
© 2013 Carnegie Mellon University

Vinta: Verification with

INTerpolation and Abstract

iterpretation

Arie Gurfinkel
Software Engineering Institute
Carnegie Mellon University

joint work with
Aws Albarghouthi, Yi Li, and Marsha Chechik
University of Toronto

Sagar Chaki, SEI

2

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

3

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Software is Everywhere

4

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Software is Everywhere

“Software easily rates as the most poorly constructed,

unreliable, and least maintainable technological artifacts

invented by man”

 Paul Strassman, former CIO of Xerox

5

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Recent Software Disasters

In July 2010, The Food and Drug Administration ordered Baxter
International to recall all of its Colleague infusion pumps in use and
provide a refund or no-cost replacement to United States customers. It
has been working with Baxter since 1999 to correct numerous device
flaws. Some of the issues were caused by simple buffer overflow.

In January 2011, two German researchers have shown that most
“feature” mobile phones can be “killed” by sending a simple SMS
message (SMS of Death). The attack exploits many bugs in the
implementation of SMS protocol in the phones. It can potentially bring
down all mobile communication…

On August 1, 2012, Knight Capital's bugs in high-frequency trading
algorithm caused a pre-tax loss of $440m. The nature of the bug was
described as a "technology breakdown".

6

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Automated

Analysis

Software Model Checking with

Predicate Abstraction

e.g., Microsoft’s SDV

Automated Software Analysis

Program

Correct

Incorrect

Abstract Interpretation with

Numeric Abstraction

e.g., ASTREE, Polyspace

7

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Motivation

Abstract Interpretation is one of the most scalable approaches for
program verification

But, in practice, AI suffers from many false positives due to

• imprecise operations: join, widen

• imprecise semantics of operations: abstract post

• in-expressivity of abstract domains: weakly relational facts, …

No CounterExamples and No Refinement

Goal: Enhance Abstract Interpretation with Interpolation-

based refinement strategy

8

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Outline (of the rest of the talk)

Numeric Abstract Interpretation

Vinta illustrated

• Abstract Interpretation with Unfoldings

• Abstract-Interpretation guided DAG-Interpolation Refinement

Implementation

Results of Software Verification Competition

Secret Sauce

Conclusions and Future Directions

9

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Numeric Abstract Interpretation

Analysis is restricted to a fixed Abstract Domain

Abstract Domain ≡ “a (possibly infinite) set of predicates from a
fixed theory” + efficient (abstract) operations

Abstract Domain Abstract Elements

Sign 0 < x, x = 0, x > 0

Box (or Interval) c1  x  c2

Octagon ± x ± y  c

Polyhedra a1x1 + a2x2 + a3x3 + a4  0

Common Numeric Abstract Domains

Legend

x,y program variables

c,ci,ai numeric constants

10

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Abstract Interpretation w/ Box Domain (1)

if (3 <= y1 <= 4) {

 x1 := y1-2;

 x2 := y1+2;

}

else if (3 <= y2 <= 4) {

 x1 := y2-2;

 x2 := y2+2;

}

else return;

assert (5 <= x1 + x2 <= 10);

3 <= y1 <= 4 3 <= y1 <= 4

1 <= x1 <= 2

5 <= x2 <= 6

3 <= y2 <= 4

3 <= y2 <= 4

1 <= x1 <= 2

5 <= x2 <= 6

1<=x1<=2

5<=x2<=6

Program

1 2 3 4 5 Steps:

11

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Abstract Interpretation w/ Box Domain (2)

x := 0

while (x < 1000) {

 x := x + 1;

}

assert (x == 1000);

Program

x = 0

x = 0

x = 1

0<= x <=1

0<= x <=1

1<= x <=2

0<= x <=2

0<= x <=2

1<= x <=3

0<= x <=1000

0<= x < 1000

1<= x <= 1000

x = 1000

widening

1 2 3 4 5 Steps: 6 7 8 9

10 11 12 13 14

12

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Abstract Domain as an Interface

interface AbstractDomain(V) :

• V – set of variables

• A – abstract elements

• E – expressions

• S – statements

α : E → A γ : A → E meet : A  A → A

isTop : A → bool isBot : A → bool join : A  A → A

leq : A  A → bool αPost : S → (A → A) widen : A  A → A

All operations are over-approximations, e.g.,

 γ (a) || γ (b)  γ (join (a, b))

 γ (a) && γ (b)  γ (meet (a,b))

abstract concretize

abstract transformer order

13

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Example: Box Abstract Domain

(1, 10) meet (2, 12) = (2,10)

(1, 3) join (7, 12) = (1,12)

1  x  10 (1, 10) α γ 1  x  10

(a, b) meet (c, d) = (max(a,c), min(b,d))

(a, b) join (c, d) = (min(a,c),max(b,d))

αPost (x := x + 1) ((a, b)) = (a+1, b+1) (1, 10) + 1 = (2, 11)

Definition of Operations Examples

over-approximation

abstract concretize

14

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Abstract Interpretation w/ Box Domain (3)

assume (i=1 || i=2)

if (i = 1)

 x1 := i;

else if (i = 2)

 x2 := -4;

if (i = 1)

 assert (x1 > 0);

else if (i = 2)

 assert (x2 < 0);

1 <= i <= 2

i=1

i=1 && x1=1

i=2

i=2 && x2=-4

1 <= i <= 2

i=1

i=2

Loss of

precision due

to join

False

Positive

Program

1 2 3 4 5 Steps: 6 7 8

15

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Vinta: Verification with INTERP and AI

• uses Cutpoint Graph (CPG)

• maintains an unrolling of CPG

• computes disjunctive invariants

• uses novel powerset widening

• uses SMT to check for CEX

• DAG Interpolation for Refinement

• Guided by AI-computed Invs

• Fills in “gaps” in AI

Abstract

Interpretation
Refinement Program

SAFE

(+Invariant)

UNSAFE

(+CEX)

Interpolation

Unsafe Invariant

Strengthening

16

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Example: AI phase

1: x = 10;

2: while (*)
 x = x - 2;

 if (x == 9)
3: error();

1

2

2’

2’’

3

Alarm!

• Exploration: WTO

• Abstract Domain: Intervals

• Side effect: Labelled CFG

unrolling

17

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Verification Conditions
1

2

2’

2’

’

3

Instruction encoding Control-flow encoding

1: x = 10;

2: while (*)
 x = x - 2;

 if (x == 9)
3: error();

18

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Craig Interpolation Theorem

Theorem (Craig 1957)

Let A and B be two First Order (FO) formulae such that A) :B, then

there exists a FO formula I, denoted ITP(A, B), such that

 A) I I) :B atoms(I) 2 atoms(A) Å atoms(B)

Theorem (McMillan 2003)

A Craig interpolant ITP(A, B) can be effectively constructed from a
resolution proof of unsatisfiability of A Æ B

In Model Cheching, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

19

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

DAG Interpolants [TACAS’12]

Given a DAG G = (V, E) and a labeling of edges ¼:EExpr. A

DAG Interpolant (if it exists) is a labeling I:VExpr such that

• for any path v0, …, vn, and 0 < k < n,
I(vk) = ITP (¼(v0) Æ … Æ ¼ (vk-1), ¼(vk) Æ … Æ ¼(vn))

• 8 (u, v) 2 E . (I(u) Æ ¼ (u, v))) I(v)

1

2

3

4 5

7

6

¼1

¼2

¼3 ¼4

¼5
¼6

¼7

¼8

I1

I2

I3

I4 I5

I6

I7

I2 = ITP (¼1, ¼8)

I2 = ITP (¼1, ¼2 Æ ¼3 Æ ¼6 Æ ¼7)

…

(I1 Æ ¼1)) I2

(I2 Æ ¼8)) I7

(I2 Æ ¼2)) I3

…

20

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

DAG Interpolation Algorithm [TACAS’12]

Reduce DAG Interpolation to Sequence Interpolation!

DagItp ((V, E), ¼)
{
 (A0, …, An) = Encode(V, E, ¼)

 (I1, …, In-1) = SeqItp(A0, …, An)

 for i in [1, n-1] do Ji = Clean(Ii)

 return (J1, …, Jn-1)
}

Encode input DAG by a set of

constraints. One constraint

per vertex.

Compute interpolant

sequence. One interpolant

per vertex.

Remove out-of-scope

variables

21

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

In our running example…

2

1

1

2

2

’

2

’’

3

How to use the results of AI here?

22

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Restricted DAG Interpolants

1

2

2

’

2

’’

3

23

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Refinement: Strengthening

1

2

2’

2’’

2’’’

2’’’

Program is safe!

3 3

1: x = 10;

2: while (*)
 x = x - 2;

 if (x == 9)
3: error();

24

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

VINTA from 30,000 ft

Abstract Interpretation

Alarm!

Refinement w/ DAG Interpolants

25

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

VINTA from 30,000 ft

Abstract Interpretation Refinement w/ DAG Interpolants

Refinement recovers imprecision in:

• Join, Widening

• Abstract Transformer

• Inexpressive Abstract Domain

26

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Vinta is part of UFO

26

• A framework and a tool for software

verification

• Tightly integrates interpolation- and

abstraction-based techniques

References:

[SAS12] Craig Interpretation

[CAV12] UFO: A Framework for Abstraction- and Interpolation-based Software Verification

[TACAS12] From Under-approximations to Over-approximations and Back

[VMCAI12] Whale: An Interpolation-based Algorithm for Interprocedural Verification

Check it out at:

http://bitbucket.org/arieg/ufo

http://bitbucket.org/arieg/ufo

27

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Implementation in UFO Framework

C to LLVM

C Program

with

assertions

ARG

Constructor

Abstract

Post

Expansion

Strategy

Refinement

Strategy

Optimizer
Cutpoint

Graph

SMT

interface

Mathsat

Z3

© 2013 Carnegie Mellon University

Software Verification

Competitoion (SV-COMP 2013)

29

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

SV-COMP 2013

2nd Software Verification Competition held at TACAS 2013

Goals

• Provide a snapshot of the state-of-the-art in software verification to the
community.

• Increase the visibility and credits that tool developers receive.

• Establish a set of benchmarks for software verification in the community.

Participants:

• BLAST, CPAChecker-Explicit, CPAChecker-SeqCom, CSeq, ESBMC,
LLBMC, Predator, Symbiotic, Threader, UFO, Ultimate

Benchmarks:

• C programs with ERROR label (programs include pointers, structures, etc.)

• Over 2,000 files, each 2K – 100K LOC

• Linux Device Drivers, SystemC, “Old” BLAST, Product Lines

• http://sv-comp.sosy-lab.org/2013/benchmarks.php

http://sv-comp.sosy-lab.org/2013/

http://sv-comp.sosy-lab.org/2013/benchmarks.php
http://sv-comp.sosy-lab.org/2013/benchmarks.php
http://sv-comp.sosy-lab.org/2013/benchmarks.php
http://sv-comp.sosy-lab.org/2013/benchmarks.php
http://sv-comp.sosy-lab.org/2013/benchmarks.php
http://sv-comp.sosy-lab.org/2013/
http://sv-comp.sosy-lab.org/2013/
http://sv-comp.sosy-lab.org/2013/
http://sv-comp.sosy-lab.org/2013/
http://sv-comp.sosy-lab.org/2013/

30

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

SV-COMP 2013: Scoring Scheme

Points Reported Result Description

0 UNKNOWN
Failure to compute verification result, out of

resources, program crash.

+1
FALSE/UNSAFE

correct

The error in the program was found and an error

path was reported.

-4
FALSE/UNSAFE

wrong

An error is reported for a program that fulfills the

property (false alarm, incomplete analysis).

+2
TRUE/SAFE

correct

The program was analyzed to be free of errors.

-8
TRUE/SAFE

wrong

The program had an error but the competition

candidate did not find it (missed bug, unsound

analysis).

Ties are broken by run-time

31

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

UFO/VINTA Results

VINTA was the main reasoning engine used by UFO at SV-COMP

UFO won in 4 categories

• Control Flow Integers (perfect score)

• Product Lines (perfect score)

• Device Drivers

• SystemC

VINTA with Box domain was most competitive for bug-discovery

VINTA with Boxes domain was most competitive for proving safety

http://sv-comp.sosy-lab.org/2013/results/index.php

//vmware-host/Shared Folders/ag/tmp/SV-COMP 2013 - 2nd International Competition on Software Verification.htm
//vmware-host/Shared Folders/ag/tmp/SV-COMP 2013 - 2nd International Competition on Software Verification.htm
//vmware-host/Shared Folders/ag/tmp/SV-COMP 2013 - 2nd International Competition on Software Verification.htm
//vmware-host/Shared Folders/ag/tmp/SV-COMP 2013 - 2nd International Competition on Software Verification.htm
//vmware-host/Shared Folders/ag/tmp/SV-COMP 2013 - 2nd International Competition on Software Verification.htm

32

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

The Secret Sauce

UFO Front-End

Boxes Abstract Domain

Parallel Verification Strategy

33

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

UFO Front End

In principle simple, but in practice very messy

• CIL passes to normalize the code (library functions, uninitialized vars, etc.)

• llvm-gcc (without optimization) to compile C to LLVM bitcode

• llvm opt with many standard, custom, and modified optimizations

– lower pointers, structures, unions, arrays, etc. to registers

– constant propagation + many local optimizations

– difficult to preserve indented semantics of the benchmarks

– based on very old LLVM 2.6 (newer version of LLVM are “too smart”)

Many benchmarks discharged by front-end alone

• 1,321 SAFE (out of 1,592) and 19 UNSAFE (out of 380)

C to

LLVM

C Program

with

assertions
Optimizer

Cutpoint

Graph

34

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Boxes Abstract Domain: Semantic View

Boxes are “finite union of box values”

(alternatively)

Boxes are “Boolean formulas over interval constraints”

35

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Linear Decision Diagrams in a Nutshell*

x + 2y < 10

z < 10

1 0

Linear Decision Diagram

decision
node

true
terminal

false
edge

(x + 2y < 10) OR

(x + 2y  10 AND z < 10)

Linear Arithmetic Formula

Operations

• Propositional (AND, OR, NOT)

• Existential Quantification false
terminal

true
edge

Compact Representation

• Sharing sub-expressions

• Local numeric reductions

• Dynamic node reordering

*joint work w/ Ofer Strichman

36

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Boxes: Representation

Represented by (Interval) Linear Decision Diagrams (LDD)

• BDDs + non-terminal nodes are labeled by interval constraints + extra rules

• retain complexity of BDD operations

• canonical representation for Boxes Abstract Domain

• available at http://lindd.sf.net

x ≤1

10

x < 2

y < 1

y ≤ 3

LDD Semantics

1 2

1

3

(x ≤ 1 || x ≥ 2)

&&

1 ≤ y ≤ 3

Syntax

http://lindd.sf.net/

37

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Widening: The Problem

widen

(x  1  2  y  3) 

(2  x  3  1  y  2)

(x  1.5  1.5  y  3) 

(2  x  3  1  y  2)

38

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Parallel Verification Strategy

Run 7 verification strategies in parallel until a solution is found

• cpredO3

– all LLVM optimizations + Cartesian Predicate Abstraction

• bpredO3

– all LLVM optimizations + Boolean PA + 20s TO

• bigwO3

– all LLVM optimizations + BOXES + non-aggressive widening + 10s TO

• boxesO3

– all LLVM optimizations + BOXES + aggressive widening

• boxO3

– all LLVM optimizations + BOX + aggressive widening + 20s TO

• boxesO0

– minimal LLVM optimizations + BOXES + aggressive widening

• boxbpredO3

– all LLVM opts + BOX + Boolean PA + aggressive widening + 60s TO

39

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Vinta Family

Whale [VMCAI12]

• Interpolation-based interprocedural analysis

• Interpolants as procedure summaries

• State/transition interpolation

• a.k.a. Tree Interpolants

• Refinement with DAG interpolants

• Tight integration of interpolation-based

verification with predicate abstraction
UFO [TACAS12]

Vinta [SAS12]

• Refinement of Abstract Interpretation (AI)

• AI-guided DAG Interpolation

40

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Future Work

Symbolic Abstraction

• An abstract domain based on SMT-formulae

DAG Interpolation via (Non-Recursive) Horn Clause Solving

• DAG Interpolation is an instance of Horn Clause Satisfiability Problem

• Need to better understand how to combine Interpolation and Inductive
Generalization-based solutions

Tighter integration of existing engines and passes

• our current solution is “embarrassingly parallel”

• there are many other strategies with better defined communication between
components and “failed” attempts

Concurrency

41

Vinta

Arie Gurfinkel
© 2013 Carnegie Mellon University

Contact Information

Presenter

Arie Gurfinkel

RTSS

Telephone: +1 412-268-7788

Email: arie@cmu.edu

U.S. mail:

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Web:

www.sei.cmu.edu

http://www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

© 2013 Carnegie Mellon University

THE END

