
© 2012 Carnegie Mellon University

From Underapproximations to

Overapproximations and

Back!

Arie Gurfinkel
Software Engineering Institute
Carnegie Mellon University

joint work with Aws Albarghouthi and
Marsha Chechik from University of
Toronto

2

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

3

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Software Engineering Institute (SEI)

Department of Defense R&D Laboratory (FFRDC)

Created in 1984

Under contract to Carnegie Mellon University

Offices in Pittsburgh, PA; Washington, DC; and Frankfurt, Germany

SEI Mission: advance software engineering and related disciplines to
ensure the development and operation of systems with predictable and
improved cost, schedule, and quality.

9

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Software is Everywhere

10

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Software is Full of Bugs!

“Software easily rates as the most poorly constructed,

unreliable, and least maintainable technological artifacts

invented by man”

 Paul Strassman, former CIO of Xerox

11

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Software Bugs are Expensive!

Intel Pentium FDIV Bug

• Estimated cost: $500 Million

Y2K bug

• Estimated cost: >$500 Billion

Northeast Blackout of 2003

• “a programming error identified as the cause of alarm failure”

• Estimated cost: $6-$10 Billion

“The cost of software bugs to the U.S.

economy is estimated at $60 B/year”
 NIST, 2002

12

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Some Examples of Software Disasters

Between 1985 and 1987, Therac-25 gave patients massive overdoses
of radiation, approximately 100 times the intended dose. Three patients
died as a direct consequence.

On February 25, 1991, during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabia, failed to track and intercept an
incoming Iraqi Scud missile. The Scud struck an American Army
barracks, killing 28 soldiers and injuring around 100 other people.

On June 4, 1996 an unmanned Ariane 5 rocket launched by the
European Space Agency forty seconds after lift-off. The rocket was on
its first voyage, after a decade of development costing $7 billion. The
destroyed rocket and its cargo were valued at $500 million.

 Details at http://www5.in.tum.de/~huckle/bugse.html

13

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Recent Examples

In July 2010, The Food and Drug Administration ordered Baxter
International to recall all of its Colleague infusion pumps in use and
provide a refund or no-cost replacement to United States customers. It
has been working with Baxter since 1999 to correct numerous device
flaws. Some of the issues were caused by simple buffer overflow.

In December 2010, the Skype network went down for 3 days. The
source of the outage was traced to a software bug in Skype version 5.

In January 2011, two German researchers have shown that most
“feature” mobile phones can be “killed” by sending a simple SMS
message (SMS of Death). The attack exploits many bugs in the
implementation of SMS protocol in the phones. It can potentially bring
down all mobile communication…

14

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Software Engineering is very complex

• Complicated algorithms

• Many interconnected components

• Legacy systems

• Huge programming APIs

• …

Software Engineers need better tools to deal with this complexity!

Why so many bugs?

15

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

What Software Engineers Need Are …

Tools that give better confidence than testing while remaining easy to
use

And at the same time, are

• … fully automatic

• … (reasonably) easy to use

• … provide (measurable) guarantees

• … come with guidelines and methodologies to apply effectively

• … apply to real software systems

16

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Software Model Checking with

Predicate Abstraction

e.g., Microsoft’s SDV

Automated Software Analysis

Program
Automated

Analysis

Correct

Incorrect

Abstract Interpretation with

Numeric Abstraction

e.g., ASTREE, Polyspace

17

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Outline of The Rest

Over- and Under-approximation Driven Approaches

UFO: From Under- to Over- and Back!

Exploration Strategy

Refinement Strategy

Conclusion

18

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Overapproximation-driven Approach (CEGAR)

Program Is safe? Safe

Is cex feasible?

Refine post

operator

Cex

Interpolation

or WP

Compute invariant

using abstract post

SMT

Cex

e.g., BLAST, SLAM, CPAChecker, YaSM, SATAbs, etc.

19

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Is ERROR Reachable?

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

1: ;

2: while (*)
3: ;
4: if (*)
5: ERROR:;
6:

1:

2:

3: 4:

5:

6:

Need This!

Program Abstraction
Over-

Approximation

Abstract Translate Check Validate

CEGAR steps

Repeat

20

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Over-Driven: Is ERROR Reachable?

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = b ? T : *;
4: if (*)
5: ERROR:;
6:

Program Abstraction
(with y<=2)

Over-
Approximation

1:

2:b=T

3:b=T 4:b=F

5:b=F

6:b=F

2:b=F

UNREACHABLE

Abstract Translate Check NO ERROR

CEGAR steps

21

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Underapproximation-driven Approach (Impact)

Program
Are these paths

feasible?
Cex

Explain why safe

Is result an

inductive invariant?
Safe

No

No

SMT

Interpolation/

WP

Generate paths to

error

e.g., Impact, Impact2, Synergy, Dash, Wolverine

22

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Under- Driven: Is ERROR Reachable?

1: int x = 2;
 int y = 2;
2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

Program

1:

2:

4:

5:

{y<=2}

{true}

{false}

{false}

3:

2:

4:

5:

{true}

{y<=2}

{y<=2}

{y<=2}

{false}

{false}
Explore Refine Explore Refine

IMPACT steps

Cover

23

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

E

2

Over- Driven v.s. Under- Driven in a Nutshell

int main(){
1 …
2 while (…){
 …
 }
E: ERROR
}

UD

1

2

E

OD

Explore

Refine

Explore

Unlabeled

Pred. abs. label

Interpolant label

24

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Over- Driven v.s. Under- Driven in a Nutshell

int main(){
1 …
2 while (…){
 …
 }
E: ERROR
}

UD OD

Explore

Refine

Explore

Unlabeled

Pred. abs. label

Interpolant label

E

2 2

E

E

2

1

2

E

25

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Over- Driven v.s. Under- Driven in a Nutshell

int main(){
1 …
2 while (…){
 …
 }
E: ERROR
}

UD OD

Explore

Refine

Explore

Unlabeled

Pred. abs. label

Interpolant label

E

2 2

E

E

2

1

2

E

Explore

Refine

Explore

1

2

E

1

2

E

26

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

OD vs. UD Approaches

OD

UD

Number of Refinements

C
o
s
t
o
f

E
x
p
lo

ra
ti
o
n

27

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Our Algorithm: UFO

UD algorithm

Interpolation-based

OD algorithm

Predicate

abstraction

based

Combination of UD and

OD

A novel interpolation-based refinement
Multiple paths checked and refined with a single SMT call

+

28

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

E

L

L

UFO in a Nutshell

28

Iteration 1

L

E

L

Iteration 2

L

E

L

Imprecise post UD

Explore from root OD

L

E

Unlabeled

Pred. abs. label

Interpolant label

29

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

The UFO Algorithm

Explore Explore

Refine

30

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Weak Topological Ordering

Definition (WTO):

 A weak topological order (WTO) of a DAG
G = (V, E) is a well-parenthesised total-
order ¹ of V without two consecutive ‘(‘
such that for every edge (u, v) 2 E:

Elements between two matching paren. are
called components

First element of a component is called head

!(u) is the set of heads of components

containing u

(uÁ v ^ v 62 !(u))_ (u¹ u^ v 2 !(u))

(1 (2 3 (4) 5 6) 7)

1

2

3

4 5

7

6

WTO:

DAG:

© 2012 Carnegie Mellon University

Refinement

32

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Craig Interpolation Theorem

Theorem (Craig 1957)

Let A and B be two First Order (FO) formulae such that A) :B, then

there exists a FO formula I, denoted ITP(A, B), such that

 A) I I) :B atoms(I) 2 atoms(A) Å atoms(B)

Theorem (McMillan 2003)

A Craig interpolant ITP(A, B) can be effectively constructed from a
resolution proof of unsatisfiability of A Æ B

In Model Cheching, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states

33

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Craig Interpolation in Model Checking

Over-Approximating Reachable States

• Let Ri be the ith step of a transition system

• Let A = Init Æ R0 Æ … Æ Rn and B = Bad

• ITP (A, B) (if exists) is an over-approx of states reachable in n-steps
that does not contain any Bad states

A B

ITP(A,B)

34

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

))))))

Interpolation Sequence

Given a sequence of formulas A = {Ai}i=0
n, an interpolation

sequence ItpSeq(A) = {I1, …, In-1} is a sequence of
formulas such that

• Ik is an ITP (A0 Æ … Æ Ak-1, Ak Æ … Æ An), and

• 8 k<n . Ik Æ Ak+1
) Ik+1

A0 A1 A2 A3 A4 A5 A6

I0 I1 I2 I3 I4 I5

If Ai is a transition relation of step i, then the interpolation sequence is
a proof why a program trace is safe.

35

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

DAG Interpolants: Solving the Refinement Prob.

Given a DAG G = (V, E) and a labeling of edges ¼:EExpr. A

DAG Interpolant (if it exists) is a labeling I:VExpr such that

• for any path v0, …, vn, and 0 < k < n,
I(vk) = ITP (¼(v0) Æ … Æ ¼ (vk-1), ¼(vk) Æ … Æ ¼(vn))

• 8 (u, v) 2 E . (I(u) Æ ¼ (u, v))) I(v)

1

2

3

4 5

7

6

¼1

¼2

¼3 ¼4

¼5
¼6

¼7

¼8

I1

I2

I3

I4 I5

I6

I7

I2 = ITP (¼1, ¼8)

I2 = ITP (¼1, ¼2 Æ ¼3 Æ ¼6 Æ ¼7)

…

(I1 Æ ¼1)) I2

(I2 Æ ¼8)) I7

(I2 Æ ¼2)) I3

…

36

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

DAG Interpolation Algorithm

Reduce DAG Interpolation to Sequence Interpolation!

DagItp ((V, E), ¼)
{
 (A0, …, An) = Encode(V, E, ¼)

 (I1, …, In-1) = SeqItp(A0, …, An)

 for i in [1, n-1] do Ji = Clean(Ii)

 return (J1, …, Jn-1)
}

Encode input DAG by a set of

constraints. One constraint

per vertex.

Compute interpolant

sequence. One interpolant

per vertex.

Remove out-of-scope

variables

37

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

DagItp: Encode

1

2

3

4 5

7

6

Encode

¼1

¼2

¼3 ¼4

¼5
¼6

¼7

¼8

v1

v1) v2 Æ ¼1

A1

v2) (v3 Æ ¼2) Ç (v7 Æ ¼8) A2

v3) (v4 Æ ¼3) Ç (v5 Æ ¼4) A3

v4) v6 Æ ¼6 A4

v5) v6 Æ ¼5 A5

v6) v7 Æ ¼7 A6

38

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

DagItp: Sequence Interpolate

1

L

3

4 5

7

6

1

2

3

v1

v1) v2 Æ ¼1

A1

v2) (v3 Æ ¼2) Ç (v7 Æ ¼8) A2

v3) (v4 Æ ¼3) Ç (v5 Æ ¼4) A3

v4) v6 Æ ¼6 A4

v5) v6 Æ ¼5 A5

v6) v7 Æ ¼7 A6

I4

39

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

DagItp: Clean

8fx j x 2 var(Ii)^:inScope(x; vi)g ¢ 8fvj j vj 2 V g ¢ I[vi Ã>]

Clean(Ii) =

40

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

UFO Refinement

1. Construct DAG of current unfolding

2. Use DagItp to find new labels

Refinement is done with a single SMT call

Cleaning the labels with quantifier elimination
is a major bottleneck 4 5

E

L’

1

L

3

41

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

E

L

L

UFO in a Nutshell

41

Iteration 1

L

E

L

Iteration 2

L

E

L

Imprecise post UD

Explore from root OD

L

E

Unlabeled

Pred. abs. label

Interpolant label

42

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

UFO Framework: Architecture

43

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Implementation

43

UD

Combined
UD+OD

OD

ufoNo: pure interpolation-based

ufoCP: interpolation with Cartesian abstraction

ufoBP: interpolation with Boolean abstraction

CP: Cartesian predicate abstraction

BP: Boolean predicate abstraction

Implemented 5 instances of UFO

44

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Evaluation

Benchmarks from SV-COMP 2012:

• ntdrivers-simplified, ssh-simplifed, and systemc

Pacemaker benchmarks from [VMCAI 2012]

Total 105 C programs

Compared with Wolverine

• a freely available implementation of IMPACT algorithm

• based on CProver framework

• bit-precise (our implementation is not)

44

45

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Results: Summary

45

#SOLVED #SAFE #UNSAFE TOT. TIME (s)

ufoNo 78 22 56 8,289

ufoCP 79 22 57 7,838

ufoBP 69 17 52 11,260

CP 49 10 39 15,363

BP 71 19 52 10,018

Wolverine 38 18 20 19,753

46

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Results: A Closer Look (SAFE)

46

ufoNo ufoCP ufoBP BP

TIME #REF TIME #REF TIME #REF TIME #REF

token1 98 18 24 10 0.69 4 0.69 4

token2 -- -- -- -- 2.15 4 2.63 4

token3 -- -- -- -- 76 4 -- --

token4 -- -- -- -- -- -- 153 4

token5 -- -- -- -- -- -- 149 4

srvr1a 5.2 10 5.16 8 0.79 4 0.43 3

srvr1b 1.37 7 2.9 7 0.89 5 -- --

srvr2 171 17 184 17 -- -- -- --

srvr3 133 17 147 17 -- -- 33.71 5

srvr4 -- -- -- -- -- -- 8 4

srvr8 101 14 115 14 -- -- -- --

47

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Results: A Closer Look (UNSAFE)

47

ufoNo ufoCP ufoBP BP

TIME #REF TIME #REF TIME #REF TIME #REF

kundu1 -- -- 24 4 122 4 33 3

kundu2 1.24 2 2.74 2 8.15 2 8.6 2

toy1 96 10 79 9 13.54 3 -- --

toy2 12 5 60 8 -- -- -- --

token12 27 4 14 4 -- -- -- --

token13 37 4 34 4 -- -- -- --

token14 10 3 33 4 -- -- -- --

token15 52 4 34 4 -- -- -- --

48

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Results: Observations

UFO is very competitive on SV-COMP benchmarks

UFO outperforms Lazy Abstraction with Interpolants

• i.e., Wolverine

Different instantiations are more suited to different problems

ufoCP hits the sweet spot (most consistent)

Need to experiment with different abstract domains and
strategies

48

49

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Recent Related Work

Impact [McMillan 06]

• Original lazy abstraction with interpolants

Impact2 [McMillan 10]

• Targets testing/exploration

Wolverine [Weissenbacher 11]

• Bit-level interpolants

Ultimate [Ermis et al. 12]

• Impact with Large Block Encoding for Refinement

Whale [Our work 12]

• Inter-procedural verification with interpolants

FunFrog [Sery et al. 11]

• Function summarization using interpolants

 49

Intra-procedural

Inter-procedural

50

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Conclusion

UFO

• A Combined UD+OD technique

• DAG interpolation-based refinement procedure

• Extensive Evaluation on SV-COMP benchmarks

– Results show synergy between UD and OD

Current and Future Work

• Open Source release of the UFO framework

• UFO as a verification framework [CAV 2012]

• UFO as refinement of abstract interpretations [SAS 2012]

• Inter-procedural extension of UFO via [VMCAI 2012]

51

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Thank You!

http://www.cs.toronto.edu/~aws/ufo

http://www.cs.toronto.edu/~aws/ufo
http://www.cs.toronto.edu/~aws/ufo

52

UFO

Arie Gurfinkel
© 2012 Carnegie Mellon University

Contact Information

Presenter

Arie Gurfinkel

RTSS

Telephone: +1 412-268-7788

Email: arie@cmu.edu

U.S. mail:

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Web:

www.sei.cmu.edu

http://www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

© 2012 Carnegie Mellon University

THE END

