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Automated 

Analysis 

Software Model Checking 
with Predicate Abstraction 

e.g., Microsoft’s SDV 

Automated Software Analysis 

Program 
Correct 

Incorrect 

Abstract Interpretation 
with Numeric Abstraction 

e.g., ASTREE, Polyspace 
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Turing, 1936:  “undecidable” 



5 
SeaHorn Verification Framework 
Gurfinkel, April 11, 2015 

© 2015 Carnegie Mellon University 5

Turing, 1949 Alan M. Turing. “Checking a large routine”, 1949  
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http://seahorn.github.io1
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SeaHorn Verification Framework 

Distinguishing Features 
•  LLVM front-end(s) 
•  Constrained Horn Clauses to represent Verification Conditions 
•  Comparable to state-of-the-art tools at SV-COMP’15 

Goals 
•  be a state-of-the-art Software Model Checker 
•  be a framework for experimenting and developing CHC-based verification 
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Related Tools 

CPAChecker 
•  Custom front-end for C 
•  Abstract Interpretation-inspired verification engine  
•  Predicate abstraction, invariant generation, BMC, k-induction 

SMACK / Corral 
•  LLVM-based front-end 
•  Reduces C verification to Boogie 
•  Corral / Q verification back-end based on Bounded Model Checking with SMT 
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SeaHorn Usage 

>"sea"pf"FILE.c"
Outputs sat"for unsafe (has counterexample); unsat for safe  
 
Additional options 
•  11cex=trace.xml  outputs a counter-example in SV-COMP’15 format 
•  11track={reg,ptr,mem} track registers, pointers, memory content 
•  11step={large,small}"verification condition step-semantics 
– small == basic block, large == loop-free control flow block 

•  11inline inline all functions in the front-end passes 
Additional commands 
•  sea"smt – generates CHC in extension of SMT-LIB2 format 
•  sea"clp  -- generates CHC in CLP format (under development) 
•  sea"lfe1smt – generates CHC in SMT-LIB2 format using legacy front-end 
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Verification Pipeline 

clang"|"pp"|"ms"|opt"|"horn"

front-end 

compile pre-process 

mixed 
semantics 

optimize 

VC gen & 
solve 
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Constrained Horn Clauses (CHC) 

Definition: A Constrained Horn Clause (CHC) is a formula of the form 
                8 V . (Á Æ p1[X1] Æ…Æ pn[Xn] → h[X]), where 
•  Á is a constrained in a background theory A (e.g., arithmetic, arrays, SMT) 
•   p1, …, pn, h are n-ary predicates 
•  pi[X] is an application of a predicate to first-order terms 

We write clauses as rules, with all variables implicitly quantified 
 h[X] Ã p1[X1],…, pn[Xn], Á. 

 
A model of a set of clauses ¦ is an interpretation of each predicate pi 
that makes all clauses in ¦ valid 
A set of clauses is satisfiable if it has a model, and is unsatisfiable 
otherwise  
A model is A-definable, it each pi is definable by a formula Ãi in A 
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FROM PROGRAMS TO 
CLAUSES 
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Horn Clauses by Weakest Liberal Precondition 

Prog = def Main(x) { bodyM }, …, def P (x) { bodyP } 
 
wlp (x=E, Q) = let x=E in Q 
wlp (assert (E) , Q) = E Æ Q 
wlp (assume(E), Q) = E → Q 
wlp (while E do S, Q) = I(w) Æ  
                     8w . ((I(w) Æ E) → wlp (S, I(w))) Æ ((I(w) Æ ¬E) → Q)) 
wlp (y = P(E), Q) = ppre(E) Æ (8 r. p(E, r) → Q[r/y]) 
 
ToHorn (def P(x) {S}) = wlp (x0=x ; assume (ppre(x)); S, p(x0, ret)) 
ToHorn (Prog) = wlp (Main(), true) Æ  8{P 2 Prog} . ToHorn (P)  
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Horn Clauses by Dual WLP 

Assumptions 
•  each procedure is represent by a control flow graph 
–  i.e., statements of the form li:S ; goto lj , where S is loop-free 

•  program is unsafe iff the last statement of Main() is reachable 
–  i.e., no explicit assertions. All assertions are top-level. 

For each procedure P(x), create predicates 
•  l(w) for each label, pen(x0,x,w) for entry, pex (x0

,r) for exit 

The verification condition is a conjunction of clauses: 
pen(x0,x) Ã x

0
=x    

li(x0
,w’) Ã lj(x0

,w) Æ ¬wlp (S, ¬(w=w’)), for each statement li: S; goto lj 
p (x

0
,r) Ã pex(x0

,r)  

false Ã Mainex(x, ret) 
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Example Horn Encoding 
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Large Step Encoding: Single Static Assignment 
0:"goto"1"
1:"x_0"="PHI(0:0,"x_3:5);"
"""y_0"="PHI(y:0,"y_1:5);"
"""if"(x_0"<"N)"goto"2"else"goto"6"1
2:"if"(y_0">"0)"goto"3"else"goto"4"
"
3:"x_1"="x_0"+"y_0;"goto"5""
4:"x_2"="x_0"–"y_0;"goto"5"
"
5:"x_3"="PHI(x_1:3,"x_2:4);"
"""y_1"="11"*"y_0;"
"""goto"1"
6:"

int"x,"y,"n;"
"
x"="0;"
while"(x"<"N)"{"
""if"(y">"0)""
""""x"="x"+"y;"
""else"
""""x"="x"–"y;"
""y"="11"*"y;"
}"
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Example: Large Step Encoding 

0:"goto"1"
1:"x_0"="PHI(0:0,"x_3:5);"
"""y_0"="PHI(y:0,"y_1:5);"
"""if"(x_0"<"N)"goto"2"else"goto"6"
"
2:"if"(y_0">"0)"goto"3"else"goto"4"
"
3:"x_1"="x_0"+"y_0;"goto"5"
"
4:"x_2"="x_0"–"y_0;"goto"5"
"
5:"x_3"="PHI(x_1:3,"x_2:4);"
"""y_1"="11"*"y_0;"
"""goto"1"
6:"
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"
1:"x_0"="PHI(0:0,"x_3:5);"
"""y_0"="PHI(y:0,"y_1:5);"
"""if"(x_0"<"N)"goto"2"else"goto"6"
"
2:"if"(y_0">"0)"goto"3"else"goto"4"
"
3:"x_1"="x_0"+"y_0;"goto"5"
"
4:"x_2"="x_0"–"y_0;"goto"5"
"
5:"x_3"="PHI(x_1:3,"x_2:4);"
"""y_1"="11"*"y_0;"
"""goto"1"
"

Example: Large Step Encoding 
x1"="x0"+"y0"
x2"="x0"–"y0"
y1"="11"*"y0"
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"
1:"x_0"="PHI(0:0,"x_3:5);"
"""y_0"="PHI(y:0,"y_1:5);"
"""if"(x_0"<"N)"goto"2"else"goto"6"
"
2:"if"(y_0">"0)"goto"3"else"goto"4"
"
3:"x_1"="x_0"+"y_0;"goto"5"
"
4:"x_2"="x_0"–"y_0;"goto"5"
"
5:"x_3"="PHI(x_1:3,"x_2:4);"
"""y_1"="11"*"y_0;"
"""goto"1"
"

Example: Large Step Encoding 
x1"="x0"+"y0"
x2"="x0"–"y0"
y1"="11"*"y0"

B2"→"x0"<"N""
B3"→"B2"∧"y0">"0""

B4"→"B2"∧"y0"≤"0""
B5"→"(B3"∧"x3=x1)∨""
"""""(B4"∧"x3=x2)"

B5"∧"x’0=x3"∧"y’0=y1"

p1(x’0,y’0) Ã p1 (x0, y0), Á. 
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PROGRAM TRANSFORMATION 
Mixed Semantics 
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Mixed Semantics 

Stack-free program semantics combining: 
•  operational (or small-step) semantics 
–  i.e., usual execution semantics 

•  natural (or big-step) semantics: function summary [Sharir-Pnueli 81] 
–  (¾, ¾`) 2 ||f|| iff the execution of f on input state ¾ terminates and results in state ¾’ 

•  some execution steps are big, some are small 

Non-deterministic executions of function calls 
•  update top activation record using function summary, or 
•  enter function body, forgetting history records (i.e., no return!) 

Preserves reachability and non-termination 
 Theorem: Let K be the operational semantics, Km the stack-free semantics, 

and L a program location.  Then,            

K ² EF (pc=L) , Km ² EF (pc=L)     and    K ² EG (pc≠L) , Km ² EG (pc≠L) 

[GWC’08,LQ’14]  
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def1main()"
1:"int"x"="nd();"
2:"x"="x+1;""
3:"while(x>=0)"
4:"""x=f(x);"
5:"""if(x<0)"
6:""""""Error;"
7:""
8:"END;"
"
def1f(int"y):"ret"y"""
9:""if(y¸10){"
10:""""y=y+1;"
11:""""y=f(y);"
12:"else"if(y>0)"
13:"""y=y+1;""
14:"y=y11"
15:"

Summary of f(y)  
  (1·y·9 Æ y�=y)   
Ç (y·0 Æ y�=y-1) 

1 

2 

3 

4 

6:Error 

9 

10 

11 

12 

y ¸ 10 

y · 9 
y� = y+1 

y� = f(y) 

5 

7 8:END 

13 

14 

15 

y · 0 

y�= y+1 

y�= y-1 

x ¸ 0 

x�=nd() 

x� = f(x) 

x < 0 
x ¸ 0 

x < 0 

x�=x+1 y�=x 

y�=y 

   (1·x·9 Æ x�=x) 
Ç (x·0 Æ x�=x-1) 

����

�� �

�� �

�� �

�� �

y > 0 

�� �

�� �

����

�� �
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Mixed Semantics as Program Transformation 

Mixed Semantics 
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SOLVING CHC WITH SMT 
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Programs, Cexs, Invariants 

A program P = (V, Init, ½, Bad) 
•  Notation: F(X) = 9 u . (X Æ ½) Ç Init 

P is UNSAFE if and only if there exists a number N s.t. 
 
 
 
P is SAFE if and only if there exists a safe inductive invariant Inv s.t. 

Inductive 

Safe 

Init(v0) ^
 

N�1̂

i=0

⇢(vi, vi+1)

!
^ Bad(vN ) 6) ?

Init(u) ) Inv(u)

Inv(u) ^ ⇢(u, v) ) Inv(v)

Inv(u) ) ¬Bad(u)
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IC3/PDR Algorithm Overview 

Aaron R. Bradley:SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87 
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IC3/PDR in Pictures PdrMkSafe 
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IC3/PDR in Pictures 
Cex Queue 

Trace 

Frame R0 Frame R1 
lemma 

cex 

PdrMkSafe 
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Inductive 

IC3/PDR in Pictures PdrPush 
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Inductive 

IC3/PDR in Pictures PdrPush 

PDR Invariants 

      Ri → ¬ Bad     Init → Ri 

      Ri → Ri+1         Ri Æ ½ → Ri+1 
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IC3/PDR 
Data: Q a queue of counter-examples. Initially, Q = ;.
Data: N a level indication. Initially, N = 0.

Data: R0, R1, . . . , RN is a trace. Initially, R0 = Init .
repeat

Unreachable If there is an i < N s.t. Ri+1 ! Ri, return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q return Reachable.

Unfold If RN ! ¬Bad , then set N  N + 1, RN  >.

Candidate If for some m, m! RN ^ Bad , then add hm,Ni to Q .

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! F(Ri) ^m0

, then add hm0, ii to Q .

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that ¬' ✓ m, if F(Ri ^ ')! ', then add ' to Rj , for j  i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and F(Ri�1) ^m0
is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0  i < N , a clause (' _  ) 2 Ri, ' 62 Ri+1, if

F(Ri ^ ')! ', then add ' to Rj , for each j  i+ 1.

until 1;
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IC3/PDR 
Data: Q a queue of counter-examples. Initially, Q = ;.
Data: N a level indication. Initially, N = 0.

Data: R0, R1, . . . , RN is a trace. Initially, R0 = Init .
repeat

Unreachable If there is an i < N s.t. Ri+1 ! Ri, return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q return Reachable.

Unfold If RN ! ¬Bad , then set N  N + 1, RN  >.

Candidate If for some m, m! RN ^ Bad , then add hm,Ni to Q .

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! F(Ri) ^m0

, then add hm0, ii to Q .

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause

', such that ¬' ✓ m, if F(Ri ^ ')! ', then add ' to Rj , for j  i+ 1.

Leaf If hm, ii 2 Q , 0 < i < N and F(Ri�1) ^m0
is unsatisfiable, then add

hm, i+ 1i to Q .

Induction For 0  i < N , a clause (' _  ) 2 Ri, ' 62 Ri+1, if

F(Ri ^ ')! ', then add ' to Rj , for each j  i+ 1.

until 1;

Decide If hm, i + 1i 2 Q and there are m0 and m1 s.t.

m1 ! m, m0 ^ m0
1 is satisfiable, and m0 ^ m0

1 !
F(Ri) ^m0

, then add hm0, ii to Q .

Conflict For 0  i < N : given a candidate model

hm, i + 1i 2 Q and clause ', such that ¬' ✓ m,

if F(Ri ^ ') ! ', then add ' to Rj, for j  i+ 1.
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Extending PDR to Arithmetic: APDR 

Model Based Projection: MBP(v, m, F)                                      [KGC’14] 
•  generates an implicant of 9 v . F that contains the model m 

Counter-examples are monomials (conjunction of inequalities) 
Lemmas are clauses (disjunction of inequalities) 
 
APDR computes an (possibly non-convex) QFLRA invariant in CNF 

Decide

A
If hP, i+ 1i 2 Q and there is a model m(v,v0

) s.t. m |= F(Ri) ^ P 0
,

add hP#, ii to Q , where P# 2 Mbp(v0,m,F(Ri) ^ P 0
).

Conflict

A
For 0  i < N , given a counterexample hP, i+ 1i 2 Q s.t.

F(Ri) ^ P 0
is unsatisfiable, add P "

= Itp(F(Ri)(v0,v), P ) to Rj for

j  i+ 1.
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Craig Interpolation Theorem 

Theorem (Craig 1957) 
Let A and B be two First Order (FO) formulae such that A ) ¬B, then 
there exists a FO formula I, denoted ITP(A, B), such that 
     A ) I                 I ) ¬B                atoms(I) 2 atoms(A) Å atoms(B) 
 
 
 
A Craig interpolant ITP(A, B) can be effectively constructed from a 
resolution proof of unsatisfiability of A Æ B 
 
In Model Cheching, Craig Interpolation Theorem is used to safely over-
approximate the set of (finitely) reachable states 
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Craig Interpolation for Linear Arithmetic 

Useful properties of existing interpolation algorithms [CGS10] [HB12] 
•   I 2 ITP (A, B)  then ¬I 2 ITP (B, A) 
•   if A is syntactically convex (a monomial), then I is convex 
•   if B is syntactically convex, then I is co-convex (a clause) 
•   if A and B are syntactically convex, then I is a half-space 

A = F(Ri) 

I = lemma 
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1.  find 

(e.g. specific pre-post pair 
that needs to be 
generalized) 

N |= '(x, y)

N⌫y

 (y) ⌘ 9x · '(x, y)Expensive to find a quantifier-free 

9x · '(x, y)Models of 

Lazy Quantifier 
Elimination! 

2. choose disjunct “covering” N 
using virtual substitution 

Model Based Projection 
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MBP for Linear Rational Arithmetic 

e t 

` ` `

9` · (` = e ^ �1) _ (t < ` ^ ` < u) _ (` < u ^ �2)

⌘ (�1 _ (t < e ^ e < u) _ (e < u ^ �2))

_ (t < u _ (t < u ^ �2))

_ �2

pick a disjunct that covers a given model 

[1] Cooper, Theorem Proving in Arithmetic without Multiplication, 1972 
[2] Loos and Weispfenning, Applying Linear Quantifier Elimination, 1993 
[3] Bjorner, Linear Quantifier Elimination as an Abstract Decision Procedure, 2010 



38 
SeaHorn Verification Framework 
Gurfinkel, April 11, 2015 

© 2015 Carnegie Mellon University 

Spacer: Solving CHC in Z3 

Spacer: solver for SMT-constrained Horn Clauses 
•  stand-alone implementation in a fork of Z3 
•  http://bitbucket.org/spacer/code 

Support for Non-Linear CHC 
•  model procedure summaries in inter-procedural verification conditions 
•  model assume-guarantee reasoning 
•  uses MBP to under-approximate models for finite unfoldings of predicates 
•  uses MAX-SAT to decide on an unfolding strategy 

Supported SMT-Theories 
•  Best-effort support for arbitrary SMT-theories 
– data-structures, bit-vectors, non-linear arithmetic 

•  Full support for Linear arithmetic (rational and integer) 
•  Quantifier-free theory of arrays 
– only quantifier free models with limited applications of array equality 
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RESULTS 
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SV-COMP 2015 

4th Competition on Software Verification held (here!) at TACAS 2015 
Goals 
•  Provide a snapshot of the state-of-the-art in software verification to the 

community.  
•  Increase the visibility and credits that tool developers receive.  
•  Establish a set of benchmarks for software verification in the community.  

Participants: 
•  Over 22 participants, including most popular Software Model Checkers and 

Bounded Model Checkers 
Benchmarks: 
•  C programs with error location (programs include pointers, structures, etc.) 
•  Over 6,000 files, each 2K – 100K LOC 
•  Linux Device Drivers, Product Lines, Regressions/Tricky examples 
•  http://sv-comp.sosy-lab.org/2015/benchmarks.php 

http://sv-comp.sosy-lab.org/2015/ 
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Results for DeviceDriver category 
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Conclusion 

SeaHorn (http://seahorn.github.io) 
•  a state-of-the-art Software Model Checker 
•  LLVM-based front-end 
•  CHC-based verification engine 
•  a framework for research in logic-based verification 

 
The future 
•  making SeaHorn useful to users of verification technology 
– counterexamples, build integration, property specification, proofs, etc. 

•  targeting many existing CHC engines 
– specialize encoding and transformations to specific engines 
– communicate results between engines  

•  richer properties 
–  termination, liveness, synthesis 
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