Vinta: Verification with INTerpolation and Abstract iterpretation

Arie Gurfinkel Software Engineering Institute Carnegie Mellon University

joint work with Aws Albarghouthi, Yi Li, and Marsha Chechik <u>University o</u>f Toronto

Sagar Chaki, SEI

Software Engineering Institute Carnegie Mellon

© 2013 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license under the clause at 252.227-7013.

Software is Everywhere

Software Engineering Institute Carne

Carnegie Mellon Vinta Arie Gurfi © 2013 Carr

Software Engineering Institute Carnegie Mellon

Vinta Arie Gurfinkel © 2013 Carnegie Mellon University

Recent Software Disasters

In July 2010, The Food and Drug Administration ordered Baxter International to recall all of its Colleague infusion pumps in use and provide a refund or no-cost replacement to United States customers. It has been working with Baxter since 1999 to correct numerous device flaws. Some of the issues were caused by simple buffer overflow.

In January 2011, two German researchers have shown that most "feature" mobile phones can be "killed" by sending a simple SMS message (**SMS of Death**). The attack exploits many bugs in the implementation of SMS protocol in the phones. It can potentially bring down all mobile communication...

On August 1, 2012, Knight Capital's bugs in high-frequency trading algorithm caused a pre-tax loss of \$440m. The nature of the bug was described as a "technology breakdown".

Automated Software Analysis

Software Engineering Institute Carnegie Mellon

Vinta Arie Gurfinkel © 2013 Carnegie Mellon University

Motivation

Abstract Interpretation is one of the most scalable approaches for program verification

But, in practice, AI suffers from many false positives due to

- imprecise operations: join, widen
- imprecise semantics of operations: abstract post
- in-expressivity of abstract domains: weakly relational facts, ...

No CounterExamples and No Refinement

Goal: Enhance Abstract Interpretation with Interpolationbased refinement strategy

Software Engineering Institute Carnegie Mellon

Outline (of the rest of the talk)

Numeric Abstract Interpretation

Vinta illustrated

- Abstract Interpretation with Unfoldings
- Abstract-Interpretation guided DAG-Interpolation Refinement

Implementation

Results of Software Verification Competition

Secret Sauce

Conclusions and Future Directions

Numeric Abstract Interpretation

Analysis is restricted to a fixed Abstract Domain

Abstract Domain ≡ "a (possibly infinite) set of predicates from a fixed theory" + efficient (*abstract*) operations

Common Numeric Abstract Domains

Abstract Domain	Abstract Elements		
Sign	0 < x, x = 0, x > 0		
Box (or Interval)	$c_1 \le x \le c_2$		Legend
Octagon	$\pm x \pm y \le c$	x,y	program variables
Polyhedra	$a_1x_1 + a_2x_2 + a_3x_3 + a_4 \le 0$	c,c _i ,a _i	numeric constants

Software Engineering Institute Carnegie Mellon

Abstract Interpretation w/ Box Domain (1)

Software Engineering Institute CarnegieMellon

Vinta Arie Gurfinkel © 2013 Carnegie Mellon University

Abstract Domain as an Interface

interface AbstractDomain(V) :

- V set of variables
- A abstract elements
- E expressions

 S – statements abstract 	concretize				
$\alpha: E \rightarrow A$	$\gamma : A \rightarrow E$	meet : $A \times A \rightarrow A$			
isTop : $A \rightarrow bool$	isBot : $A \rightarrow bool$	join : $A \times A \rightarrow A$			
leq : $A \times A \rightarrow bool$	$\alpha Post : S \rightarrow (A \rightarrow A)$	widen : $A \times A \rightarrow A$			
order operations are over-approximations, e.g.,					
$\mathbf{\gamma}$ (a) $\mathbf{\gamma}$ (b) \Rightarrow $\mathbf{\gamma}$ (join (a, b))					
\mathbf{v} (a) & \mathbf{v} (b) $\rightarrow \mathbf{v}$ (meet (a b))					

 $\mathbf{\gamma}$ (a) && $\mathbf{\gamma}$ (b) $\Rightarrow \mathbf{\gamma}$ (meet (a,b))

Example: Box Abstract Domain

Software Engineering Institute Carnegie Mellon

Abstract Interpretation w/ Box Domain (3)

Software Engineering Institute CarnegieMellon

Vinta: Verification with INTERP and AI

- uses Cutpoint Graph (CPG)
- maintains an unrolling of CPG
- computes disjunctive invariants
- uses novel powerset widening

- uses SMT to check for CEX
- DAG Interpolation for Refinement
- Guided by AI-computed Invs
- Fills in "gaps" in Al

Software Engineering Institute CarnegieMellon

Se Se

Software Engineering Institute CarnegieMellon

Vinta Arie Gurfinkel © 2013 Carnegie Mellon University

Craig Interpolation Theorem

Theorem (Craig 1957)

Let A and B be two First Order (FO) formulae such that $A \Rightarrow \neg B$, then there exists a FO formula I, denoted ITP(A, B), such that

 $\mathsf{A} \Rightarrow \mathsf{I} \qquad \qquad \mathsf{I} \Rightarrow \neg \mathsf{B} \qquad \qquad atoms(\mathsf{I}) \in atoms(\mathsf{A}) \cap atoms(\mathsf{B})$

Theorem (McMillan 2003)

A Craig interpolant ITP(A, B) can be effectively constructed from a resolution proof of unsatisfiability of A \wedge B

In Model Cheching, Craig Interpolation Theorem is used to safely overapproximate the set of (finitely) reachable states

DAG Interpolants [TACAS'12]

Given a DAG G = (V, E) and a labeling of edges π :E \rightarrow Expr. A **DAG Interpolant** (if it exists) is a labeling I:V \rightarrow Expr such that

Software Engineering Institute Carnegie Mellon

Vinta Arie Gurfinkel © 2013 Carnegie Mellon University

DAG Interpolation Algorithm [TACAS'12]

Reduce DAG Interpolation to Sequence Interpolation!

Software Engineering Institute Carnegie Mellon

In our running example...

 $I_1 \equiv true$ $I_3 \equiv false$

For any edge
$$(i, j)$$

 $I_i \wedge \tau_{i,j} \Rightarrow I_j$

How to use the results of AI here?

Software Engineering Institute Carnegie Mellon

Restricted DAG Interpolants

$$I_{1} \equiv true \\ I_{3} \not\equiv foll(\mathfrak{B}_{3}) \Rightarrow false$$

$$For any edge (i, j) \\ I_{i} \land f_{i} \downarrow_{j}(\mathfrak{B}_{j}) I_{j} \tau_{i,j} \Rightarrow I_{j}$$

$$Vertex labels from AI \\ AI : V \rightarrow Expr$$

$$I_{1} \uparrow I_{i}(\mathfrak{B}_{j}) I_{j} \tau_{i,j} \Rightarrow I_{j}$$

$$Vertex labels from AI \\ AI : V \rightarrow Expr$$

Arie Gurfinke © 2013 Carnegie Mellon University

Carnegie Mellon

3:

Software Engineering Institute

Vinta Arie Gurfinkel © 2013 Carnegie Mellon University

VINTA from 30,000 ft

Abstract Interpretation

Refinement w/ DAG Interpolants

Refinement recovers imprecision in:

- Join, Widening
- Abstract Transformer
- Inexpressive Abstract Domain

Vinta is part of UFO

- A *framework* and a *tool* for software verification
- Tightly integrates *interpolation* and *abstraction*-based techniques

Check it out at: <u>http://bitbucket.org/arieg/ufo</u>

References:

[SAS12] Craig Interpretation [CAV12] UFO: A Framework for Abstraction- and Interpolation-based Software Verification [TACAS12] From Under-approximations to Over-approximations and Back [VMCAI12] Whale: An Interpolation-based Algorithm for Interprocedural Verification

Implementation in UFO Framework

Software Verification Competitoion (SV-COMP 2013)

© 2013 Carnegie Mellon University

SV-COMP 2013

2nd Software Verification Competition held at TACAS 2013

Goals

- Provide a snapshot of the state-of-the-art in software verification to the community.
- Increase the visibility and credits that tool developers receive.
- Establish a set of benchmarks for software verification in the community.

Participants:

• BLAST, CPAChecker-Explicit, CPAChecker-SeqCom, CSeq, ESBMC, LLBMC, Predator, Symbiotic, Threader, <u>UFO</u>, Ultimate

Benchmarks:

• C programs with ERROR label (programs include pointers, structures, etc.)

Carnegie Mellon

• Over 2,000 files, each 2K - 100K LOC

Software Engineering Institute

- Linux Device Drivers, SystemC, "Old" BLAST, Product Lines
- http://sv-comp.sosy-lab.org/2013/benchmarks.php

SV-COMP 2013: Scoring Scheme

Points	Reported Result	Description
0	UNKNOWN	Failure to compute verification result, out of resources, program crash.
+1	FALSE/UNSAFE correct	The error in the program was found and an error path was reported.
-4	FALSE/UNSAFE wrong	An error is reported for a program that fulfills the property (false alarm, incomplete analysis).
+2	TRUE/SAFE correct	The program was analyzed to be free of errors.
-8	TRUE/SAFE wrong	The program had an error but the competition candidate did not find it (missed bug, unsound analysis).

Ties are broken by run-time

UFO/VINTA Results

VINTA was the main reasoning engine used by UFO at SV-COMP

UFO won in 4 categories

- Control Flow Integers (perfect score)
- Product Lines (perfect score)
- Device Drivers
- SystemC

VINTA with Box domain was most competitive for bug-discovery

VINTA with Boxes domain was most competitive for proving safety

http://sv-comp.sosy-lab.org/2013/results/index.php

Carnegie Mellon

The Secret Sauce

UFO Front-End

Boxes Abstract Domain

Parallel Verification Strategy

Vinta Arie Gurfinkel © 2013 Carnegie Mellon University

UFO Front End

In principle simple, but in practice very messy

- CIL passes to normalize the code (library functions, uninitialized vars, etc.)
- llvm-gcc (without optimization) to compile C to LLVM bitcode
- llvm opt with many standard, custom, and modified optimizations
 - lower pointers, structures, unions, arrays, etc. to registers
 - constant propagation + many local optimizations
 - difficult to preserve indented semantics of the benchmarks
 - based on very old LLVM 2.6 (newer version of LLVM are "too smart")

Many benchmarks discharged by front-end alone

• 1,321 SAFE (out of 1,592) and 19 UNSAFE (out of 380)

© 2013 Carnegie Mellon University

Boxes Abstract Domain: Semantic View

Boxes are "finite union of box values"

(alternatively)

Boxes are "Boolean formulas over interval constraints"

Software Engineering Institute Carnegie Mellon

Linear Decision Diagrams in a Nutshell*

Linear Arithmetic Formula

(x + 2y < 10) **OR** $(x + 2y \ge 10$ **AND** z < 10)

Compact Representation

- Sharing sub-expressions
- Local numeric reductions
- Dynamic node reordering

Operations

- Propositional (AND, OR, NOT)
- Existential Quantification

*joint work w/ Ofer Strichman

Software Engineering Institute CarnegieMellon

Represented by (Interval) Linear Decision Diagrams (LDD)

- BDDs + non-terminal nodes are labeled by interval constraints + extra rules
- retain complexity of BDD operations
- canonical representation for Boxes Abstract Domain
- available at <u>http://lindd.sf.net</u>

Widening: The Problem

Software Engineering Institute Carnegie Mellon

Parallel Verification Strategy

Run 7 verification strategies in parallel until a solution is found

- cpredO3
 - all LLVM optimizations + Cartesian Predicate Abstraction
- bpredO3
 - all LLVM optimizations + Boolean PA + 20s TO
- bigwO3
 - all LLVM optimizations + BOXES + non-aggressive widening + 10s TO
- boxesO3
 - all LLVM optimizations + BOXES + aggressive widening
- boxO3
 - all LLVM optimizations + BOX + aggressive widening + 20s TO
- boxesO0
 - minimal LLVM optimizations + BOXES + aggressive widening
- boxbpredO3
 - all LLVM opts + BOX + Boolean PA + aggressive widening + 60s TO

Vinta Family

Whale [VMCAI12]


```
UFO [TACAS12]
```

<mark>ටිරුන්</mark> Vinta [SAS12]

- Interpolation-based interprocedural analysis
- Interpolants as procedure summaries
- State/transition interpolation
 - a.k.a. Tree Interpolants

- Refinement with DAG interpolants
- Tight integration of interpolation-based verification with predicate abstraction

- Refinement of Abstract Interpretation (AI)
- Al-guided DAG Interpolation

Future Work

Symbolic Abstraction

• An abstract domain based on SMT-formulae

DAG Interpolation via (Non-Recursive) Horn Clause Solving

- DAG Interpolation is an instance of Horn Clause Satisfiability Problem
- Need to better understand how to combine Interpolation and Inductive Generalization-based solutions

Tighter integration of existing engines and passes

- our current solution is "embarrassingly parallel"
- there are many other strategies with better defined communication between components and "failed" attempts

Concurrency

Contact Information

Presenter

Arie Gurfinkel RTSS Telephone: +1 412-268-7788 Email: <u>arie@cmu.edu</u>

U.S. mail: Software Engineering Institute Customer Relations 4500 Fifth Avenue Pittsburgh, PA 15213-2612 USA

Web:

Customer Relations

 www.sei.cmu.edu
 Email: info@sei.cmu.edu

 http://www.sei.cmu.edu/contact.cfm
 Telephone:
 +1 412-268-5800

 SEI Phone:
 +1 412-268-5800

 SEI Fax:
 +1 412-268-6257

THE END

Software Engineering Institute Carnegie Mellon

© 2013 Carnegie Mellon University