a predecessor using Model Based Projection

To ensure progress, Decide must be finite

e finitely many possible predecessors when all other arguments are fixed

Alternatively
e Completeness can follow from an interaction of Decide and Conflict

— but requires more rules to propagate implicants backward (as in PDR) and
forward (as in Spacer and Quip)

UNIVERSITY OF

WATERLOO 56

PolyPDR: Solving CHC(LRA)

Unreachable and Reachable

e terminate the algorithm when a solution is found
Unfold

* increase search bound by 1
Candidate

e choose a bad state in the last frame

ﬁ)ecide

e extend a cex (backward) consistent with the current frame
e find a model M of s s.t. (F; A Tr A cex’), and let s = MBP(X’, F; A Tr A cex’)
Conflict
e construct a lemma to explain why cex cannot be extended
K° Find an interpolant L s.t. L=-cex, Init=L,andF,ATr= L

Induction

e propagate a lemma as far into the future as possible
WAﬁﬁf@{aally) strengthen by dropping literals

Y

>

Non-Linear CHC Satisfiability

Satisfiability of a set of arbitrary (i.e., linear or non-linear) CHCs is reducible to
satisfiability of THREE (3) clauses of the form

Init(X) = P(X)
P(X)AP(X°) A Tr(X,X° X") — P(X")
P(X) = —Bad(X)

where, X' ={x’ | x € X}, X° ={x° | x € X}, P a fresh predicate, and Init, Bad, and

Tr are constraints

IIIIIIIIIIII

WATERLOO

58

Generalized GPDR

Input: A safety problem (Init(X), Tr(X, X°, X'), Bad(X))

Output: Unreachable or Reachable Counterexample
Data: A cex queue @, where a cex (cp,...,cx) € @ is a tuple, each iS a tree

¢; = (m,1), m is a cube over state variables, and i € N. A level N.
A trace Fy, Fy,...

Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and

F(A)=F(AA)

Initially: Q =0, N =0, Fy = Init,Vi >0-F; =0

Require: Init — - Bad

repeat

Unreachable If there is an ¢ < N s.t. F; C F; 41 return Unreachable.

Reachable if exists t € @ s.t. for all (c,i) € t, i = 0, return Reachable.

Unfold If Fy — —Bad, then set N < N + 1 and Q + 0.
Candidate If for some m, m — Fn A Bad, then add ((m, N)) to Q. two

Decide If there is a t € Q, with ¢ = (m, i + 1) € £, my — m, lo Am§ Am is predecessors
satisfiable, and lo A mg Am) — F; A F? A Tr Am/ then add t to Q, where
t = t with ¢ replaced by two tuples (lg,), and (mg,).

Conflict If there is a t € Q with ¢ = (m,i+ 1) € ¢, s.t. F(F;) Am/ is theory'aware
unsatisfiable. Then, add ¢ = ITP(F(F;),m’) to F;, for all 0 < j <i -+ 1. .
) o £ Conflict

Leaf If there is t € @ with ¢ = (m,i) € ¢, 0 <i <N and F(F;_1) Am/ is
unsatisfiable, then add ¢ to @, where ¢ is ¢ with ¢ replaced by (m,i+ 1).

Induction For 0 <i < N and a clause (¢ V) € F;, if o & Fi 11,
F(p N F;) — ¢, then add ¢ to Fj, for all j < i+ 1.

until oo;

% WATERLOO 59

Counterexamples to non-linear CHC

A set S of CHC is unsatisfiable iff S can derive FALSE
e we call such a derivation a counterexample
For linear CHC, the counterexample is a path

For non-linear CHC, the counterexample is a tree

l FALSE

S’y ESy ASO3 ATr S5ESgASATr
| |
| | | |
l S, € Init l S5 € Init l So € Init l S¢1 € Init
%) WATERLOO

60

GPDR Search Space

Bad
gueue -
element

° -~ -
>
(1)
- ‘

-~ - -~ -~

/ \

v O O O O O O O

In Decide, one POB in the frontier is chosen and its two children are expanded

% WATERLOO 61

GPDR: Splitting predecessors

Consider a clause
Plx)y APy Nx>yANz=z+y = P(2)

How to compute a predecessor for a proof obligationz>0

Predecessor over the constraint is:
dz-x>yNz=xz+yNz>0
= x>yNxz+y>0

Need to create two separate proof obligation
e one for P(x) and one for P(y)

e gpdr solution: split by substituting values from the model (incomplete)

IIIIIIIIIIII

62

GPDR: Deciding predecessors

Decide If there is a t € Q, with ¢ = (m,i+ 1) € t, my — m, lo Amd Am] is
satisfiable, and g A mJ Am’ — F; A F2 A Tr Am’ then add ¢ to @), where
t = t with ¢ replaced by two tuples (ly,), and (mg, 7).

Compute two predecessors at each application of GPDR/Decide

Can explore both predecessors in parallel

e e.g., BFS or DFS exploration order

Number of predecessors is unbounded

e incomplete even for finite problem (i.e., non-recursive CHC)

No caching/summarization of previous decisions

e worst-case exponential for Boolean Push-Down Systems

%) WATERLOO

Input: A safety problem (Init(X), Tr(X,X°, X'), Bad(X)).
S Output: Unreachable or Reachable
pa ce r Data: A cex queue @, where a cex ¢ € @ is a pair (m,i), m is a cube
over state variables, and 7 € N. A level N. A set of reachable
states REACH. A trace Fy, F1, ...

Notation: F(A, B) = Init(X') V (A(X) A B(X°) A Tr), and
Same queue as o
in |C3/PDR Initially: Q =0, N =0, Fy = Init, Vi > 0- F; = (), REACH = Init
Require: Init — —Bad
repeat

Unreachable If there is an i« < N s.t. F; C F; 1 return Unreachable.

Reachable If REACH A Bad is satisfiable, return Reachable.

Cache Reachable

Unfold If Fy — —Bad, then set N < N + 1 and Q «+ 0.
states

Candidate If for some m, m — Fy A Bad, then add (m, N) to Q.

Successor If there is (m,i+ 1) € @ and a model M M = 1), where
¥ = F(VREACH) A m/. Then, add s to REACH, where
s’ € MBP({X, X°},).
Th ree variants Of DecideMust If there is (m,i+ 1) € @, and a model M M = 1), where

. Y = F(F;, VREACH) Am/. Then, add s to @, where
Decide s € MBP({X°, X'},).

DecideMay If there is (m,i+ 1) € @ and a model M M |= v, where
= F(F;) Am/. Then, add s to @, where s° € MBP({X, X'},).

Conflict If there is an (m,i+ 1) € @, s.t. F(F;) Am’ is unsatisfiable. Then,

add ¢ = ITP(F(F;),m') to Fj, for all 0 < j <i+1.
Same Conflict as Leaf If (m,i) € @, 0 <i < N and F(F;_1) A m/ is unsatisfiable, then add
. (m,i+1) to Q.
in APDR/GPDR _ | .
Induction For 0 <i < N and a clause (¢ V) € F;, if o & Fi41,

F(p N F;) — ¢, then add ¢ to Fj, for all j <i+ 1.

until oo;

% WATERLOO 64

SPACER Search Space

Bad

Level

v O O O O O

In Decide, unfold the derivation tree in a fixed depth-first order

e use MBP to decide on counterexamples

Successor: Learn new facts (reachable states) on the way up
e use MBP to propagate facts bottom up

UNIVERSITY OF

WATERLOO

65

Successor Rule: Computing Reachable States

Successor If there is (m,i+ 1) € @) and a model M M |= 1, where
¥ = F(VREACH) A m/. Then, add s to REACH, where
s’ € MBP({X, X°},).

Computing new reachable states by under-approximating forward image using
MBP

e since MBP is finite, guarantee to exhaust all reachable states

Second use of MBP

e orthogonal to the use of MBP in Decide

e can allow REACH to contain auxiliary variables, but this might explode

For Boolean CHC, the number of reachable states is bounded
e complexity is polynomial in the number of states

e same as reachability in Push Down Systems

UNIVERSITY OF

WATERLOO 66

Decide Rule: Must and May refinement

DecideMust If there is (m,7+ 1) € @, and a model M M = ¢, where
Y = F(F;, VREACH) A m’. Then, add s to @), where
s € MBP({X°, X'}, v).

DecideMay If there is (m,i+ 1) € @ and a model M M |= ¢, where
Y = F(F;) Am’. Then, add s to @, where s° € MBP({X, X'},).

DecideMust
e use computed summary (REACH) to skip over a call site
DecideMay
e use over-approximation of a calling context to guess an approximation of the call-
site

e the call-site either refutes the approximation (Conflict) or refines it with a witness
(Successor)

UNIVERSITY OF

WATERLOO

67

Art, Science, and Magic

Verification of Safety Properties is FOL satisfiability
e Logic: Constrained Horn Clauses (CHC)
e “Decision” procedure: Spacer
* Now with (universal) quantifiers!

Art: finding the right encoding from the problem domain to logic
e the difference between easy to impossible
e encodings can “simulate” specialized algorithms

Science: Progress, termination (when decidable)

e while the underlying problem is undecidable, many fragment or sub-problems
are decidable

Magic: actually solving useful problems

e interpolation, heuristics, generalizations, ...
e the list is endless

UNIVERSITY OF

WATERLOO

68

THE END

%) WATERLOO

